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Abstract 
 
     Glucocorticoid (GC) use results in rapid bone loss and elevated fracture risk. The excess bone fragility 
from GC treatment is multi-factorial. GCs alter calcium and phosphorus metabolism, which can result in 
elevation of parathyroid hormone (PTH) and early stimulation of osteoclast activity and bone remodeling, 
followed by a delayed but sustained reduction in osteogenesis, osteoblast activity and osteocyte 
metabolism. The changes in bone cell viability with GCs results in reduction of localized and whole bone 
strength. New data reveal that GC use may influence mineral metabolism through FGF23. The altered 
perilacunar mineralization around GC-treated osteocytes may be secondary to increased FGF23 production. 
In addition, low doses of GCs can induce self-preservation of osteocytes through the molecular mechanisms 
of autophagy, while higher doses of GCs induce osteocyte apoptosis. Osteocytic autophagy may allow for 
cell survival and then, with withdrawal of GCs, for the repair of lost bone tissue. Currently, both anti-
resorptive and anabolic agents are prescribed to prevent or treat GC-induced bone loss. Additional studies 
are needed to further explore whether current treatments used for GC-induced bone loss alter osteocyte 
metabolism and how this influences localized and whole bone strength. IBMS BoneKEy. 2011 May;8(5):229-
236.  
2011 International Bone & Mineral Society 
 
 
Introduction – The Clinical Importance of 
Glucocorticoid-Induced Bone Loss  
 
Glucocorticoids (GCs) are frequently used in 
clinical medicine to treat non-infectious 
inflammatory diseases. However, GC use 
results in rapid trabecular bone loss and a 
high incident fracture risk. Epidemiologic 
studies show 50% of rheumatoid arthritis 
patients treated with chronic GCs will suffer 
an osteoporotic fracture; baseline data from 
randomized clinical trials show a prevalence 
of vertebral fracture of 30% (1-6). Other 
studies show that both old and young, men 
and women, and all ethnic groups studied 
lose bone mass with GC treatment, making 
this an important public health problem (7). 
Because patients treated with GCs may 
require treatment for a long period of time, 
thereby increasing their risk of fractures, 
there is a medical need to understand the 
biology of GC-induced bone loss so that 
clinicians can effectively prevent and treat 

this disease. The observational data from 
GC clinical studies shows that the initiation 
of GC treatment is associated with a change 
in bone metabolism, which in turn leads to a 
rapid reduction in bone mass at sites rich in 
trabecular bone, e.g., the vertebra and 
femur, with incident vertebral fracture risk 
elevated within 1 year of initiating GC 
treatment (8-10). Nevertheless, the loss of 
trabecular mass and architecture do not 
entirely explain the increase in fracture risk, 
as individuals treated with GCs frequently 
experience fractures at higher BMDs than 
women with postmenopausal osteoporosis 
(9). 
 
The Biology of GC-Induced Bone Loss 

GC treatment results in changes in bone 
remodeling (8;11). Observations of surface 
and biochemically-based turnover in clinical 
studies of glucocorticoid-induced 
osteoporosis show a reduction in trabecular 
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bone volume, thickness and bone formation 
(8;12-14). The influence of GCs on bone 
resorption was thought to be indirect and 
related in part to reduced calcium absorption 
and increased renal calcium excretion (15). 
However, recent studies have found that 
GCs act directly on osteoclasts to decrease 
the apoptosis of mature osteoclasts (16). 
Kim et al. found that GCs in vitro inhibited 
the proliferation of osteoclasts from bone 
marrow macrophages (BMMs) in a dose- 
dependent manner. In addition, higher GC 
doses had no effect on osteoclast 
maturation but inhibited osteoclasts from 
reorganizing their cytoskeleton (17). 
Therefore, GC excess results in an increase 
in osteoclast number, but in an apparent 
inhibition of function with impaired spreading 
and degradation of mineralized matrix (17). 
 
