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ABSTRACT

This article outlines aspects of ordered weighted averaging (OWA) aggre-

gation operators in the evaluation of alternative projects with environmental

consequences. OWA operators generalize the conventional maximum and

minimum aggregation operators commonly use to aggregate fuzzy subsets,

here representing the degree of “satisfaction” of factors/impacts by a set of

discrete projects. A simple example drawn from Horsak and Damico is given

which involves the location of a hazardous waste disposal facility at one of

three sites based on ten factors [1]. OWA operators are considered in the

context of the aggregation of factors/impacts and the importance weight of

those factors/impacts. Consideration is given to maximum entropy OWA

(ME-OWA), exponential OWA (E-OWA), and weighted ordered weighted

averaging (WOWA) operators, in addition to quantified statements imple-

mented by OWA operators. OWA aggregation operators are considered in the

context of the above illustrative example. It is concluded that OWA operators

have considerable potential in providing a framework for the aggregation of

fuzzy subsets in the evaluation of projects with environmental consequences.

INTRODUCTION

Fuzzy sets have emerged as a new means of representing uncertainty, in particular

in expressing the ambiguity of meaning found in natural language—for example,

in the definition of a concept or the meaning of a word. Expressions such as “high

temperature,” “old man,” “tall building,” “satisfactory project” [2] are ambiguous

in nature. A fuzzy set (or more precisely, fuzzy subset [3]) may be represented as a
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set of ordered pairs, A = {(A(x)|x), x�X, A(x)�[0,1]} where x is a generic element

of universe X. A(x) is called the membership value or grade of membership [4, 5].

A fuzzy set is clearly a multivalent generalization of a crisp set whose membership

function takes on bivalent values, {0, 1}. Much of human reasoning involves the

use of linguistic variables whose values are defined by fuzzy subsets. Thus, a

linguistic variable is a variable whose values (linguistic labels) are words rather

than numbers with the words defined by fuzzy subsets.

EVALUATION OF PROJECTS IN A

FUZZY ENVIRONMENT

Recently, evaluation methods involving fuzzy subsets have been proposed

which more adequately acknowledge the uncertainty and imprecision charac-

teristic of project evaluation [6, 7]. In this context, imprecision is of a non-random

(deterministic) or ambiguous nature rather than of a random or statistical nature

[8]. In project evaluation, a useful expression of such deterministic uncertainty is

in terms of linguistic variables which are labels for fuzzy subsets.

The basic structure for the environmental evaluation of projects with multiple

environmental consequences is an outcome matrix, � = [�ij] denotes the outcome

of project Pi with respect to factor/impact Fj. P = {P1, P2, ..., PI} is a set of I

mutually exclusive projects and F = {F1, F2, ..., FJ} is a set consisting of J

factors/impacts. Commonly in the evaluation of projects, weights w = {w1, w2, ...,

wJ,} are introduced to represent the differential importance of factors/impacts. In

terms of fuzzy set theory, Fj may be construed as a fuzzy subset of the set of

projects represented as Fj = {Fj(P1)|P1, Fj(P2)|P2, ..., Fj(PI)|PI}, where Fj(p) indicates

the degree to which project p�P satisfies factor/impact Fj. Note that �ij = Fj(Pi) and

that the outcome of a given project (denoted either as p or Pi) is represented as,

{F1(p), F2(p), ..., FJ(p)}, p�P or as {�i1 �i2, ..., �iJ}, Pi�P.

Project evaluation typically involves the identification of a “best” project which

satisfies as much as possible each factor/impact. Here “satisfies” implies lower

values of negative factors/impacts (e.g., cost, wildlife impact) and higher values of

positive factors/impacts (e.g., accident reduction, aesthetics). Rarely will any real
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F1 F2 ... FJ

P1 �11 �12 ... �1J

P2 �21 �22 ... �2J

� � � ... �

PI �I1 �I2 ... �IJ



project completely satisfy all factors/impacts and will be characterized by variable

achievement across factors/impacts. For brevity, the term “factor” will be used,

where possible, to include also impacts.

