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ABSTR ACT: Long terminal repeat retroelements comprise about 8% of the human genome and include the human endogenous retroviruses (HERVs). 
Earllier it was suspected that HERVs can become active and be involved in the process of transformation of cells, through several oncogenic mechanisms. 
Abnormal expression of HERVs proteins has been reported for various types of cancer, such as melanoma, breast, prostate, and germ cell cancer, in which 
encoded transcripts or proteins are overexpressed in the tumor tissues. However, less is known about the association between the HERVs and the colon 
cancer development. We review the state of the art for colon cancer with respect to the HERVs that can be considered as an open area of investigation, 
potentially leading to future innovative diagnostic and therapeutic approaches.
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Introduction
Transposable elements (TEs) are DNA fragments capable 
of self-reproducing and changing their location in the host 
genome, ie, to transpose. These selfish repetitive elements 
proliferate either directly via their DNA copies (DNA trans-
posons) or through RNA intermediates (retroelements), uti-
lizing the reverse transcription method.1 Sequencing of the 
human genome has highlighted that about 45% of the overall 
proportion of the genome is constituted of TEs and over 90% 
of these are retroelements. Transposons currently mobilizing 
on the human chromosomes include the long interspersed 
elements (LINEs), short interspersed elements (SINEs), and 
“SINE-R, variable of number of tandem repeats (VNTRs) 
and Alu (SVA) elements”, all of which are in the “non-LTR 
retrotransposons” family. The only active mobile DNAs are 
the autonomous L1 retrotrasposon, belonging to the LINE 
family, and replicating by a simple “copy and paste” mech-
anism involving target-site primed reverse transcription.2 
Functional human-specific L1 insertion passed in the germ-
line have negative effects on fitness, but continue to be a 
source of genetic diversity.3 In addition to acting as inser-
tional mutagens, retrotransposons can disrupt gene func-
tion and genomic integrity in many other ways, such as 
recombination-mediated gene rearrangements, genetic insta-
bility, transcriptional interference, alternative splicing, gene 
breaking, epigenetic effects, the generation of DNA double-
strand breaks, and the expression of small noncoding RNAs.4 

All of these mechanisms are compatible with a tumorigenic 
potential of these elements.

Long terminal repeat (LTR) retroelements comprise 
about 8% of the human genome and can be divided into 
three groups: LTR-bounded elements, endogenous retrovi-
ruses (ERVs), and LTR retrotransposons.5 ERVs have a simi-
lar genetic organization as exogenous retroviruses with two 
long LTRs encompassing the internal coding sequence of 
the three basic retroviral genes: group-specific antigen (gag), 
polymerase (pol), and envelope (env; Fig. 1). ERVs have been 
found in all vertebrates, including humans.5,6

Human endogenous retroviruses. Human endogenous 
retroviruses (HERVs) represent a “relic” of ancestral exog-
enous retroviral infection and entered primate genomes over 
30 million years ago. Due to the requirement of a proviral stage 
in the retroviral life cycle, after the infection of the germ line, 
cells have preserved the HERVs as a “fossil record” of ances-
tral retroviral infections.7 Afterward, each time an HERV-
infected germ cell develops into offspring, it will transmit its 
provirus to every cell of the offspring that expands in the pop-
ulation, ultimately achieving fixation, or that becomes extinct 
by random events or selection pressure.5 The life cycle of the 
HERVs comprises reverse transcription of the viral genomic 
RNA, followed by the integration of a nascent DNA copy into 
the genomic DNA of the host cell.8,9 Retroviral genomic RNA 
differs from genomic copy by the absence of LTRs, which are 
built during the reverse transcription, a multistep complex 
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process including several template-switching events.10 Since 
the first integration, most HERVs have been severely dam-
aged in their original genetic structure from the accumulation 
of mutations, insertions, and deletions up to the total excision, 
through homologous recombination, of the internal coding 
region between the two flanking LTRs.6 Furthermore, even 
if not transcribed or translated, LTRs can change the tran-
scriptional regulation of neighboring genes by supplying new 
promoters and definitely contribute to genomic plasticity dur-
ing primate evolution. This indicates that they could be used 
as genetic markers for understanding evolutionary history.11 
To date, no HERV has been shown to replicate and pro-
duce infectious viruses except for the human species-specific 
HERV-K (HML2), which still retains some proteins coding 
potential. In this regard, there was a report of retrovirus-like 
particles secreted in a steroid-dependent manner by human 
mammary carcinoma cell line by Faff et al.12,13

