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ABSTRACT 
Analytical solutions are presented for the vertical temperature distribution in lakes. 
The solutions are good for large water bodies where inflows and outflows are 
negligible. The solution is based on a linearization of the surface heat exchange term. 
Solutions are presented for both zero-order and first order linearizations. An 
analytical expression is used to describe the actual daily absorbed radiation at the 
air-water interface. The model contains no adjustable parameters. A comparison of 
model results with experimental data is presented. 

An important parameter in the analysis of lakes and other large water bodies is 
the vertical temperature distribution. Dissolved oxygen content, suspended 
solids, dissolved mineral content, and biological activity are all functions of 
temperature. Accurate prediction of the temperature distribution will aid in the 
analyses of the ecology of these large water bodies. A recent review article 
discusses many aspects of this problem [1]. 

Analytical expressions for the vertical temperature distribution are not 
available for the general case. This is due in large measure to two problems. 
There are non-linearities in the heat exchange term at the air-water interface. 
Also, the actual absorbed radiation at the air-water interface has been difficult 
to express analytically. 
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Edinger et al. described the equilibrium temperature method for approximating 
the heat exchange term at the air-water interface by a linear expression [2]. The 
equilibrium temperature is defined as the water temperature at which the net heat 
exchange is zero. The non-linear radiation term is expanded using a binomial 
expansion and terms larger than first order are neglected. The vapor pressure 
gradient with respect to temperature is approximated as linear. They obtain an 
expression which is linear and contains a surface exchange coefficient and the 
equilibrium temperature. Yotsukura, Jackman, and Faust used a Taylor series 
expansion about a base temperature and terms larger than first order were 
neglected [3]. It has been demonstrated that the Taylor series method provides 
better results when the base temperature chosen is the initial surface water 
temperature [4]. Neither method contains any adjustable parameters. 

Carroll and Noble developed an analytical expression for the actual absorbed 
solar radiation at an air-water interface [5]. Reflectance at the water surface is 
accounted for as well as the daily variation in solar declination. The function is 
valid for latitudes between 23.45° and 58.80°. The development assumes that 
the incoming solar radiation vector is constant. This implies clear sky or constant 
cloud cover conditions. Atmospheric incoming radiation can be approximated as 
a constant and added to this analytical expression to obtain an equation which 
describes the total incoming radiation absorbed at the air-water interface. There 
are no empirical or adjustable constants in their functions. 

Analytical solutions are important for at least two reasons. First, in some 
instances, they can provide a quick and accurate description of the vertical 
temperature profile. This is true when the assumptions which led to the solution 
are valid. Also, analytical solutions provide a means for determining the accuracy 
of more complex numerical solutions. 

There have been previous analytical expressions which describe the vertical 
temperature profile in large water bodies. By this is meant that inflows and 
outflows are negligible. Dake and Harleman developed a one-dimensional model 
for vertical temperature distribution in a deep stagnant water body [6]. They 
developed analytical solutions for three cases by specifying mathematical 
functions for the net insolation and the surface heat losses. No detailed physical 
rationale for these cases was given. Comparison of the models with both field 
and laboratory experiments was generally good. The model also accounts for 
buoyant mixing by generating a surface mixed layer when the system is unstable. 

Snider and Viskanta developed a one-dimensional model for vertical 
temperature distribution in stagnant water bodies [7]. They present an 
analytical solution based on a linearization of the net heat exchange at the 
air-water interface. This linearization is based on the difference between the 
surface water temperature and the ambient air temperature. No details of the 
linearization were given. A three term exponential decay equation was used for 
the volumetric rate of absorption of radiant energy by the water. The model 
agreement with laboratory data was very good. Mitry and Ozisik developed a 
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one-dimensional model for the vertical temperature distribution in lakes [8]. 
They used a two-layer model with the thermocline as the dividing point of the 
two layers. They also used a sinusoidal form for the incoming solar radiation. A 
predictive method for calculating this radiation equation is given by Carroll and 
Noble [5]. The model of Mitry and Özisik was solved numerically [8]. Tucker 
and Green presented a model for vertical temperature distribution in lakes [9]. 
Their model includes the effects of radiation penetration, mixing induced by the 
surface wave field, and turbulent energy exchanges. The model is solved 
numerically and shows good agreement with experimental data. 