An important issue in the context of discrete fuzzy subsets is the determination

of membership grades, which may be derived in a number of ways, mostly

involving subjective judgment [9-12]. If objective data is available, then some

appropriate transformation may be utilized to normalize the outcomes of a given

factor to the (0, 1) interval [13]. Such transformed values are interpreted as

membership grades. Weights reflecting the importance of factors may be gener-

ated by various means, e.g., [11, 12].

EXAMPLE OF ENVIRONMENTAL PROJECT

EVALUATION

Consider an example adapted from Horsak and Damico [1] (also considered by

Anandalingam and Westfall [14]) involving the location of a hazardous waste

disposal facility with three possible sites assessed against ten factors—air quality

(dispersive capabilities of site/plant and degree to which waste emissions could

concentrate onsite and offsite, F1), surface water quality (potential for surface

water degradation due to spills associated with handling storage and waste, F2),

groundwater quality (potential for groundwater degradation due to spills asso-

ciated with handling and storage of waste, including leaching into acquifer, F3),

impact on ecology (potential impact on ecological resources of an area due to

routine operations or emergency conditions, F4), impact on aesthetics (visual

impacts of hazardous waste management operations, including handling, storage,

and disposal, F5), impact on population (potential long-term exposure to emissions

due to routine operations or emergencies, F6), impact on surrounding land use

(compatibility of surrounding land use with the hazardous waste operation, F7),

possibility of emergency response (ability of a response team to combat an

emergency associated with a spill or other exposure, F8), distance from sources of

waste (distance through which the waste should travel to get to the site, F9), and

political opposition (political or other organized intervention or opposition to the

hazardous waste operation, F10). Factors are fuzzy subsets of the projects (sites),

for example, F1 = {0.9|P1, 0.7|P2, 0.3|P3} for air quality (F1). The matrix, � = [�ij],

is given as follows
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F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

P1 0.9 0.8 1.0 0.9 0.8 1.0 0.8 0.8 1.0 0.5

P2 0.7 0.9 1.0 0.9 0.9 0.5 0.6 0.5 0.6 1.0

P3 0.3 0.2 1.0 0.2 1.0 1.0 0.2 0.2 0.3 0.3



Note that F3 (groundwater quality) could be excluded as it fails to discriminate

between sites, though it is retained here. It is clear from the polygonal profile

plot in Figure 1 that site 1 (P1) is a strong competitor for the overall “best” site.

Further assume factor weights (based on [13]) as follows w = {1, 0.969,

0.919, 0.714, 0.689, 0.658, 0.460, 0.323, 0.286, 0.193}, or in normalized

form, w0 = {0.16, 0.156, 0.148, 0.115, 0.111, 0.106, 0.074, 0.052, 0.046, 0.031}

such that 0 �wj
0
�1 and �j=1,Jwj

0 = 1. Horsak and Damico [1] used weighted

conjunctive aggregation to select a “best” site and identified a preference order,

P1 � P2 � P3.
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Figure 1. Polygonal profile plot of sites.



ORDERED WEIGHTED AVERAGING AGGREGATION

OPERATORS

The ordered weighted averaging (OWA) operator for aggregating fuzzy

subsets was introduced by Yager [15]. An OWA operator (of dimension J) is

represented as

OWA = �j=1,Jαjbj

where bj is the jth largest element of the outcomes {F1(p), F2(p), ..., FJ(p)} for

project p. Thus, b1 � b2 � ... � bJ. OWA operator weights, {α1, α2, ...,αJ}, are

associated with the position of bj and are such that αj�[0,1] and �j=1,Jαj = 1. Note

that αj is associated with a particular ordered position j of the arguments (outcomes

of project p along factors) and is not a reflection of the importance (salience,

significance) of factor Fj in the context of project evaluation. Consider, for

example, outcomes (membership grades) {0.3, 0.7, 1} and weights {0.4, 0.5, 0.1}.

Then b1 = 1, b2 = 0.7, b3 = 0.3, and the OWA is given as OWA = (0.4)(1) +

(0.5)(0.7) + (0.1)(0.3) = 0.78.