Important issues of HERVs research are their nomen-
clature and classification. Historically, names of HERVs are 
linked to the different approaches and methodologies applied 
for their identification, leading to a puzzle of names difficult 
to be interpreted and translated.6 Although till now there is no 
standard nomenclature for HERVs, a classification based on 
sequences homology to different genera of exogenous retrovi-
ruses has generally been adopted.5,6 HERVs are divided into 
three classes based on phylogenetic analysis: HERVs sequences 
broadly clustering with gamma and epsilon retroviruses have 
been termed “Class I”, those clustering with beta retroviruses as 

“Class II”, and those having the greatest homology to spuma-
viruses as “Class III” (Fig. 1).5,14 Well-defined groups within 
the different classes are named “families”, that generally rep-
resent single invasion followed by a copy number expansion 
within the host’s genome.15 Traditionally, HERVs families 
have been named after the amino acid carried by the tRNA, 
complementary to the primer binding site of the HERVs 
genome (for instance, HERV-K, HERV-H, HERV-W,  
HERV-R, and so on). To date, a total of 40 families have been 
defined.16,17 The ubiquitous nature of HERVs and the plurality 
of their molecular functions stress the importance of organiz-
ing and maintaining related databases.18 A complete database 
of HERVs does not exist, but two complete reviews by Vargiu 
et al6 and Suntsova et al18 described the identification and 
classification of 3173 HERVs proviral sequences in the human 
genome, summarizing the most important HERVs database 
and the story of their implementation.

Role of HERVs in the Human Genome: 
The Positive Side
The integration of ERVs in mammalian genomes has been 
known since 1970s.19 The presence of multiple copies, as well as 
the possible sharing of protein products among distinct groups 
of retroelements, underlines the marked potential of distinct 
endogenous retroelement loci to interact with one another, 
proposing HERVs as elements that facilitate the regulatory 
network evolution.20,21 The potential of HERVs to induce an 
immune response depends on their expression but may be 

Figure 1. Schematic genome organization of three different classes of HERVs (drawings are not to scale). 
Abbreviations: �HERV, human endogenous retrovirus; LTR, long terminal repeat, consisting of the U3, R, and U5 regions; gag, group-specific antigen; 
du, dUTPase; pro, protease; pol, polymerase (reverse transcriptase and integrase); env, envelope; bel 1–3 encode small additional proteins. rec and np9 
are two accessory proteins arising from env splice variants.
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further influenced by the combination of interacting retroele-
ments that are expressed in certain cell types.20 Endogenous 
retroelements can elicit the innate and the adaptive immune 
responses against their own products, but they also have great 
potential to influence the immune reactivity against unrelated 
immune challenges.20 A recent paper has explored the influ-
ence of TEs on interferon gamma (INFγ)-inducible regulatory 
networks, in particular on the transcription of innate immu-
nity factors, defined as INFγ-stimulated genes.21 Employ-
ing ChIP and RNA sequencing, the authors observed that 
HERVs could represent the sources of novel binding sites for 
INFγ-inducible transcription factors, suggesting a potentially 
widespread role for HERVs in the regulation of the human 
INFγ response.21 Few studies have investigated the relation 
between HERVs and the Toll-like receptors (TLRs). A mem-
ber of the HERV-W family, that has been associated with 
multiple sclerosis, has been shown to interact with TLRs and 
stimulate the production of pro-inflammatory cytokines.22,23 
These data suggest that HERVs products also have the ability 
to activate pro-inflammatory signaling pathways and interact 
with some components of the innate immune response.