Rahman presented an analytical solution for vertical temperature structure in 
large water bodies [10]. His model does not include radiation penetration and 
assumes a power law form for the temperature vs. time. Comparison with 
experimental data is fair. Girgjs and Smith calculated analytical solutions for 
vertical temperature profiles for a variety of boundary and initial conditions 
[11]. The solution is left in terms of unspecified boundary conditions at the 
surface. Comparison with laboratory experimental data is very good while 
comparison with field experimental data is fair. McCormick and Scavia 
developed a model which uses an averaged value of the thermal diffusivity [12]. 
They do not include radiation penetration. The boundary condition at the 
air-water interface was the daily averaged surface water temperature. Therefore, 
they do not use the net heat exchange at the surface. Comparison with 
experimental data is very good. Noble and Carroll also developed an analytical 
solution for the vertical temperature distribution [13]. They assumed constant 
net insolation and used the method of Yotsukura et al. [3] to describe the net 
heat exchange at the air-water interface. Solutions were presented for both 
variable and constant heat losses at the air-water interface. Comparison with 
both field observations and laboratory data were very good. 

The objective of this study is to expand the solution developed by Noble and 
Carroll to allow for variation in the daily net insolation at the air-water interface 
[13]. The functions used for both the net insolation and the surface heat losses 
contain no adjustable or empirical parameters. The rationale for the development 
of this solution is to provide an analytical solution for the vertical temperature 
distribution which takes into account the daily variation in net insolation and 
surface heat losses which are not empirical in nature. While approximate, the 
solution should prove useful for many situations commonly encountered. 

SOLUTION OF THE GOVERNING 
DIFFERENTIAL EQUATION 

Equation (1) describes the vertical temperature distribution in a large water 
body [6,13]. 



66 / NOBLE ET AL. 

The initial condition is 

@ t = 0 T = T (2) 
This corresponds to the physical situation in spring when the entire water body 
is at a uniform temperature. 

The boundary conditions are 

Z -> °° T ->■ finite 

Z = 0 ß[-b + c cos(cot-0)] + 7 - Ô T = -pC a 3T 
dZ 

(3) 

(4) 

Equation (3) states that the solution must exist at all points in the lake 
regardless of the depth. Equation (4) is an energy balance at the air-water 
interface. —b + c cos(cot - 0) represents the daily net absorbed radiation (I0) at 
the air-water interface, ß represents the fraction of I0 absorbed at the air-water 
interface, b and c are functions of latitude, ω and 0 are constants. Details of the 
calculation for determining these constants are described elsewhere (1, 5). y - δΤ 
represents the net heat losses at the air water interface, y and δ are constants. 
The method for calculating these constants are also described elsewhere [3, 13]. 

The solution to this problem is determined by the use of two-dimensional 
Laplace transforms [14]. The solution is 
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Equation (5) converges quickly to a solution since the summation terms 
rapidly converge. Also, once the constants in equation (5) are determined for the 
case of interest solution of equation (5) is rapid. 

Dake and Harleman noted that the temperature will increase with depth to 
some maximum and then decrease as you proceed further in depth at some stage 
in the yearly cycle [6]. The resulting density distribution in this surface region is 
unstable and vertical mixing will take place to some finite depth causing a 
surface mixed layer. To calculate the depth (h), an energy balance yields 

/ (T -T m )dZ = U (33) 
o 

@Z = h T = Tm (34) 

Equations (33) and (34) allow one to calculate h and Tm whenever the unstable 
situation arises. Noble and Carroll also used this method for calculating the 
surface mixed layer [13]. This is an approximation since the surface 
temperature calculated from equation (5) for an unstable situation is lower than 
the actual case. This will reduce the calculated surface heat losses. 