It can be shown that the OWA operator includes the commonly used maximum

and minimum operators [15] and the arithmetic mean operator for appropriate

choice of operator weights represented as α = {α1, α2 ..., αJ}. In particular, the

OWA operator is bounded such that, OWA%� OWA � OWA*, where the weights

α = {0, 0, ..., 1} are used in OWA% and the weights α = {1, 0, ..., 0} are used in

OWA%. Thus, from the definition of the OWA operator, OWA% = �j=1,JFj(p)

(minimum operator) and OWA* = �j=1,JFj(p) (maximum operator) so that extreme

OWA operators are the “and” and “or” operators [15]. The arithmetic average

corresponds to the OWA operator with weights {1/J, 1/J, ..., 1/J}. The “and”

(minimum) provides no compensation in that a high grade of membership with

respect to one factor cannot offset (or compensate for) a low grade of membership

with respect to another factor. The “or” (maximum) provides full compensation.

With respect to OWA operators, the orness of the OWA operator weights, α, is

given as orness(α) = �j=1,Jαj(J – j)/(J – 1). “Orness” measures the degree to which

an aggregation operator is “orlike” or “andlike” and provides some indication of

the inclination of the operator to impart more weight to either higher or lower

membership grades. Thus, the greater the “orness,” the more weight imparted to

higher membership grades. It can be shown that α = {0, 0, ..., 1} yields orness(α) =

0 (minimum) and that α = {1, 0, ..., 0} yields orness(α) = 1 (maximum) [15]. The

degree of “andness” of an OWA operator with weights α is defined as andness(α)

= ¬orness(α) = 1 – orness(α). Except for the extreme weight sets above, different

OWA weight sets can yield the same level of “orness.” In particular, all symmetric

weight sets yield orness(α) = 0.5. Thus, the “dispersion” given by the entropy

function, entropy(α) = –�j=1,JαjLn�j, further distinguishes between the weight sets

NUMERIC ORDERED WEIGHTED AVERAGING OPERATORS / 179



[15]. Entropy is a maximum when all weights are equal to 1/J and a minimum

value when one weight is equal to and all others zero.

As has been indicated above, factors are commonly assumed to vary in

importance or salience and as a consequence, factor importance weights, w = {w1,

w2, ..., wJ}, are introduced. One possibility for including importance is to assume

an OWA operator for project p involving transformed membership values,

H(Fj(p),wj,orness(α)), the “effective satisfaction” of factor Fj. bj is now the jth

largest element of H(Fj(p),wj,orness(α)) (j = 1, ..., J). One possible function based

on Yager [15] is

H(Fj(p),wj,orness(α)) = wj � ¬orness(α)) � (Fj(p))(wj� orness(α))

Note that factor importance weights should be such that �j=1,Jwj = 1. This function

reduces to two special cases when orness(α) = 0 and orness(α) = 1. In the former

case, H(Fj(p),wj,0) = Fj(p)wj, used in weighted conjunctive aggregation, D(p) =

�j=1,JFj(p)wj [16], whilst in the latter case, H(Fj(p),wj,1) = wj � Fj(p) used in

weighted disjunctive aggregation, D(p) = �j=1,J(wj � Fj(p)) [17]. Aggregation of

factors in the example of Horsak and Damico [1] involved weighted conjunctive

aggregation, though weights were normalized such that �j=1,Jαj = J. However, an

equivalent preference ordering of sites will be obtained by normalization that the

maximum weight be unity.

An alternative modification function proposed here as a smoother function

of “orness” is

G(Fj(p),wj,orness(α)) = (wj + ¬orness(α) – wj*(¬orness(α)))*

(Fj(p))(wj + orness(α) – wj*orness(α))

which involves the algebraic sum (a + b – a * b) instead of the logical sum (a � b)

and algebraic product (a*b) instead of the logical product (a � b). Again,

when orness(α) = 0, G(Fj(p),wj,orness(α)) = Fj(p)wj and when orness(α) = 1,

G(Fj(p),wj,orness(α)) = wjFj(p), used in weighted disjunctive aggregation, D(p) =

�j=1,J(wjFj(p)). This modification function is illustrated in Figure 2 for a variety

of importance weights (w) and membership values (m) as a function of “orness.”

