
J. INDIVIDUAL EMPLOYMENT RIGHTS, Vol. 11(4) 333-347, 2004-2005

AGILE METHODOLOGIES AND THE LONE
SYSTEMS ANALYST: WHEN INDIVIDUAL
CREATIVITY AND ORGANIZATIONAL GOALS
COLLIDE IN THE GLOBAL IT ENVIRONMENT

JULIE E. KENDALL

KENNETH E. KENDALL

Rutgers University

ABSTRACT

The global IT environment has contributed to pressures on IT professionals

to adopt methods that deliver innovative information systems rapidly. This

pressure challenges traditional individual work styles and preferences

often found in creative environments. In this article we use critical/historical

analysis to address a current dilemma faced by systems analysts and pro-

grammers who are adopting new methods of information systems develop-

ment called “agile methods” that require working closely with users and

other analysts on IT projects. Our contribution is to raise awareness of the

tension between deep-rooted systems development practices of individuals

versus organizational demands to adopt agile methods. In addition, we cover

the difficulty faced by organizations in trying to respond competitively

to new market demands while respecting the creativity and skills of the

individuals upon whom they are relying. We provide recommendations to

organizations considering adopting agile methodologies for systems develop-

ment as well as recommendations for analysts and programmers who are in

the midst of changing methodologies.

Modern for-profit and nonprofit organizations alike house dozens of information

systems (IS) and a plethora of information technology (IT) (consisting of hard-

ware, software, people, databases, and manual procedures) that help them achieve

333

� 2006, Baywood Publishing Co., Inc.

their business goals and manage their internal operations and communications.

Information systems development projects are a common occurrence in organi-

zational life, and there are many reasons that information systems are updated or

replaced. Chief among these reasons for systems change are the desire to be more

competitive in one’s industry nationally and internationally; the need to update

systems to communicate more effectively with suppliers, vendors, customers, and

strategic partners; meeting the requirement to comply with government-mandated

regulations; and the necessity of replacing hardware and software that are no

longer adequate to serve the organization’s needs. Systems projects usually carry

specifications on project length (in months or years, with 18 months being typical

for a medium-sized project) and a dedicated budget (ranging from a small project

budgeted at $10,000 to multimillion dollars for large-scale projects such as

creating sophisticated e-commerce sites for retailers; or for specialized projects

such as satellites developed by NASA for developing countries, or those that other

governmental agencies might fund).

Examples of these types of systems development projects would be creating an

innovative information system that sent special discounted prices to customers

who had visited a corporate Web site; moving benefit plans for employees to a

secure site on the Web or making records of current inventory available on the

Web to prospective customers; posting privacy notices on all Web pages that

collect and store information from the Web site user; and upgrading organizational

computers from wired network configurations to implementing hardware and

software for secure wireless networks.

Information systems are also classified by the functions they serve and the

levels of the organization they serve. Wireless systems, ERP (enterprise resource

planning) systems, e-commerce and Web systems cut across all functions, levels

of organizations, and types of users. Specific types of information systems com-

pleted during information systems development projects include executive

support systems (ESS) for support of strategic decisions; group decision support

systems (GDSS) for supporting unstructured or semistructured decisions for

groups; decision support systems (DSS) often used for modeling business intelli-

gence; expert systems of knowledge-based systems (ES) and artificial intelligence

(AI), which capture expertise of experts to solve a specific problem within a

defined domain (e.g., how to negotiate with a hostage taker in a hostage situation);

transaction processing systems (TPS), which process large amounts of data for

routine business transactions such as payroll and accounting; office automation

systems (OAS) that support office workers and knowledge work systems (KWS)

that support knowledge creators such as scientists and engineers; and management

information systems (MIS) that support managers through the use of databases

and models to help interpret data for decision making [1].

The employees who develop these systems are either employees of systems

consulting firms and/or paid IT employees of the organization who hold positions

in the company that use these information systems applications. What are their

334 / KENDALL AND KENDALL

individual rights in terms of their working relationships in the face of increasing

organizational pressures to work in pairs and teams as part of the adoption of

new methodologies? This is the focus of our article.

