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Research pertaining to the induction of osteolysis and
subsequent loosening of orthopedic implants was the subject
of a session at the IBMS Sun Valley workshop in the August of
2012. The session was organized by D Rick Sumner, PhD, and
included talks by Stuart Goodman, MD, PhD, Nadim Hallab,
PhD, Per Aspenberg, MD, PhD, and Rick Sumner, PhD.
Considerable attention was paid to two candidate mechanisms
of implant loosening—particle-induced osteolysis and fluid
pressure-induced osteolysis.

Aseptic loosening and mechanical instability, which are
often closely linked, are the two primary mechanisms of failure
in primary total joint replacement (TJR).1 Current clinical
management protocols are largely based on surgical inter-
vention, which are inherently costly.1 The number of TJR
revisions performed annually in the United States is well over
70 000 and the annual incidence is expected to increase to more
than 350 000 by 2030.2 These statistics are particularly wor-
risome because of the relatively high failure rates of revision
TJR, ranging from 10 to 25%.3,4

Particle-induced osteolysis is widely accepted as a key factor
in aseptic loosening,5–10 although lack of initial mechanical
stability and other factors may also play a role.11–13 Wear debris
and other particles and ions released from implants are thought
to invoke the innate immune system through Toll-like receptors
2 and 4 and the NALP3 (NACHT, LRR and PYD domains
containing protein) inflammasome.10,14,15 It is becoming clear
that endotoxins such as lipopolysaccharides can potentiate
the ability of particles to induce an inflammatory response.16

The potential role of adaptive immunity is not clear.17,18

Collectively, the inflammatory responses increase osteoclas-
togenesis and bone resorption and may also induce osteoblast
apoptosis.10 In addition to these inflammatory pathways,
particles can directly downregulate collagen type I production
by osteoblasts,19 negatively affect osteogenic lineage cell
proliferation and differentiation20 and can induce a catabolic
phenotype in osteoblasts and osteocytes.21

Dr Goodman provided an excellent history of study into the
problem, highlighting the work of Hans Willert22 and James M
Anderson.23 The relatively novel concept of trafficking of
endogenous cells was discussed. In particular, it is now clear
that most macrophages at the implant site come from remote

sites and that mesenchymal stem cells also traffic to the implant
site.24–26 Having recognized this, it may be possible to develop
novel treatment strategies.

Dr Hallab reviewed work on particles and noted that it is clear
that most debris comes from the articular surfaces27 and
that polyethylene particles are the culprit, although other
particles elicit significant reactivity in vitro. The potential role of
the inflammasome danger signaling pathway in particle-
induced osteolysis is now gaining interest.14 It is now becoming
clear that adaptive immunity in addition to innate immunity may
play a role in the biological reaction to orthopedic biomaterials.

Dr Aspenberg raised the possibility that relative motion
between the bone and implant may be a precondition for
particle-induced loosening and not merely the end-stage result
of a largely biological process. This possibility is based in part on
the observation that ‘late’ loosening of prostheses has not
been observed in the absence of early implant migration.
These studies rely on the use of very sensitive radiographic
techniques.11 Implant motion relative to bone can induce high-
velocity fluid flow, which in turn may directly cause bone
resorption.28

Dr Sumner reviewed a new rat model of particle-induced
implant loosening29 and prevention of depressed implant
fixation strength by co-administration of the bone anabolic
agent, sclerostin antibody.30 It is now well documented
that particle administration stimulates bone resorption and
suppresses bone formation in the peri-implant trabecular bone.
Sclerostin antibody mitigates these negative effects, thereby
preserving or even increasing the local bone stock and
increasing the mechanical attachment of the implant to
the bone.

It is clear that the overall pathogenesis may include many
causes and there may be a complex interaction between
particles derived from the implant and the initial stability of the
implant. It is even possible that peri-implant osteolysis and
implant loosening have multiple causes, implying that this is not
simply one disease. Nevertheless, the importance of particles
to the process of peri-implant osteolysis and loosening is nearly
universally accepted. Consideration of other factors such as
fluid pressure emphasizes that alternative mechanisms may be
important. With the improved understanding of pathogenesis,
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it is likely that new prevention and treatment strategies that
are being investigated in pre-clinical models may be ready for
clinical testing in the relatively near future.

Note: Abstracts from the 42nd International Sun Valley
Workshop: Musculoskeletal Biology can be accessed at:
http://www.ibmsonline.org/p/cm/ld/fid=156.
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