However, neither of these functions recover the arithmetic average when

orness(α) = 0.5. Clearly, further investigation is necessary to identify a function

with more desirable properties.

SELECTING OWA OPERATOR WEIGHTS

An important issue in the use of OWA operators is the selection of the OWA

operator weights, α. One approach recently put forward involves the maximum

entropy OWA (ME-OWA) operator [see 18]. Given a desired level of “orness,”
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say orness(α) = �, OWA operator weights, α, are identified as the solution to the

mathematical programming problem which involves maximizing the entropy

(evenness of OWA operator weights) subject to constraints (i) that orness(α) = �,

the desired value, and (ii) that the normalization condition of weights is satis-

fied. Thus

Maximize: entropy(α) = –�j=1,JαjLnαj

Subject to: � = �j=1,Jαj(J – j)/(J – 1) (orness constraint)

�j=1,Jαj = 1 (normality constraint)

where αj � [0, 1]. ME-OWA operator weights have the form

αj = exp(�(J – j)/(J – 1))/�k=1,Jexp(�(J – k)/(J – 1))
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where the parameter, �, is derived by substituting αj in the “orness” constraint

equation. When � = –�, orness(α) = 0 and when � = +�, orness(α) = 1.

Thus, in project evaluation, given a desired level of “orness” (�), identify

ME-OWA operator weights and use G(Fj(p),wj,�) (or, H(Fj(p),wj,�)) to modify

Fj(p) based on factor importance weights and �. Finally, calculate the OWA

operator with arguments G(Fj(p),wj,�). The project for which the OWA is a

maximum is “best.”

To illustrate this procedure, consider the above example. Suppose that the

desired level of “orness” is 0.3 (i.e., “andness” = 0.7). In terms of the ME-OWA

operator (i.e., solving the constrained maximization problem), � = –2.144 and

ME-OWA weights are given as α = {α1, α2, ..., α10} = {0.03, 0.03, 0.04, 0.06, 0.07,

0.09, 0.11, 0.15, 0.18, 0.23} where αj = exp(–2.144(10 – j)/9)/�k=1,Jexp(–2.144(10

– k)/9). Applying G(Fj(p),wj,0.3) defined above yields

For example, G(F2(p),w1,0.3) = [(0.969 + (1 – 0.3) – (0.969)(1 – 0.3)]*

(0.8)[0.969 + 0.3 – (0.969)(0.3)] = 0.796. Then, ME-OWA(P1) = 0.723, ME-OWA(P2) =

0.662 and ME-OWA(P3) = 0.455. Project P1 is identified as “best.”

Rather than solving a constrained nonlinear programming problem as in the

derivation of ME-OWA operator weights, a somewhat simpler approach involves

exponential OWA (E-OWA) operators [19]. Consider {α1, α2, α3, ..., αJ-1, αJ} =

{�, �(1 – �), �(1 – �)2, ..., �(1 – �)J – 2, (1 – �)J – 1} where 0 ≤ �≤ 1. Then Σj=1,J αj = 1,

and for θ = 1, α = {1, 0, 0, ..., 0} and for θ = 0, α = {0, 0, 0, ..., 1}. It can be shown

that orness(α) is a monotonically increasing function of θ [19]. The functional

relationship between orness(α) and θ is different for different numbers of argu-

ments (factors). For J = 2, orness(α) = θ, and as J increases, orness(α) is higher

than the value of θ. For this reason, the OWA operator is called an optimistic

exponential OWA operator (OE-OWA) [19] (see Figure 3a).

Now consider {α1, α2, α3, ..., αJ-1, αJ} = {θJ–1, (1 – θ)θJ–2, (1 – θ)θJ–3, (1 – θ)θJ–1,

(1 – θ)} where 0 ≤ θ ≤ 1. Then Σj=1,J αj = 1, and for θ = 1, α = {1, 0, 0, ..., 0}, and for

θ = 0, α = {0, 0, 0, ..., 1}. Again, the functional relationship between orness(α) and
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F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

P1 0.9 0.796 0.976 0.840 0.762 0.898 0.709 0.709 0.786 0.561

P2 0.7 0.894 0.976 0.840 0.835 0.530 0.553 0.553 0.609 0.758

P3 0.3 0.205 0.976 0.252 0.907 0.898 0.342 0.342 0.430 0.449
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Figure 3. (a) Optimistic E-OWA. (b) Pessimistic E-OWA.