In the upcoming sections we discuss what comprises typical information

systems projects; the educational and personality attributes of systems analysts

and programmers; the current global economic climate for IT; traditional versus

alternative approaches to systems development; behaviors required of analysts

working on agile projects; implications of organizational adoption of agile

methods; refusal to participate on a team or as a part of a pair of programmers;

the dilemma posed by adoption of new systems methods for analysts and organi-

zations; potential risk and potential advantages for adopting agile methodologies.

Upon analysis of these factors we then provide recommendations for analysts

and organizations adopting agile methodologies, outline our contributions, and

suggest future research to further clarify analysts’ appropriate participation in

new systems development methodologies.

THE SYSTEMS DEVELOPMENT PROJECT

Information systems projects can arise from any source, internal or external to

the company. Often they come in the form of directives from upper management.

Additionally, upper levels of IT professionals inside the organization are often

charged with an educational function that demands that they educate others in the

organization about information systems innovations, and they also champion

projects that feature the latest IT developments. Often projects are suggested by

those in charge of functional units who are in an excellent position to witness

problems that recur repeatedly and who may appeal for an IT solution as a way to

address them.

Projects are also undertaken to satisfy external demands such as new govern-

ment reporting, disclosure, privacy, or storage guidelines that affect how organi-

zational information must be handled. Other external demands include changes in

the hardware or software of one’s suppliers or vendors that often translate into

obligatory changes. An extreme example is the mandate that Wal-Mart originally

issued its suppliers to include RFID (radio frequency identification) tags on

every pallet coming into Wal-Mart’s warehouses. The RFID tags are extremely

useful for inventorying purposes and when deployed worldwide could enable

Wal-Mart to retain its edge among retailers by using inventorying data

strategically.

However, Wal-Mart officers quickly learned that several small suppliers, if left

to their own devices, would be unable to comply with the requirement and thus

would be arbitrarily cut from the supply chain. Part of the reason was excessive

cost of this innovation (most suppliers were not using RFID technology); part of it

was the strict timeline that was imposed. Wal-Mart relented, set up a strategy and

budget for helping suppliers implement the new technology, and also changed the

THE GLOBAL IT ENVIRONMENT / 335

deadline and scope of the project to implement it more slowly over a longer

period of time.

Other motives for commissioning new information systems include internal

organizational politics, where new IT is used as a status symbol and accumulated

as a symbol of political clout for those able to secure the project for their unit.

In those cases the organizational benefits are usually minimal, and the projects

are less likely to be successful. Although this is certainly an ethically “wrong”

reason for information systems development, it does happen. Suffice it to say

that there are internal and external reasons for an organization to alter, update,

or replace its existing information technology.

Attributes of Systems Analysts

We focus here on the systems analyst or systems analyst/programmer in the

process of completing an information systems project. Analysts typically are

graduates of IS programs in business schools or of software development pro-

grams in computer science or engineering programs. Systems analysts and

programmers who have earned business degrees are acknowledged to be better

versed in business functions; those who did not often are more attentive to

technical programming matters. Programmers may also be drawn from the ranks

of students who attended technical schools or universities.

As a group of employees classified in a particular profession, certain attributes

seem to describe the qualities of most successful systems analysts. These include,

first and foremost, viewing systems problems as a challenge and receiving enjoy-

ment from developing workable solutions. Analysts must also possess communi-

cation skills sufficient to enable them to communicate with organizational users

and teammates. In addition, they must be technically proficient enough to com-

municate with machines via programming tools and techniques. Systems analysts

often are described as self-disciplined, self-motivated employees capable of

juggling many tasks of project management and managing numerous project

resources including people, budgets, and schedules. One of the attributes analysts

possess that springs from their need to multitask is their creativity in problem

solving [1].

Most analysts acknowledge that they need infinite patience in staying with a

systems problem until it is resolved. So systems analysts, programmers, and

programmer/analysts in particular need to be self-motivated and capable of

working alone. This is how most analysts have worked over the years, and most

of their experience lies in working for untold hours in a very dedicated manner

to untangle a problem and create a solution. Paradoxically, analysts and

programmers also need team skills as they bring together the pieces of the IT

solution they have worked on so that their work will interface with the work

of teammates.

