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Abstract 
 
     The capacity of the osteoclast to resorb bone is distinctive, as is the cell’s appearance. Both 
characteristics reflect cytoskeletal organization that yields structures such as the sealing zone and ruffled 
border. The unique nature of these organelles and their dependence upon contact with bone have been 
appreciated for some time but insights into the mechanisms by which they are generated come from more 
recent studies. These insights include the role of integrins, particularly αvβ3, in cytoskeletal organization and 
the canonical signaling pathway they activate. Investigators now appreciate that the sealing zone isolates 
the resorptive microenvironment from the general extracellular space, permitting secretion of matrix-
degrading molecules on the bone surface. Thus, the osteoclast is a secretory cell that depends upon 
polarization of exocytic vesicles to the bone-apposed plasma membrane into which they insert under the 
aegis of vesicle/membrane fusion proteins. This process focally expands and convolutes the plasmalemma 
included within the sealing zone, eventuating in formation of the ruffled border. Many of these events are 
now better understood and are the focus of this Perspective. IBMS BoneKEy. 2011 February;8(2):74-83.  
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Isolating the Resorptive 
Microenvironment 
 
Osteoclasts are polykaryons and members 
of the macrophage lineage with the unique 
capacity to degrade the inorganic and 
organic matrices of bone. If excessive, the 
bone resorptive activity of osteoclasts 
causes osteoporosis. Conversely, the 
osteoclast initiates remodeling that likely 
removes structurally compromised bone, 
thereby maintaining mechanical integrity (1). 
Skeletal health, therefore, requires optimal 
osteoclast function. 
 
Resorption is initiated by attachment of 
osteoclasts to bone. They then develop a 
compartment between their plasma 
membrane and the bone surface into which 
the cells transport matrix-degrading 
molecules including H+ and Cl-, which, in 
concert, demineralize the target bone, and 
cathepsin K, which degrades the exposed 
collagen fibers and associated proteins. To 
isolate this resorptive microenvironment 
from the general extracellular space, 
osteoclasts reorganize their cytoskeleton to 
generate an encompassing, actin-rich, 

gasket-like, sealing zone. A single 
osteoclast, being a large cell, enjoys multiple 
contacts with bone and therefore generates 
numerous sealing zones and resorptive 
microenvironments. 

 
When most other cells attach to matrix they 
generate focal adhesions. These stable 
structures contain integrins and signaling 
and cytoskeletal molecules that, upon 
contact with matrix, promote formation of 
actin stress fibers. Consistent with the lack 
of actin stress fibers in mammalian 
osteoclasts, they lack focal adhesions but in 
their place develop podosomes (2;3). These 
punctuate structures contain an F-actin core 
and a peripheral “cloud” of a loose network 
of radial actin cables (4-7). In contrast to 
focal adhesions, podosomes are transient 
but mediate substrate adhesion and thus 
formation of the resorptive 
microenvironment. 

 
Most past studies of osteoclast podosomes 
utilized cells resident on plastic or glass. In 
these circumstances, the punctuate 
structures initially appear in clusters but 
ultimately coalesce, first into an 
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intracytoplasmic actin ring and then a 
peripheral actin belt (4). The physiological 
relevance of this observation was 
challenged by the absence of apparent 
podosomes or an actin belt in non-stressed 
osteoclasts on bone (4). While the relevance 
of the peripheral belt is not established, it is 
clear that, like the actin ring, the sealing 
zone of bone-residing osteoclasts also 
consists of podosome-containing structural 
units (8). 
 
Microtubules Are Important 
 
Depending upon their state of acetylation, 
microtubules in osteoclasts are transient or 
polymerized and relatively stable (9-11). 
Unlike actin ring formation by glass-residing 
cells, sealing zone generation in bone-
resorbing osteoclasts is characterized by 
microtubule acetylation, again illustrating the 
influence of substrate on the cell’s 
cytoskeleton (10). 
 