J increases, orness(α) is lower than the value of θ. For this reason, the OWA

operator is called a pessimistic exponential OWA operator (PE-OWA) [19] (see

Figure 3b).

Thus, in project evaluation, given a desired level of “orness,” ζ, and number of

factors, J, identify the parameter, θ, from charts of the form given in Figure 3a or

3b which are based on the relationship between the parameter, θ, ranging in the

interval [0,1] and orness(α) for given number of factors. Use G(Fj(p),wj,ζ) (or,

H(Fj(p),wj,ζ)) to modify Fj(p), based on factor weights and ζ. Finally, calculate

E-OWA with OWA operator weights given as appropriate. The project for which

E-OWA is a maximum is “best.”

For a pessimistic OWA operator, assume the modification function as above

(i.e., orness(α) = 0.3). Then, since J = 10 and orness(α) = 0.3, Figure 3b shows that

θ is approximately 0.7 (more exactly, θ = 0.744) so that OWA operator weights are

α = {0.7, 0.024, 0.032, 0.043, 0.058, 0.078, 0.105, 0.142, 0.19, 0.256}. Thus

PE-OWA(P1) = 0.724, PE-OWA(P2) = 0.703, and PE-OWA(P3) = 0.427. Again,

project P1 is identified as “best.”

LINGUISTIC QUANTIFIED STATEMENTS

In classical logic, quantifiers (“for all” and “there exists” (“not none,” “at

least one”)) in statements or propositions may be used to represent the number

of items satisfying a given predicate; for example, “All factors are satisfied

by project p,” “At least one factor is satisfied by project p.” However, classical

logic allows for the inclusion of only the above quantifiers. Zadeh introduced

linguistic quantifiers represented by fuzzy subsets and thus fuzzy subsets

provide the basis for linguistically quantified statements or propositions [20].

The general form of a quantified statement is “Q F’s are A,” where Q is a

linguistic quantifier (e.g., “few,” “most,” “at least n”), F is a class of objects

and A, a fuzzy subset of F, is some property associated with the objects. For

example, in the quantified statement “most houses are expensive,” the quantifier

Q is “most,” F is a set of “houses,” and “expensive” is a property/characteristic

of houses.

Zadeh distinguished between two types of quantifier, absolute and proportional

(relative) [20]. Absolute quantifiers are used to represent amounts that are absolute

in nature (“about 5,” “more than 10”) and are closely related to the concept of the

count or number of elements. Proportional quantifiers (“most,” “few,” “at least

half”) represent relative amounts. Absolute quantifiers are defined on the set of

non-negative reals, �
+, whereas relative quantifiers are defined on the [0,1]

interval.
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In the context of project evaluation, “Q F’s are Ap,” where Q is a linguistic

quantifier, {F1(p), F2(p), ..., FJ(p)} is a set of factors against which a project

p is assessed and Ap is a fuzzy subset of F indicating the predicate “satis-

fied by p.” Thus, Ap = {Ap(F1)|F1, Ap(F2)|F2, ..., Ap(FJ)|FJ}. Note that, Ap(Fj) ≡ Fj(p)

(j = 1, ..., J), the performance of project p with respect to factor Fj. Examples of

linguistic quantified statements in the context of the fuzzy evaluation of projects

include “most factors are satisfied by project p” or “at least n factors are satisfied

by project p.” This is a type I statement [20, 21].

Regular increasing monotone (RIM) quantifiers (e.g., “all,” “most,” “many,”

“at least x percent”), are defined by a fuzzy subject, Q, defined on the [0,1] interval

such that Q(0) = 0, Q(1) = 1, and Q(r) ≥ Q(s) if r > s [22], are used here in the

context of project evaluation.
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Figure 4. Interpretations of quantifier “most.”