336 / KENDALL AND KENDALL

Current Global IT Economic Climate

The global IT environment, which seeks to support businesses in expanding

their markets worldwide, expand their labor force to a global one, and expand

operating hours to around-the-clock accessibility and service, has contributed to

pressures on IT professionals to adopt methods that deliver innovative information

systems rapidly. This pressure challenges traditional individual work styles and

preferences often found in creative environments. Organizations face difficulty

in trying to respond competitively to new market demands while respecting the

creativity and skills of the individuals upon whom they are relying.

Systems Development Life Cycle

Most information systems projects are accomplished with a methodology

called the Systems Development Life Cycle or SDLC for short. Through use of a

series of seven phases (some of which can be done simultaneously), the analyst

uses a systematic approach to identify problems, opportunities, and objectives that

the organization is experiencing. As the project unfolds, analysts ascertain the

information requirements of the organizational members and systems; design

the agreed-upon information system; develop and/or document application and

system software (which is often programmed by in-house programmers); and

see the project through to implementation and finally evaluation, at which

point analysts use predetermined benchmarks or metrics to assess the success

and quality of the new system [1]. Technical competence coupled with superb

verbal skills are critical for the analyst who must interact with upper and middle

managers, system users, and other analysts and programmers assigned to the

project.

Although the SDLC and the attendant methods are often criticized for their

long development cycles (which can run anywhere from half a year to three years)

and their fascination with graphically documenting every aspect of the old and

new system before it is implemented, the systems development life cycle is still the

most widely taught and practiced approach worldwide in systems development.

The Systems Development Life Cycle defines times during the development

process when analysts work as a team and when programmers work alone,

separate from users and even from each other. Teams of analysts and pro-

grammers, rather than pairs, are typical but not required, and certainly with

small IS projects ($10,000-$75,000 USD budget approximately) one or two

analysts will be completing all of the tasks for the entire project. Next, we turn

to the contrasting approaches to developing information systems, which as a

group are called “agile methods,” “agile methodologies,” or “agile approaches.”

In the following section we define agile methodologies to examine how they

can affect organizations and individual IT professionals who may be required

to dramatically alter their culture of development and their individual ways of

working as new methods are ushered in.

THE GLOBAL IT ENVIRONMENT / 337

AGILE METHODOLOGIES

In response to some of the criticisms of SDLC and also in response to global

demand for innovative information systems delivered in a timely way, agile

methods were developed in the early 1990s. Many versions of agile development

methods were introduced at that time, and there was an exciting cluster of

approaches bursting on the development scene that was becoming available for

analysts and programmers, including an agile methodology dubbed “XP” for

“extreme programming [2], which has become a beacon in the agile community.

Other agile approaches popularized at that time include feature-driven develop-

ment [3], scrum [4], open source development [5], crystal family [6], as well as

many others detailed in [7] and [8]. Approaches shared many features, and

eventually an “agile alliance” [9] was formed to provide a united source for

information about these kinds of development methods, as well as to provide a

clearinghouse and naming conventions for them.

To that end, the Agile Alliance has spelled out the principles and values of agile

methods and asserts that the success of IT projects with the use of agile methods

can be realized when 1) real-life communication takes precedence over following rules

or procedures; 2) the final product is more important than documenting the

process; 3) systems development is customer-centered rather than manufacturing-

centered; and 4) adapting is the correct state to be in, not planning [9].

The systems development life cycle emphasizes the understanding, diagraming,

and design of organizational and system processes. On the other hand, agile

approaches are centered on people, firm in the assertion that human error is at the

bottom of most systems projects that fail. Further, researchers believe that human

creativity should take over in instances where it is impossible to develop formal,

specified solutions for every system problem that is encountered [10]. Others

noted that agile methodologies only succeed in delivering on-time, on-budget,

quality information systems when all of the stakeholders collaborate [11]. One

of the other important aspects of agile methodologies is the importance of under-

standing the organizational culture that one is working in [12].