The expression of some HERVs is indeed thought to be 
beneficial to the host. Well-studied examples are the cases of 
the HERV-W and HERV-FRD env genes, which encode for 
the proteins syncytin-1 and syncytin-2, respectively, required 
for the placenta formation. They allow the fusion of the cells to 
form the syncytiotrophoblasts and contribute to the immune 
tolerance of the fetus.24 Another example is given by the inser-
tion of the HERV-K LTR, creating an enhancer element for 
the human gene PRODH that has a strong implication in 
higher nervous activity in hippocampus.25 Again, ERVL TLR 
promotes the transcription of the human gene b3GAL-T5 that 
concurs to the synthesis of type 1 carbohydrate chains, expe-
cially in colon.26 HERV LTR was also shown to regulate the 
transcription of the BIRC1 gene that encodes a neuronal apop-
tosis inhibitory factor.27

HERVs and Oncogenic Mechanisms: 
The Negative Side
Since a couple of decades ago, it has been suspected that 
HERVs, generally recognized as silent sequences, can become 

active and play some physiological roles, influencing the devel-
opment of chronic diseases such as diabetes, multiple sclerosis, 
cancer, and autoimmunity or immune suppression-related 
diseases.28–31 The role of HERVs in cancer is most likely lim-
ited to retrovirus-driven gene expression and does not involve 
their insertional activity.18 In particular, multiple copy num-
bers of HERVs elements can create new functional exons, 
alternative splicing products, and microRNAs via integration 
and adaptation events.11,30 Many oncogenic mechanisms have 
been attributed to HERVs to explain their complex role in the 
development of cancer. Mullins and Linnebacher proposed 
that the hypothesized oncogenic mechanisms employed by 
HERVs included: (a) the general or specific (re)activation of 
HERVs sequences due to hypomethylation,32–34 (b) the expres-
sion of HERVs encoded oncogenes,35 (c) the inactivation of 
tumor suppressor genes by de novo insertion or translocation 
of retroelements within the genome,35 (d) the regulation of 
nearby (proto-) oncogenes or growth factors by the regulatory 
sequences of LTRs,36,37 and (e) the ability of the env proteins 
to induce cell fusions, which may contribute to the tumor 
progression or metastasizing processes.38,39 The main mecha-
nisms are briefly described here below and in Figure 2.

Methylation. Methylation is a crucial event involved in 
the modification of heavy metals, regulation of gene expression 
and protein function, and RNA processing. In healthy somatic 
and mature germ cells, HERVs sequences are generally hyper-
methylated and transcriptionally silenced by epigenetic mech-
anisms. Two recent studies by Chiappinelli et al40 and Roulois 
et al corroborated the assumption of an epigenetic deregula-
tion in cancer, showing that the DNA methylation in humans 
silenced the HERVs sequences, and other viral sequences 
in the human genome. The antitumor DNA-demethylating 
agents were shown to act by inducing transcription of endog-
enous double-stranded RNAs that activate the viral rec-
ognition and the interferon response pathway, reducing the 
proliferation of colorectal cancer cells.41 In parallel, several 
studies also reported that LTR activation was controlled by 
DNA methylation, and the implication of this mechanism 
seemed to be involved in various types of cancer.42–44 Gimenez 
et al42 observed that hypomethylation of the promoter domain 
of the HERVs U3 element was a prerequisite for the increased 

Figure 2. Oncogenic mechanisms employed by HERVs and leading to genome instability and transformation of cells.

http://www.la-press.com
http://www.la-press.com/advances-tumor-virology-journal-j132


Signorini et al

14 Advances in Tumor Virology 2016:6

expression in tumor tissues compared to normal tissues. 
Colon cancer cells, treated with DNA methylation and his-
tone deacetylase inhibitors, altered the expression pattern of 
HERV-H in several colon cancer cells, suggesting that the 
hypomethylation context affected the expression of HERV-H 
elements in colon cancer cells.43 Moreover, increased HERV-K  
expression in melanomas may be due to increased promoter 
activity and demethylation of the 5′ LTR.44 Thus, overexpres-
sion of the HERVs sequences in cell lines is correlated with 
the demethylation of LTR.