In the context of project evaluation, an appropriate quantifier is “most” which

has been defined in various ways [23, 24] (see Figure 4). Below, “most” is defined

as a RIM quantifier, Q(r) = r2, rε[0,1]. This quantifier is “andlike” (i.e., “orness” <
0.5) with orness(α) = 1/3 (see Figure 4). The quantifier Q(r) = rβ is “andlike” if β >
1 and “orlike” (i.e., “orness” > 0.5) if β < 1.

Linguistic quantified statements are readily implemented by OWA operators.

Given a linguistic quantifier, OWA operator weights are generated as αj =

Q(j/J) – Q(j – 1)/J), (j=1, ..., J) [15] and the “orness” of α is expressed as orness(α)

= (1/(J – 1))Σj=1,J–1Q(j/J).

As an example of a type I quantified statement in the context of project

evaluation, consider “most factors are satisfied by project P1.” Then for p ≡ P1, Ap

= {Ap(F1)|F1,Ap(F2)|F2, ..., Ap(F10)|F10} = {0.9|F1, 0.8|F2, ..., 0.5|F10}. Let Q be the

relative quantifier, “most.” Since J = 10, αj = Q(j/10) – Q(j – 1)/10) (j = 1, ..., 10)

and α = {0.01, 0.03, 0.05, 0.07, 0.09, 0.11, 0.13, 0.15, 0.17, 0.19}, where,

for example, α1 = Q(1/10) – Q(0) = 0.01. Here, the orness(α) = 0.317 and

will approach 1/3 as J increases. The truth of the quantified statement, “most

factors are satisfied by project P1”, is given as OWAQ(P1) = 0.777, where OWAQ

denotes an OWA operator when quantifier, Q, is used to define the operator

weights. Also OWAQ(P2) = 0.645 and OWAQ(P3) = 0.299. Thus, project P1

is “best.”

The classical quantifier, all, is Q(j/J) = 0 for j < J and Q(J/J) = Q(1) = 1, in which

case α = {0, 0, ..., 1} and the OWA operator identifies �j=1,JFj(p). The classical

quantifier, at least one, is Q(j/J) = 1 for j ≥ 1 in which case α = {1, 0, ..., 0} and the

OWA operator identifies �j=1,JFj(p).

An extension of the above quantified statement is “Q B F’s are Ap” where

B = {B(F1)|F1, B(F2)|F2, ..., B(FJ)|FJ} is a fuzzy subset of F, such that B(Fj)

indicates the importance of factor Fj, i.e., B(Fj) ≡ wj. Examples of this type

of quantified statement are “most important factors are satisfied by project p”

and “at least n important factors are satisfied by project p.” These are type II

statements [20-22]. Type II statements may be implemented by using the

modification functions given above or by weighted ordered weighted averaging

operators.

WEIGHTED ORDERED WEIGHTED AVERAGING

AGGREGATION OPERATORS

Rather than modifying the membership grades for a given project p with

respect to factor importance weights (as in the case of ME-OWA, OE-OWA, and

PE-OWA operators), it is possible to use importance weights to modify the OWA
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operator weights. This approach is natural when some linguistic quantifier is

available to guide the aggregation of factors.

A weighted OWA (WOWA) operator which generalizes both the OWA

operator and the weighted average has been defined [23-26] as

WOWA = Σj=1,Jβj bj

Again, bj is the jth largest element of {F1(p), F2(p), ..., FJ(p)}. Weights, wj,

reflecting the importance of factors are normalized such that wjε[0,1] and Σj=1,Jwj =

1. WOWA operator weights are given as βj = W(Σk=1,juk) – W(Σk=1,j–1uk) where uj is

the importance weight associated with bj. Thus, for example, if b1 = F3(p),

then u1 = w3. W(• ) is a monotonic nondecreasing function that interpolates the

points (j/J, Σk=1,jαk) together with point (0,0), if the weights used in the OWA

operator (such that αjε[0,1] and Σ j=1,Jαj = 1) are given. If factor weights are all

equal (i.e., wj = 1/J, j=1, ..., J), then the WOWA operator reduces to the OWA

operator. Alternatively, given W(• ), it is possible to define βj from W(• ) without

the initial step of defining OWA operator weights, α [26]. This latter approach

is used below.