Agile methods, similar to rapid application development (RAD) and other

iterative development methods, emphasize the use of short releases of a working

version of a system or feature. There is an expectation of quality improvement

each time an iteration is completed. Additionally, agile methods are less formal

and less formally documented than systems created with structured methods.

Agile methods underscore the importance of people in improving the quality of

information systems based on increased communication, a belief in the value

of flexibility, and the prompt and ongoing attention to systems.

Philosophy of Agile Approaches

The mainstay of the agile philosophy is that all of the humans involved in the

process (users, analysts, programmers, management) deserve to be well-treated.

338 / KENDALL AND KENDALL

They are the center of the agile universe. Working in collaborative teams is very

important for analysts and programmers using agile methods. This stems in

part from believing that humans are inherently more complicated systems than

machines, and as such they experience social and spiritual needs, need to express

their creativity, are capable of responding to changes in their environment, and are

quite adaptable in unpredictable ways. This translates into the agile philosophy of

treating humans as humans, rather than replaceable parts in a grand machine.

Core Practices of Developers Using

Agile Methods

Five core practices serve as the platform for supporting the manner in which

programmers and analysts behave toward each other and others involved in a

systems development project. They are quite distinct from those put forward in the

systems development life cycle.

The five core practices are composed of short releases of developed software;

the 40-hour workweek; the on-site customer; and pair programming. We briefly

define each one and then focus on the core practice of pair programming as it

relates to individual employment rights.

• Short releases. The programmer/analyst team will shorten the time between

releases of newly developed pieces of software. Short releases refers to

software that does not have all of the features that it will ultimately possess.

(For example, a menu screen for an airline may permit the user to search on a

flight number, but not on a city name originally. That feature will be added

later.) Short releases are intended to come out rapidly, in quick succession as

the programmers finish them. Essential features will be developed first, and

when actually released, the product will contain critical features at first. The

team agrees to work on improving it later in the process.

• Forty-hour workweek. Since the agile methods culture holds dear the impor-

tance of the long-term health of its developers, this core practice states that

members ought to commit to intense work on a project, complemented by

time off to prevent a common problem on projects, which is burnout and stress

that diminish the effective accomplishment of intellectual tasks such as

systems development.

• On-site customer. The human dimension is again noticeable here, since

communication with the on-site customer is paramount. Business workers are

required to stay on site during the entire development process. It is considered

to be a way to create a deep, ongoing understanding of what the customer

considers a high priority, and a way to develop a lasting client-customer

relationship.

• Pair programming. This core practice requires that a duo of programmers

who want to program together can choose to program together, run tests on

THE GLOBAL IT ENVIRONMENT / 339

code together, communicate about how well the program is running, and so

on. Interacting with another programmer in this way is intended to push the

dyad to clarify their logic and promote rational thinking about the problem

at hand. Some other benefits of pair programming are that very few errors

remain in the program for long, since someone is there to catch them early on.

Also, some supporters of pair programming believe that creativity is enhanced

by working with another person, and that, although on its face it seems as if

it would take more time, it can actually save time in development.

• Timeboxing. Timeboxes refer to the way developers construct their reality

of time, by cutting the projects into several shorter time periods [13]. The time

limit to finish each iteration (usually one or two weeks) is represented by

what is referred to as a timebox. The timeboxes in turn depend on the specific

project in an organization, including the scope of the project, its complexity,

the size of the development team and their experience, project resources

available, and other situation-specific factors.

In the upcoming section we examine in more detail the core practice of pair

programming to better understand where the tension resides between organi-

zational goals of adopting new methods and the individual interests of the

programmer or analyst faced with changing his/her traditional methods of work

to accommodate the employer.

PAIR PROGRAMMING AND EMPLOYEE RIGHTS

As a core practice of agile methods, pair programming has received quite a bit of

interest from developers and organizations that are considering adopting new

development methods, since its use has been championed as a path to guarantee a

better quality of information systems [14]. Authors have noted that programmers

are quite emotional when the topic of pair programming is broached [15-17].

The originator of the term XP claimed that the phrase “extreme programming”

was used intentionally to evoke an emotional response about a radically dif-

ferent approach to development [17].