The histone deacetylase HDAC6 
depolymerizes tubulin, thereby destabilizing 
microtubules. Cbl proteins compete with the 
deacetylase for tubulin binding and thus 
promote polymerization (12). While 
destabilizing microtubules in other cells (13), 
RhoA appears to activate HDAC6 in glass-
generated osteoclasts, suggesting the 
GTPase negatively regulates the cell. When 
on bone, however, osteoclasts in which 
RhoA is inhibited lose their apical-basal 
polarity and, consequently, are incapable of 
optimal resorption (6). Furthermore, RhoA 
promotes actin ring and podosome 
formation and osteoclast motility (6;14). 
When osteoclasts contact bone, RhoA is 
activated and localizes to the cytoskeleton 
(15;16), The fact that RhoA activation is 
diminished, in osteoclasts lacking αvβ3, 
establishes that the GTPase is regulated by 
the integrin (3). Because of the conflicting 
phenotypes of osteoclasts on plastic or 
bone, the impact of active RhoA on stability 
of their microtubules remains unknown. 
 
The Ruffled Border Is King 
 
The ruffled border is the morphological sine 
qua non of the resorbing osteoclast as only 
its presence assures that the cell is 

degrading bone and its absence indicates 
the cell is not doing so. Reflecting multiple 
contacts with bone and attendant sealing 
zones, ruffled borders are also numerous in 
a given osteoclast. 
 
This complex enfolding of the plasma 
membrane, unique to the osteoclast, abuts 
and extends into the resorptive space. It is 
surrounded by the sealing zone and is the 
venue by which the cell secretes matrix-
degrading molecules on the bone surface 
(17). It is therefore the resorptive organelle 
and is absent or deranged in many forms of 
osteopetrosis. As osteoclast resorption 
alternates with migration, the ruffled border 
is a transient structure. 
 
The ruffled border, which forms only upon 
contact with mineralized substrate, is 
initiated by transport of cathepsin K – and/or 
H+ATPase – and Cl- channel-bearing 
vesicles to the bone-apposed plasma 
membrane (17), likely under the aegis of 
GTPases such as Rabs 7, 9 and 3 (18-22). 
While unproven, studies in chicken 
osteoclasts raise the possibility that ruffled 
border-forming vesicles may polarize to the 
resorptive surface via microtubules (23). The 
polarized vesicles fuse with the bone-
apposed plasma membrane, to increase its 
complexity, via a process mirroring 
exocytosis (17). Similar to that occurring in 
the context of neurotransmitter exocytosis, 
vesicle/plasmalemma fusion is regulated by 
v- (vesicular) and t- (target) SNAREs 
(soluble N-ethylmaleimide-sensitive fusion 
protein (NSF) attachment protein (SNAP) 
receptors) (24). 

 
Ruffled border formation requires a 
synaptotagmin (Syt) linking the vesicle and 
target plasma membrane. Fifteen Syt 
isoforms have been identified in mammalian 
cells but Syt VII generates ruffled borders 
and is essential for bone degradation (17). 
Syt VII also enables osteoblasts to secrete 
bone matrix proteins and as such, both 
resorption and formation are repressed in 
Syt VII-deficient mice. 

 
Autophagy is a cellular degradative process 
by which cells recycle organelles and long-
lived proteins. Autophagosomes, which are 
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double-membrane bound vesicles, envelop 
and then deliver cellular components to 
lysosomes for degradation. While the 
process promotes survival in starved or 
stressed cells as well as maintenance of 
organelle quality (25-27), recent evidence 
indicates it may also participate in regulated 
exocytosis (28). In fact, Atg5, Atg7 and 
LC3β autophagy proteins, representing the 
two ubiquitin-like conjugation systems, are 
important for generation of the osteoclast 
ruffled border and the secretory function of 
osteoclasts both in vitro and in vivo. Thus, 
osteoclasts lacking these proteins do not 
efficiently polarize cathepsin K to the 
resorptive microenvironment and are 
incapable of optimal bone resorption (29). 
 