GCs also alter osteoblast and osteocyte 
function, which contributes to GC-induced 
osteoporosis (15). GCs directly inhibit 
cellular proliferation and differentiation of 
osteoblast lineage cells (18), reduce 
osteoblast maturation and activity (11), and 
also induce osteoblast and osteocyte 
apoptosis in vivo (19). The suppression of 
osteoblastic function by GCs is reported to 
be associated with alteration of the Wnt 
signaling pathway (20), a critical pathway for 
osteoblastogenesis (21;22). GCs enhance 
Dickkopf 1 (Dkk1) expression (23), one of 
the Wnt antagonists that prevent soluble 
Wnt proteins from binding to their receptor 
complex (24). GCs maintain levels of 
glycogen synthase kinase-3β (GSK-3β) (25), 
a key kinase that phosphorylates β-catenin, 
thereby preventing the translocation of β-
catenin into the nucleus and the initiation of 
transcription in favor of osteoblastogenesis. 
GCs may also enhance bone marrow 
stromal cell development towards the 
adipocyte lineage rather than towards the 
osteoblast lineage (22;26). Moreover, the 
loss of osteocytes by GC-induced apoptosis 
(27) may disrupt the osteocyte-canalicular 
network, resulting in a failure to direct bone 
remodeling at the trabecular surface. GC-
induced changes in osteocyte function also 
result in a weakening of the localized 
material properties around osteocytes as 

well as in decreased whole bone strength 
(28).   
 
Mineral Metabolism and Osteocytes 
 
GC treatment is known to alter calcium 
metabolism. Treatment with GCs reduces 
the gastrointestinal absorption of calcium 
and increases urinary excretion of calcium, 
which leads to a calcium deficit (15;29;30). 
Over time this calcium deficit and low serum 
ionized calcium levels can stimulate 
parathyroid hormone (PTH) release; PTH 
then catalyzes 1-α-hydroxylase enzyme 
production in the kidney, which in turn 
increases 1,25(OH)2 vitamin D levels, and 
this is followed by gastrointestinal absorption 
of both calcium and phosphorus. If the 
calcium deficit continues, gastrointestinal 
absorption of these minerals continues, 
resulting in elevation of serum phosphorus 
that then stimulates the production of 
fibroblast growth factor 23 (FGF23) by 
osteocytes in an attempt to lower serum 
phosphorus. FGF23 is a hormonal factor 
that is produced primarily by osteocytes and 
reduces serum phosphorus and 1,25(OH)2 
vitamin D levels by acting on the kidney 
through FGF receptors and Klotho (31-33). 
The production and circulating levels of 
FGF23 appear to be tightly regulated but the 
mechanisms responsible are still under 
investigation. 
 
The association between FGF23, osteocytes 
and mineralization has recently been 
explored (34). FGF23 serves as a 
phosphaturic factor synthesized by 
osteocytes and inhibits 1,25(OH)2 vitamin D 
production by the kidney to maintain the 
balance between phosphate homeostasis 
and skeletal mineralization (35). A recent in 
vitro study demonstrated that 
overexpression of FGF23 suppressed 
osteoblast differentiation and matrix 
mineralization (36). Another study evaluated 
the proteins associated with osteocytes and 
bone mineralization and found that FGF23 
co-localized to the secondary spongiosa of 
trabecular bone and areas of cortical bone 
where the osteocyte lacunar system was 
mature, suggesting that FGF23 produced by 
osteocytes would then be part of the bone-
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renal axis that is central to proper mineral 
metabolism (37;38). Elevated levels of 
serum FGF23 have been found in 
individuals with autosomal 
hypophosphatemic rickets with mutations in 
DMP-1 (dentin matrix protein-1) and other 
forms of rickets and chronic kidney disease 
exhibit elevated levels of FGF23 despite 
normal calciuria (39;40). In contrast, mice 
with deletion of Klotho developed elevated 
DMP-1, hyperphosphatemia and low FGF23 
levels (41). Also, overexpression of FGF23 
in primary rat calvaria cell cultures 
suppressed matrix mineralization (36). In 
one pilot study, increased FGF23 
expression in ovine callus was associated 
with delayed fracture healing (42). 
Therefore, based on these initial reports and 
the preliminary data, we examined FGF23 
expression in GC-treated mice. It appears 
that changes in the production and local 
concentration of this phosphaturic factor by 
the osteocyte may result in a reduction in 
osteocyte-driven mineral metabolism, 
thereby compromising local bone strength 
(43-45). In GC-treated mice, we have 
observed a dose-dependent increase in 
serum FGF23, with a decrease in serum 
phosphorus and 1,25(OH)2 vitamin D, 
suggesting that GC use may influence 
mineral metabolism through FGF23. The 
altered perilacunar mineralization around 
GC-treated osteocytes may be secondary to 
increased FGF23 production.  
 