Using a Team for Programming

What happens when a programming team is constituted for a development

project? Typically, one programmer, often a senior one, will choose a pro-

gramming partner [18]. The protocol is that the invited programmer accepts

the invitation and they work for a while together. If one pictures the physical

setup (two programmers, one typing on their shared computer, the other thinking),

one could recognize that in this setting errors are caught earlier and that

each programmer serves as a double check on the work of the other in pair

programming.

340 / KENDALL AND KENDALL

Each of the programmers codes, as well as tests, their programming output.

Although coding in pairs is often initiated by the senior person, it is meant to be a

give-and-take situation between peers. Programmers would alternate between

tasks, depending on who is able to achieve the best “gestalt” or overall picture of

what will be the pair’s ultimate goal. Additionally, pairs can change often at the

beginning of a project. The thinking is that this helps them gain new perspectives

on their own coding capabilities and practices.

Working with another programmer helps each person clarify his/her thinking.

Pairs may change frequently, especially during the exploration stage of the

development process. This, too, can help programmers gain a fresh view of their

coding habits. Programming chores can be split among the duo so that while one

programmer is checking the accuracy of the code, another will pursue a goal of

simplicity so that the code is clear and useful.

Pair programming can also be accomplished by having one programmer

create an initial version, with the second programmer examining it principally

for the quality of the code that has been written. So the second programmer

verifies, tests, and improves the code without trying to add features to what

has been written.

Benefits of Pair Programming

Of those who have used pair programming (including the authors), most say that

it can save time, reduce the chance that sloppy thinking has crept in, serve as a

springboard for creativity as each programmer builds on another’s ideas, and is a

fun way to program.

Pair programming is intertwined with the overall quality of the system being

developed, while at the same time saving many days and weeks of develop-

ment effort. Another advantage becomes obvious when one realizes at what

point in the programming errors are detected. Using pair programming practices,

errors are caught immediately [11]. In contrast, when using a traditional approach

to code verification, errors are discovered after the programming is almost

complete. Sometimes errors are found only after it is too late to correct them

and deliver the project on time. As one can see, pair programming helps in

delivering quality systems within the time frame agreed upon by programmers

and managers.

There are many other advantages as well. One is the care with which one

programs initially, when his/her code is subject to immediate inspection. Another

benefit is that those who are less experienced can be paired with a more experi-

enced programmer and quickly learn what to do. Williams argued that codes

developed by pair programming teams often turn out to be better designed, freer of

errors, easier to follow, and simpler rather than more complex, compared to

systems developed with traditional methods [11].

THE GLOBAL IT ENVIRONMENT / 341

Drawbacks of Pair Programming

Some of the drawbacks to pair programming include the inability to identify

problems because of a lack of overall knowledge of a system [19]. Without

traditional ways of verifying code that supply a new perspective, programmers

may not be able to gain a distanced, critical perspective of what has been

developed. Finally, it is also obvious that quality would suffer if programmers

were not happy in their careers or particular jobs.

Turnover as a Traditional Problem

of the IT Workforce

Over the years, IT professionals have been categorized as a restless group.

Turnover in IT jobs occurs frequently (sometimes as high as 29 percent annually

for IT people [20]), and it is difficult to retain analysts and programmers in an

organization for an extended period of time. Their loyalty appears to be to the IT

profession, rather than to any particular company. Also, many analysts and

programmers find their initial assignments boring after the innovative projects

they developed at the university, for new hires are routinely asked to maintain

old systems or create documentation for those same legacy systems.

Organizations are continually searching for ways to attract and retain experi-

enced and talented systems analysts and other IT people via bonuses; maintaining

a “business casual” dress code; and offering additional social and health-related

perks, such as organizational sports teams and 24-hour access to gym facilities

which would appeal to younger analysts.

One of the reasons for high turnover must certainly be that analysts and

programmers have a strong independent streak and see themselves as free to go

where they can, often for a higher salary and better organizational perks. The other

reason has to do with creativity in solving large and small problems. New systems

problems (available in new workplaces) can provide a challenge unavailable in

a more familiar or stable setting. Analysts and programmers often are creative

individuals who do not necessarily march to the beat of the same drummer heard

by others in the organization.