Integrin Activity Starts It All 
 
Skeletal resorption requires osteoclast-bone 
recognition that is mediated by α/β 
heterodimers known as integrins. β1-
containing heterodimers probably participate 
in the process but αv/β3 is the key integrin 
regulating skeletal degradation (30). While 
the αv subunit is constitutively expressed 
throughout osteoclastogenesis, the 
associated β chains alter with differentiation. 
Specifically, immature osteoclast precursors, 
in the form of bone marrow macrophages, 
express abundant αvβ5 and little αvβ3. As 
the cells commit to the osteoclast 
phenotype, the magnitude of expression of 
the two heterodimers reverses (31). Hence, 
αv/β3 is a relatively specific marker of 
osteoclastogenesis. This integrin is liganded 
by the amino acids Arg-Gly-Asp (RGD), a 
motif present in bone proteins such as 
osteopontin and bone sialoprotein. Small 
molecules mimicking this sequence 
suppress osteoclast activity and are 
candidate anti-resorptive drugs (32-34). 
 
In keeping with its governance of osteoclast 
function, absence of αv/β3, globally and 
conditionally in osteoclasts, increases bone 
mass and protects against estrogen-
deficient osteoporosis (35;36). Reflecting the 
integrin’s role in cytoskeletal organization, 
αv/β3 deficiency yields deranged ruffled 
borders, failure of cell spreading and sub-
optimal bone resorption (35). Consequently, 

β3(-/-) mice are hypocalcemic and 
osteoclast number is substantially increased 
in these animals, likely reflecting secondary 
hyperparathyroidism and an abundance of 
osteoclastogenic cytokines in the marrow 
(35;37;38). However, in contrast, absence of 
αv/β3 diminishes the abundance of the 
polykaryons in vitro (33). As differentiation, 
apoptosis and precursor proliferation are not 
compromised, a reasonable hypothesis 
holds that the paucity of osteoclasts, in 
culture, reflects cytoskeletal dysfunction, 
and specifically impairment of migration 
necessary for cell fusion. 

 
αv/β3 signaling in osteoclasts is initiated by 
changing the integrin’s conformation from a 
low to a high affinity state by outside-in or 
inside-out activation (3;39). Outside-in 
activation is characterized by integrin 
clustering, thereby increasing avidity and 
affinity. Inside-out activation is an indirect 
event wherein signals emanating from 
liganded growth factor or cytokine receptors 
target the integrin’s intracellular region, 
changing its conformation and consequently, 
that of the extracellular domain (40). As will 
be discussed, the adaptor protein, talin, is 
essential for inside-out αv/β3 activation in 
osteoclasts and its absence arrests bone 
resorption. 

 
Resorption is a cyclical event wherein a 
portion of the osteoclast migrates to a 
candidate bone resorptive site and forms an 
actin ring and ruffled border. Following 
matrix degradation, the cell detaches and re-
initiates the cycle. Prior to bone recognition, 
the integrin is predominantly in a low affinity 
state and confined to podosomes within the 
sealing zone (3;41). Activated αv/β3 leaves 
the podosome and transits to lamellipodia 
that mediate motility, compromised in the 
absence of the integrin (3). During 
resorption, the heterodimer appears in the 
ruffled membrane (3;41). 
 
Integrins serve as attachment molecules but 
their intracellular transmission of matrix-
derived signals is at least as important. For 
example, αv/β3 substrate robustly activates 
ERKs in wild-type osteoclastic cells but not 
those lacking the integrin (3). Since 
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activation of these MAP kinases typically 
stimulates proliferation, their absence in β3 
knockout osteoclasts may contribute to their 
reduced numbers in vitro. 
 
How Does αv/β3 Do It? 
 