If one can assume that the net heat losses at the surface are constant for the 
time period of interest, then δ equals zero in equation (4). The solution for the 
vertical temperature distribution then becomes 

T = T0 + ^ e~aZ (1 - emh) + . . ΪΙ „ e~aZ 
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COMPARISON WITH EXPERIMENTAL DATA 

Goldman and Carter measured vertical temperatures in Lake Tahoe for a 120 
day period [15]. Dake and Harleman reported that a = 0.05 m"1 and β = 0.40 for 
this study [6]. They also stated that the net insolation I0 and the surface heat 
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losses were constant over the 120 day period studied. Their values corresponded 
, 2 W 

t o L 
W 3.15 X 102 - ^ a n d y = 1.45 X IO2 -^. For purposes of testing equation 

m m W (5), the average value of !<, was chosen to be 3.15 X 102 —γ. This corresponds to 
b=-2 .11X10 7

 J
 J

 2 and c = -1.16X107 . J
 2. ω = 1.72 X IO"2 ψ^ day m day m day 

and Θ = 6.11 radians for this problem. The average value of the surface heat 
W losses was taken to be 1.45 X 102 —5-. Initially the left-hand side of equation 

(4) was equated to zero since the vertical temperature distribution was a 
constant. The surface temperature was fitted to a cubic polynomial so 7 and δ 

could be estimated, y = -9.51 X IO6 and δ = 2.75 X IO5 
day m2 " " " " daym2 ,°C 

for this estimation. The results of the simulation and the experimental data are 
shown in Figure 1. In most cases, the model prediction is within 1.5°C of the 
experimental data. The largest deviations are near the surface and this is due to 
the estimation of the surface heat losses. This agreement is quite good 
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Figure 1. Model predictions with linear surface heat losses. 
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considering the inaccuracies in estimating the surface heat exchange terms 
[equation (4)]. More accurate meteorological information would improve the 
model estimation. 

Equation (35) was tested by using the same values as above except γ = 1.45 
W X 102 —T and y = 0. This corresponded to constant surface heat losses as m2 

initially assumed by Dake and Harleman [6]. The results are shown in Figure 2. 
The comparison between experimental and model results is very good after 120 
days. The comparison is good at 80 days and is not very good at forty days. 
This can be attributed to the fact that averaged values for the surface heat losses 
were used. So, it would be expected that the model predictions would become 
better as one approached the end of the averaging period. Again, use of more 
accurate values for the surface heat loss term should improve prediction 
throughout the entire time period. 

CONCLUSIONS 
The model gives reasonable estimates of the vertical temperature distribution 

in deep water bodies. The model could be very useful in estimating the vertical 
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Figure 2. Model predictions with constant surface heat losses. 
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temperature distribution over extended time periods since the model can 
account for variations in incoming solar radiation over time, The model would 
also be useful as a check on numerical solutions and a check on limiting cases of 
surface heat exchange. 

APPENDIX I: NOTATION 

The following symbols are used in this article: 
A = constant defined by equation 32 
a = extinction coefficient for radiation penetration in water 
b = constant in equation 4 
c = constant in equation 4 
Cp = isobaric heat capacity of water 
Cu = constant defined by equation 11 
C12 = constant defined by equation 12 
Ci = constant defined by equation 13 
C2 = constant defined by equation 14 
E = function defined by equation 6 
erfc = complementary error function 
fc = function defined by equation 17 
ff = function defined by equation 29 
Fu = constant defined by equation 23 
F22 = constant defined by equation 24 
Fj = constant defined by equation 25 
F2 = constant defined by equation 26 
gc = function defined by equation 18 
gf = function defined by .equation 30 
Pi =? constant defined by equation 7 
I?2 ψ constant defined by equation 8 
Pi = constant defined by ecmation 9 
Öi - constant defined by equation 10 
II = constant defined by equation 31 
Sj = constant defined by equation 15 
S2 = constant defined by equation 16 
T = water temperature 
t = time 
Uj = constant defined by equation 19 
U2 = constant defined by equation 20 
V! = constant defined by equation 21 
V2 = constant defined by equation 22 
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Wj = constant defined by equation 27 
W-2 = constant defined by equation 28 

Z = vertical distance in water from surface 

a = thermal diffusivity of water 
(3 = fraction of incoming radiation absorbed at air-water interface 
δ = constant in equation 4 
y = constant in equation 4 
p = density of water 
Θ = constant in equation 4 
ω = constant in equation 4 

Subscripts 
o = initial water temperature 
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