Refusing to Serve on a Team

Can systems analysts or programmers refuse to work on a systems development

team or in a programming pair? Other professionals such as engineers have

claimed the right to refuse to work on projects where they would not be free from

legal liability if something goes wrong. And in the IT field, Web site developers

and Web hosting organizations have reserved the right to refuse to post material

to a Web site if the content is deemed inappropriate or if the authority to post

does not seem to be appropriately gained.

342 / KENDALL AND KENDALL

The literature discusses the possibility of programmers who are unwilling

to work in this agile method. “It’s important to acknowledge that there are

programmers (and analysts) who don’t want to work side-by-side with someone

else, and whose job satisfaction will certainly be affected by something like

pair programming” [16]. Anecdotes are passed among colleagues to that effect.

However, no formal studies of what happens when an analyst or programmer

refuses to engage in one of the core practices of a new methodology are available.

Their basis for refusal could be an individual work style as mentioned earlier or it

could be a strong belief in a creative process that is a solitary, intellectual process,

where arbitrary pairings are a hindrance rather than a help.

Dilemmas for Analysts and Programmers

The problem posed for analysts and programmers who prefer not to program in

pairs or use other agile methodologies is multifaceted. Most have been inculcated

with the idea that programming is a “solitary activity [21].

Additionally, although programmers and analysts may work in teams, they may

not be prepared for some of the more extreme parts of pair programming, such as

having one person type and the other work on the intellectual and creative aspects

of the program. Others claim their code is “personal” [21].

Organizations hire analysts to perform certain systems development tasks

to create and maintain various information systems. Much of what analysts

traditionally accomplish on the job is taken up with maintaining legacy (older,

existing) systems. The competitive environment is changing this. New hardware

is available annually, and new software releases are available approximately

every six months. In an additional push to be competitive, organizations are

increasingly seeking development of innovative information systems that solve

multiple information systems problems and address expanding businesses; doing

business in a new way; addition of strategic partners; or moving to a new platform

using a new language (i.e., instituting the use of open source software or migrating

to the Web).

Dangers and Rewards in Adopting

Agile Methods

The dangers inherent in adopting new agile methods are many. First and

foremost is that they do not possess a long, proven track record of delivering

quality information systems. Agile methodologies, as we have seen, have been

around about 15 years. Firms that are interested in adopting them are just now

testing the waters as agile methods slowly enter into the formal curriculum in

business information systems programs and computer science programs. Rather,

there is a great deal of anecdotal evidence that systems developed with agile

methods are of better quality than those developed with traditional approaches.

THE GLOBAL IT ENVIRONMENT / 343

A second danger in adopting agile methods is that experienced and mature

programmers and analysts will not necessarily be familiar with them, so the

organization may have to hire that expertise into the IT team. It is often difficult

to add IT expertise at the time one notices the deficiency (i.e., when a project is

ready to start).

Pair programming, one of the agile practices, aims to have one experienced

programmer paired with one newcomer in all pairings [16]. However, it is

ironic that “experienced” programmers may not be the long-tenured employees in

this instance.

Agile methods are not without their rewards, and over the years, more

developers and organizations are being drawn to them. One of the potential

benefits for organizations in adopting agile methods is the hope of better designed

systems. Another reason to adopt agile methods is to improve the rapidity of

systems delivery. A third potential benefit is an “investment in quality assurance

(before things are built), rather than quality control (after things are built)” [18].

Recommendations for Analysts

Analysts and programmers frequently learn new languages and new software

tools that assist them in doing their jobs better. Most are eager to do so and

recognize that the best way to maintain interest in one’s work and to remain

marketable in the workplace is to keep current. However, analysts need to evaluate

their own working styles in relation to the use of agile methodologies. To better

understand their attitude toward working in teams and pairs, we recommend

analysts and programmers answer a brief series of questions.

1. What value do you place on working alone on a coding or systems project?

2. How important is the opportunity to work alone versus being part of a pair

or a team?