In 1991, Soriano et al. determined that c-src 
deletion eventuates in severe osteopetrosis 
due to osteoclast dysfunction (42). 
Interestingly, c-src-deficient mice, like those 
lacking αv/β3, have increased numbers of 
osteoclasts that fail to organize their 
cytoskeleton. c-src is a tyrosine kinase and 
an adaptor protein and both functions are 
necessary for optimal cytoskeletal 
organization (43). 

 
Because c-src- and αv/β3-deficient 
osteoclasts share qualitatively similar 
cytoskeletal features, the kinase presents as 
a mediator of integrin signaling. In fact, 
under the aegis of phospholipase Cγ 
(PLCγ2) (44), c-src binds directly to the β3 
subunit in the bone resorptive cell, and we 
have found this to be a constitutive event 
(45). Others, however, propose that αv/β3 
occupancy phosphorylates the focal 
adhesion kinase family member, Pyk2, 
which recruits c-src to the integrin (44;46). 
αv/β3-associated c-src phosphorylates c-Cbl 
which, in turn, inhibits c-src’s activity (3;47). 
Regardless of the mechanism of 
association, c-src activation requires integrin 
occupancy and again, signaling via PLCγ2. 
Activated c-src prompts podosomal 
disassembly, most probably by 
phosphorylating cortactin (48;49). Hence, 
podosomes are more abundant in c-src(-/-) 
than wild-type osteoclasts and the mutant 
cells are less motile. In keeping with Pyk2 
regulating the cell’s cytoskeleton, 
osteoclasts lacking the kinase are unable to 
generate normal sealing zones on bone 
(11). The cytoskeletal effects of Pyk2, 
however, may reflect its promotion of tubulin 
acetylation. 
 
Syk is another non-receptor tyrosine kinase 
mediating αv/β3 signaling in osteoclasts. 
Upon integrin occupancy it binds the β3 
cytoplasmic domain close to c-src, which 
activates it (45). Syk is also negatively 

regulated by the ubiquitinating activity of c-
Cbl (50;51). 
 
The ITAM-bearing adaptors, Dap 12 and 
FcRγ, are expressed by osteoclasts and 
their combined, but not individual deletion 
prompts severe osteopetrosis (45;52-54). 
While deletion of both co-stimulatory 
molecules is reported to arrest 
osteoclastogenesis (55), we find such is not 
the case (56), suggesting their resorptive 
abnormality reflects deranged osteoclast 
function but not generation. The same 
obtains regarding osteoblast-mediated 
generation of osteoclasts lacking Dap12, 
with or without FcRγ. These mutant cells 
form in normal numbers but fail to organize 
their cytoskeleton or resorb bone. Among 
the most dramatic consequences of this 
dysfunction is the inability of Dap12(-/-) 
osteoclasts to migrate through a layer of 
osteoblasts, required to attach to a 
candidate resorptive bone surface (56;57). 
Thus the dominant role of ITAM proteins in 
the osteoclast appears to be cytoskeletal 
organization and not differentiation (56;58). 
 
Syk-mediated organization of the osteoclast 
cytoskeleton involves Vav3. This guanine 
nucleotide exchange factor (GEF) is 
uniquely expressed in abundance in the cell 
and activated upon αv/β3 occupancy in a 
SLP-76-dependent manner (15;59). Vavs 
transit cytoskeleton-organizing Rho 
GTPases from their inactive GDP- to their 
active GTP-associated conformation. Thus, 
Vav3(-/-) osteoclasts are dysfunctional and 
the mice from which they are derived are 
osteopetrotic. 
 