Osteocyte Autophagy Induced by GCs 
 
The autophagy pathway is one of the most 
important biologic processes that enable 
cells to survive stress and starvation and 
help to maintain cellular homeostasis by 
degrading damaged organelles (46-49). 
Autophagy is defined by the formation of 
autophagosomes, also known as autophagic 
vacuoles, which are lined by two 
membranes with the recruitment of LC3-
phosphatidylethanolamine conjugate (LC3-
II) to the autophagosomal membrane, a 
characteristic of autophagosomes (50). 
When autophagosomes fuse with lysosomes 
and form autolysosomes, degradation 
occurs and amino acids or other small 
molecules are delivered to the cytoplasm for 

energy production or recycling. The time the 
cells spend under stress might result in 
extensive recycling of damaged organelles 
that may lead to cell death (47;51;52). 
Autophagy can be inhibited by chloroquine 
(CQ) as it accumulates within 
autophagosomes and then inhibits fusion 
with lysosomes, thereby preventing the 
formation of autolysosomes. This reduction 
by chloroquine in the final phase of 
autophagy, which provides a pathway for the 
breakdown of proteins and removal of 
metabolic debris from the cell, may augment 
apoptosis (53-55) or rescue osteocytes from 
cell death (56).  
 
In collaboration with J. Jiang et al., we have 
found that dexamethasone treatment of an 
osteocytic cell line increased autophagic 
activity as detected by several standard 
approaches based on recently published 
guidelines that included fluorescent GFP-
LC3 dots, MDC fluorescence, LC3 lipidation 
and electron microscopy imaging in addition 
to conventional acridine orange staining 
(57). The enhancement of autophagy was 
also validated in isolated primary osteocytes 
treated with dexamethasone and osteocytes 
in bone from mice chronically treated with 
prednisolone. We also observed that gene 
and protein expression for components of 
matrix proteolysis, including matrix 
metalloproteinases (MMPs), caspases and 
cathepsins, was increased in cortical bone 
following GC treatment (22). Because the 
interior of a lysosome is strongly acidic, as it 
releases the contents of its vacuole through 
autophagic flux into the microenvironment of 
the osteocyte, it may induce matrix 
proteolysis, and demineralization of bone 
around the osteocyte that over time may 
weaken both localized bone tissue and 
whole bone strength (28). To begin to 
elucidate how the osteocyte could be 
modifying its perilacunar matrix, we 
performed microarray analysis, RT-PCR and 
immunohistochemistry on selected genes 
and found that with GC exposure for either 
28 or 56 days, the expression of genes 
associated with mineralization (DMP-1, 
Phex, and FGF23) and lysosomes (genes 
coding for MMPs, cathepsins, and 
proteinases) was significantly higher 
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compared to the placebo-control at day 0. In 
summary, we determined that GC-induced 
changes in osteocyte metabolism resulted in 
an increase in osteocyte lacunar size or 
“osteocytic osteolysis”, perilacunar 
demineralization, localized reductions in 
elastic modulus around the osteocyte, and 

production of proteins that inhibit osteoblast 
function. Non-apoptotic programmed cell 
death, such as autophagy, may play a role 
in the osteocyte’s response to GC-induced 
stress.  
 

 

 
Fig. 1. Proposed mechanisms and timeline of events in the GC-induced osteoporosis mouse model.

Conclusion  
 
In summary, GC use is widespread in 
clinical medicine and causes increased bone 
fragility and fractures. Effects of GCs on 
bone quantity and quality are multi-
functional. GCs induce a negative calcium 
balance that leads to elevation in 
calciotropic hormones, serum calcium and 
phosphorus followed by elevation in FGF23 
production by osteocytes. GCs directly alter 
osteoblast, osteoclast and osteocyte cell 
fates and functions (Fig. 1). Nearly 50% of 
individuals treated chronically with GCs will 
suffer a major osteoporotic fracture. A better 
understanding of the role of the osteocyte in 
GC-induced bone fragility will lead to 
potential preventive treatments.  
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