3. What benefits can you identify from previously working in a team or a pair?

4. What are your experiences working with others on development projects?

5. What experiences working in teams or pairs would you avoid?

6. Which experiences in teams or pairs would you seek out?

All of these are questions targeted at analysts who are typically part of cultures

where individual work is the hallmark of “doing your job.”

As IT people face potential changes in their culture and way of working, they

might also contemplate whether it is possible to suggest some rights that surround

their work habits that can all be agreed to and subscribed to by participants in

the IT process [15]. While Hayes outlined rights for customers and managers

as well as programmers, we are primarily interested here in his suggestions for

programmers (which we believe can be read as analysts/programmers), which

include these programmer rights:

344 / KENDALL AND KENDALL

• The programmer has the right to estimate work and have those estimates

respected by the rest of the team.

• The programmer has the right to honestly report progress.

• The programmer has the right to produce high-quality work at all times.

• The programmer has the right to know what is most important to work on next.

• The programmer has the right to ask business-oriented questions whenever

they arise [15].

Also of interest is what is absent from the Extreme Programmers Bill of Rights,

namely the idea that programmers have the right to refuse to work with a

development team or in a pair programming situation. A suggested wording is,

“The programmer has the right to refuse to work in a pair or team for creative or

work-style reasons without fear of reprisal.” We think this is a useful addition,

and one that has important ramifications.

Recommendations for Organizations

We believe organizations should look carefully into the advantages and dis-

advantages of adopting agile methods as they relate to their IT workforce and

their particular culture. They may provide the edge an organization needs to push

past their competition. Organizations may have to “evolve” toward a balanced

approach to choices of methods that suit the development project [22]. Other

researchers have noted that organizations must “carefully assess their readiness”

before adopting agile methods [10].

Finally, organizations must be aware of the disadvantages inherent in adopting

agile methods, particularly in situations where valued employees, who may be

unable to change their work habits away from independence and creativity to

work in pairs, are part of the systems development team.

FUTURE RESEARCH

There are many fruitful aspects to researching questions of whether IT pro-

fessionals have a right to refuse to work in a team or a pair due to past work

habits, a desire to remain independent, or because of creative differences in

approach or perspective. At what point should an organization impose team or pair

membership? What is the effect on creative participation and how does it affect

those senior members who are accustomed to working alone for long periods?

At which point must the organization make a tradeoff to say that the importance

of analysts’ and programmers’ participation in this practice is a key to the

overall success of the systems development project? Currently, most pro-

gramming teams are voluntary, and programmers choose with whom they would

like to work. Research into where the boundary is between forward-looking

adoption of methods and the pervasive current culture of creativity and inde-

pendence (which supports opting out of team or pair participation) can assist

THE GLOBAL IT ENVIRONMENT / 345

organizations and IT professionals alike to move toward an understanding of how

changing methods ultimately will affect the information systems that are designed.

CONTRIBUTION

In this article we have raised awareness of the dilemma faced by individuals

involved in IT systems development projects who may, for reasons of indepen-

dence, creativity, or past work habits, refuse to work in teams or in pair pro-

gramming, which is a core practice of agile methodologies. After considering the

background and multiple facets of this issue, we recommended courses of action to

both organizations and IT professionals as they work together to create better

information systems. Awareness of the potential impact of changing systems

development methods and the tensions produced by instituting a new group of

practices (key among them working in pairs or in teams when the prior culture

venerated the loner) are worthwhile for organizations to reflect and act upon.

CONCLUSION

Organizations and individuals in IT must work together to come to a mutual

agreement about how quickly new methods for systems development are imple-

mented and must also decide how critical it is to adopt the totality of agile core

practices, versus selecting from among them in order to use only “what works.”

Each organization is in a unique situation regarding the systems development

culture they create that helps foster programmers’ and analysts’ expectations and

capabilities. The question remains whether the roles of analysts and programmers

will evolve along with the progression of methods and the evolution of innovative

information systems design, as agile methodologies become more deeply rooted

in the organizations’ culture.

ENDNOTES

1. K. E. Kendall and J. E. Kendall, Systems Analysis and Design, 6th Ed., Prentice Hall,

Upper Saddle River, N.J., 2005.