Vavs are Rac GEFs and it is therefore not 
surprising that this Rho GTPase regulates 
the osteoclast cytoskeleton in an αv/β3-
dependent manner (60;61). The two 
isoforms expressed in osteoclasts, Rac1 
and Rac2, are mutually compensatory (62). 
Effective deletion of both, however, 
produces severe osteopetrosis in which 
osteoclasts fail to organize their 
cytoskeleton. Absence of the related Rho 
family GTPase, cdc42, also causes 
osteopetrosis but in this circumstance the 
dominant mechanism is arrested osteoclast 
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Fig. 1. Proposed mechanism organizing the cytoskeleton of resorbing osteoclasts. 1). M-CSF occupying its 
receptor, c-fms, stimulates inside-out αvβ3 activation by inducing talin association with the β3 cytoplasmic 
domain that binds c-src constitutively. 2). Clustering of the integrin by RGD ligand increases avidity as well 
as affinity by outside-in activation. The liganded integrin activates c-src as evidenced by Y416 
phosphorylation. Activated c-src tyrosine phosphorylates ITAM proteins that recruit Syk to the integrin by 
binding Syk-SH2 domains. c-src activates β3-associated Syk that phosphorylates Vav3 in the context of 
SLP-76. Vav3 then shuttles Rac-GDP to its activated GTP-associated state. 3). Rac-GTP prompts 
association of lysosome-derived secretory vesicles with microtubules (MTs) that deliver them to the bone-
apposed plasma membrane into which they insert under the influence of Syt VII and LC3. Rac-GTP and 
MTs also promote sealing zone (SZ) formation. Secretory vesicle fusion focally expands the plasma 
membrane forming the ruffled border and eventuating in discharge of cathepsin K (CTK) and HCl into the 
resorptive microenvironment. 
 
recruitment due to inhibited precursor 
proliferation and accelerated apoptosis of 
the mature polykaryon (63). 
 
M-CSF Helps αv/β3 
 
RANK ligand (RANKL) and M-CSF are the 
requisite osteoclastogenic cytokines but 
each also promotes the resorptive activity of 
the mature polykaryon. In the case of M-
CSF, the cytokine interacting with its 
receptor, c-fms, stimulates a signaling 
pathway remarkably similar to that induced 
by αv/β3, thereby organizing the 
cytoskeleton (37;58;64). The means by 

which M-CSF structures the osteoclast 
cytoskeleton may, therefore, be independent 
of the integrin, or alternatively, represent 
inside-out αv/β3 activation. In fact, M-CSF 
transits αv/β3 from its default low affinity to 
its high affinity conformation by inducing 
talin binding to the β3 cytoplasmic domain 
(39). Absence of talin, in osteoclast 
precursors, does not arrest differentiation 
but blocks substrate adherence and motility. 
The impaired function of talin-deficient 
osteoclasts results in a 5-fold increase in the 
bone mass of mutant mice. Interestingly, the 
osteopetrotic phenotype of mice with talin   
(-/-) osteoclasts is more severe than of those 
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lacking αv/β3, which likely represents arrest 
of compensatory integrins, particularly those 
bearing β1 (30;35). 
 
Conclusion 
 
The magnitude of bone resorption reflects 
osteoclast number and function of the 
individual cell, the latter dependent upon 
cytoskeletal organization. The osteoclast 
cytoskeleton is a unique structure whose 
conversion to its active state depends upon 
contact with mineralized matrix (Fig. 1). 
These extracellular signals, which polarize 
the resorptive machinery to the bone-cell 
interface, are transmitted intracellularly by 
integrins dominated by αv/β3. In conjunction 
with M-CSF-stimulated inside-out activation, 
a canonical signaling pathway emanates 
from the αv/β3 integrin. Occupancy of the 
heterodimer phosphorylates constitutively 
associated c-src which in turn targets Dap 
12. The ITAM’s phosphotyrosines serve to 
recruit Syk to the β3 cytoplasmic domain 
where it is also phosphorylated by c-src. 
Utilizing SLP-76, Syk activates Vav3, 
eventuating in formation of Rac-GTP and 
organization of the resorptive cytoskeleton. 
Given current concerns regarding long- 
acting anti-resorptive agents, such as 
bisphosphonates, short-acting counterparts 
are in demand. Delineating the molecular 
mechanism by which osteoclasts organize 
their cytoskeleton to degrade bone has 
provided an array of candidate therapeutic 
targets.  
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