LTR promoter activation. Genetic instability is one of 
the key features associated with cancer rising and progression. 
As mobile elements, the HERVs LTRs possess the features 
to affect the human genome stability. It was shown that the 
LTR activation was involved in nontumor diseases, such as 
rheumatoid arthritis, diabetes, and schizophrenia, and also in 
different types of tumors.45–48 In particular, the detection of 
RNA transcripts of HERVs was described in various human 
tissues and cancer cells.49,50 LTRs are usually oriented oppo-
site to the transcription direction of the corresponding host 
genes and the antisense transcripts affect the partner gene 
functions, by modifying both the transcriptional and post-
transcriptional regulation processes.51–58 LTRs may also pro-
mote cellular transformation by cis activation of downstream 
oncogenes, and the repetitive nature of HERVs provides an 
ideal substrate for nonallelic homologous DNA recombina-
tion, which results in a variety of germline chromosomal rear-
rangements, leading to human genetic disorders and cellular 
transformation of somatic cells.59–61 LTRs were reported to 
be involved in tumorigenesis via three principal mechanisms: 
insertional mutagenesis, recombination, and polymorphisms. 
HERVs LTR could carry functional enhancers, promoters, 
polyadenylation signals, and splice sites that regulate the tran-
scription in human cells.18 LTRs are perfect docking sites for 
DNA binding factors, which are critically involved in cancer 
development.59 For example, one of the three p53 binding 
sites was identified within the LTRs of two HERVs fami-
lies in human cancer cell lines which, when bound by p53, 
could activate the transcription of some downstream genes.62 
Finally, HERVs LTRs could also be reactivated by exogenous 
factors such as cytokines, radiation, proteins of other retrovi-
ruses and, as previously described, by methylation.63–67

Proteins expression. Despite the fact that HERVs 
sequences accumulated replication-inactivating mutations 
during the evolutionary process, many retroviral sequences 
still contain intact open reading frame (ORF) that produce 
retroviral proteins.68,69 These ERV-derived proteins may serve 
as a source for antigens for the immune system; may contrib-
ute to the selection process of T- or B-cells antigen-receptor 
repertoire; and may stimulate the activation of the immune 
reactivity to the ERVs products in mice and non-human pri-
mates, suggesting that the immunological tolerance to ERV-
derived proteins is not complete.70–72 Furthermore, HERVs 
proteins may retain biological functions that contribute to 

cellular transformation.38 To this regard, HERV’s encoded 
proteins have been detected in a variety of human cancers.35 
Although certain HERV proteins were shown to be expressed 
in healthy nontransformed tissues, some others showed exclu-
sive expression in tumors.35,73 For instance, the expression of 
two accessory proteins, named Rec and Np9, env splice vari-
ants, has been described in several tumors, including leuke-
mia, and breast cancer. Rec is a functional homolog of the 
HIV Rev and HTLV1 Rex proteins, while Np9 is a nuclear 
protein encoded by HERV-K. Analysis of serum from breast, 
prostate, ovarian, testicular cancer, leukemia, and melanoma 
showed the presence of antibodies directed against HERVs 
Gag and Env.74–88 A large population (.85%) of breast cancer 
patients expressed HERV-K Env protein, while HERV-K 
Gag protein was shown to be expressed in germ cell tumors 
(Table 1).76,89 Furthermore, Cherkasova et al90 reported a 
unique HERV-E envelope peptide presented on the surface 
of von Hippel-Lindau deficient clear cell renal cell carcino-
mas, offering potentially useful tumor-restricted targets for 
T-cell-based immunotherapy of kidney cancer.