The WOWA operator is useful in the context of type II quantified

statements of the form “Q B F’s are Ap” where B = {B(F1)|F1, B(F2)|F2, ...,

B(FJ)|FJ} ≡ {w1|F1, w2|F2, ..., wJ|FJ} is a fuzzy subset of factors, such that

B(Fj) ≡ wj indicates the degree of importance of factor Fj. The function W(• )

is given by the quantifier Q(• ). The “orness” of β = {β1, β2, ..., βJ} is then

given as orness(β) = (1/(J – 1))Σj=1,J–1Q(Σk=1,juk). The “orness” of β will be

different for different β resulting from the ordering of the outcomes for each

project p.

Consider, for example, the type II quantified statement “most important factors

are satisfied by project P1,” For p ≡ P1, Ap = {Ap(F1)|F1, Ap(F2)|F2, ..., Ap(FJ)|FJ} =

{0.9, 0.8, ..., 0.5}. Let B = {1|F1, 0.969|F2, ..., 0.193|F10} be the fuzzy subset of F

representing the importance of factors, e.g., B(F1) ≡ w1 = 1. In the calculation of

the βj’s, weights are normalized such that ΣJ=1,Jwj = 1 (i.e., w0). Again, “most’ is

defined as Q(r) = r2 which may be used for the function W(• ). Thus, for project P1

with membership grades, {0.9, 0.8, 1, 0.9, 0.8, 1, 0.8, 0.8, 1, 0.5}, ordered

arguments are {b1, b2, ..., b10} = {1, 1, 1, 0.9, 0.9, 0.8, 0.8, 0.8, 0.8, 0.5} and

therefore {u1, u2, ..., u10} = {0.046, 0.148, 0.106, 0.161, 0.115, 0.074, 0.111, 0.052,

0.156, 0.031}. Also WOWA operator weights, β, are shown in Figure 5 for each

project (site).
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The truth of the quantified statement “most important factors are satisfied by

P1,” under quantifier, Q, is given as WOWAQ(P1) = 0.845. Similarly, WOWAQ(P2)

= 0.737 and WOWAQ(P3) = 0.382. Again, P1, is “best.”

CONCLUSION

This article has outlined some features of OWA operators in the evaluation

of alternative projects with significant environmental consequences. An

example adapted from Horsak and Damico [1] involving the location of a

hazardous waste disposal facility with three possible sites assessed against

ten factors was considered in terms of the operators. Each method
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identifies project (site) 1 as “best,” a conclusion also found by Horsak and Damico.

However, this results from the strong performance of site 1 with respect to

many factors and such agreement between methods need not be expected

in general. Various OWA aggregation operators methods have been considered

including maximum entropy OWA operators and (optimistic and pessimistic)

exponential OWA operators [27]. Using these operators, a given level of “orness”

(“andness”) may be readily acknowledged and used to guide selection of a

“best” project. However, search for a more acceptable modification function

for incorporating factor weights and level of “orness” (or, conversely, “andness”)

into project outcomes (membership values) is desirable. Some progress in

this direction has been made by Yager [28] using fuzzy systems modeling

(direct fuzzy reasoning) involving rules of the form: “If orness = αi then modif-

ication function = Gi(w, m).” Possible functions emerged from plausible fuzzy

systems.

Quantifier guided propositions or statements have also been considered and

implemented through weighted OWA operators. The “orness” of WOWA oper-

ator weights are then determined by the nature of the quantifier. A disadvantage of

this approach is that WOWA operator weights will be different for different

factors. Further, the appropriate numeric characterization of quantifiers of various

descriptions (e.g., “most,” “many”) suitable in environmental evaluation requires

some exploration. However, it is expected that appropriate quantifiers display

a high level of “andness” and thus give due recognition to the wide range of

environmental consequences of projects. Possibilities for eliciting from decision

makers the parameters characterizing particular type quantifiers might also be

usefully explored [29].

Clearly, the issue of aggregation of fuzzy subsets is critical to the results

obtained and much further research is necessary on the appropriate choice of

aggregation operator.
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