2. K. Beck and C. Andres, Extreme Programming Explained: Embrace Change, 2nd Ed.,

Addison-Wesley, Boston, Mass., 2004.

3. P. Coad, E. Lefebvre, and J. De Luca, Java Modeling in Color with UML, Upper Saddle

River, N.J.: Prentice Hall, 1999.

4. K. Schwaber and M. Beedle, Agile Software Development with Scrum, Upper Saddle

River, N.J.: Prentice-Hall, 2002.

5. S. Sharma, V. Sugumaran, and B. Rajagopalan, A Framework for Creating Hybrid-

Open Source Software Communities, Information Systems Journal, 12(1), pp. 7-25,

2002.

6. A. Cockburn, Agile Software Development, Addison-Wesley, Boston, Mass., 2002.

7. P. Abrahamsson, P. O. Salo, J. Ronkainen, and J. Warsta, Agile Software Development

Methods, vtt publications 478, 2002,

http://www.inf.vtt.fi/pdf/publications/2002/P478.pdf

346 / KENDALL AND KENDALL

8. J. E. Kendall, K. E. Kendall, and S. Kong, “Improving Quality through the Use of Agile

Methods in Systems Development: People and Values in the Quest for Quality”, in

Measuring Information Systems Delivery Quality, Evan Duggan and Han Reichgelt

(eds.), Hershey, Pa.: Idea Group Publishing, pp. 201-222, 2006.

9. Agile Alliance, Manifesto for Agile Software Development, 2001,

http://www.agilealliance.org/home

10. S. Nerur, R. Mahapatra, and G. Mangalaraj, “Challenges of Migrating to Agile

Methodologies”, Communications of the ACM, 48(5), pp. 73-78, 2005.

11. L. A. Williams, “The Collaborative Software Process,” unpublished doctoral disser-

tation, University of Utah, 2000.

12. D. P. Truex, R. Baskerville, and H. Klein, “Growing Systems in Emergent Organi-

zations”, Communications of the ACM, 42(8), pp. 117-123, August 1999.

13. Dynamic System Development Consortium,

http://www.dsdm.org/version4/timebox_plan.asp, 25 February 2004.

14. L. Wyssocky, Pair Programming: Code Verification, 2004,

http://www.qualityprogramming.org/Implementation/CodeVerification/

CodeVerification.htm

15. S. Hayes, ZDNet Australia, “The Extreme Programming Bill of Rights”, November 11,

2003,

http://www.builderau.com.au/program/development/soa/The_Extreme_

Programming_Bill_of_Rights/0,39024626,20280741,00.ht, last accessed July 25, 2005.

16. S. Hayes, “Pair Programming—It Takes Twice as Long,” from Builder AU: Manage:

At Work, http://www.builderau.com.au/manage/work/0,39024674,39173564,00.htm,

last accessed July 25, 2005.

17. K. Beck, Extreme Programming Explained: Embrace Change, Reading, Mass.,

Addison Wesley, 2000.

18. D. Chaplin, “Pair Programming and Quad Programming,” Byte-Vision ITD,

www.byte-vision.com/PairAndQuadPrint.aspx, last accessed July 25, 2005.

19. M. Stephens and D. Rosenberg, “Will Pair Programming Really Improve Your

Project?” in Methods and Tools, 2004,

http://www.methodsandtools.com/PDF/dmt0403.pdf

20. J. M. Wolfe, “Personnel Turnover Rates,”

http://www.waldentesting.com/about/article6.htm, last accessed on July 25, 2005.

21. A. Cockburn and L. Williams, “The Costs and Benefits of Pair Programming,”

http://collaboration.csc.ncsu.edu/laurie/Papers/XPSardinia.PDF, last accessed July

25, 2005.

22. B. Boehm, “Get Ready for Agile Methods, With Care”, Computer, pp. 64-69, January

2002.

Direct reprint requests to:

Julie Kendall

Rutgers Univeristy

School of Business–Camden

Camden, NJ 08102

e-mail: julie@theKendalls.org

THE GLOBAL IT ENVIRONMENT / 347