In light of these scientific evidences, it can be suggested 
that failures and errors in single somatic cell’s efficiency to 
control HERVs activity potentially result in genome damage 
and may thus contribute to the formation of cancer.39

HERVs and Colon Cancer
Abnormal expression of HERVs is well known in cancer and 
reported in literature for different types of cancer, such as 
melanoma, testicular cancer, kidney cancer, breast cancer, and 
prostate cancer, in which encoded transcripts or proteins are 
overexpressed in patients and related to poor prognosis.91–97 
Nevertheless, characteristic patterns of HERVs expression are 
often seen in various tumors and can be considered as pos-
sible biomarkers of malignization, offering a unique approach 
to immunotherapy.58 The major contribution of HERV 
sequences to the evolution of the species presumably depends 
on their LTRs that can trigger chromosomal breaks through 
recombination events and serve as natural or alternative 
promoters/enhancers, capable of modulating transcription.98,99 
A major consequence of the abundance of LTR regulatory ele-
ments within the human genome is that permissive HERVs 
reactivations are often associated with pathological context 
including cancer.100

The overall data present in literature regarding an associ-
ation between HERVs expression pattern and colon cancer are 
rather in accordance and the majority of the scientific reports 
is focused on HERV-H family and colon cancer.101,102

HERV-H and colon cancer. The history of the possible 
association between HERVs and colon cancer dates back to 
1986, when Moshier et al reported the expression of human 
endogenous A-type retrovirus pol sequences in human colon 
tumor and the surrounding mucosa.103 After that, the follow-
ing paper focused on the HERVs expression in colon cancer and 
normal tissues was published by Stauffer et al.102 They analyzed 
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the digital expression patterns of the HERV-K, -W, -H, and -E 
families in several normal and cancerous tissues. A total of 31 
proviral members of the HERV-K family and one representa-
tive each for the other HERVs families were used as probes 
to search human expressed sequence tags (ESTs). HERV-H 
was the only family expressed in cancers of the intestine, bone 
marrow, bladder, and cervix and was more expressed than the 
other families in cancers of the stomach, colon, and prostate. 
The rate of EST expression is summarized in Table 2. The 
association between HERV-H and colon cancer has also been 
reported in a Chinese paper, which studied the deletion of a 
part of the env gene in the HERV-H provirus and named the 
deleted virus HERV-H-X. The missing part in the env region of  
HERV-H-X corresponded to the env ORFs in the other known 
HERV-H strains (env62, env60, and env59). HERV-H-X was 
detected only in colon cancer tissues, while env ORFs were 
detected in both cancer and normal tissues. Additionally, the 
authors showed that the expression of HERV-H-X was upreg-
ulated in colon cancer tissues by 24.9-folds than that in nor-
mal tissues (P , 0.01). However, this study was conducted in 
only eight pairs of tumor and normal tissues.104 The full-length 
transcript sequence of the HERV-H-X was published by Liang 
et al,105 who also indicated that HERV-H-X was upregulated 
in colon tumor samples, while env ORFs were transcribed in 
colon tumor and normal samples in an irregular pattern, sug-
gesting that the involvement of HERV-H-X and env-intact 
HERV-H in colon cancer might be different.

Table 1. Expression of HERVs proteins and/or transcripts in human 
cancers.

TUMOR 
TYPE

HERV TYPE DETECTION 
(GENE)

REFERENCES

Melanoma

HERV-K Pr (gag, pol, 
env, rec)

130

HERV-K Pr (gag, env) 78, 131, 132

HERV-K RNA, Pr (gag, 
env, rec)

133

HERV-K RNA, Pr  
(env, rec, np9)

134

HERV-K RNA, Pr (env) 96

Breast

HERV-K Pr (gag) 77

HERV-K, E, F, 
W, T.I, FRD

RNA (pol) 135–138

HERV-K RNA (env) 139–143

HERV-K RNA, Pr  
(gag, pol, env)

144

RNA (gag) 145

Leukemia/
lymphoma

HERV-K RNA, Pr  
(gag, pol, env)

139

HERV-K, H Pr (gag) 77

HERV-K RNA (gag) 78, 146

HERV-K RNA (pol, env) 143, 147–149

HERV-K RNA (LTR) 150

HERV-E RNA (gag, pol, env) 151

HERV-H RNA (gag, env) 152

Astrocytoma HERV-K Pr (env) 153

Prostate
HERV-K RNA, Pr (gag) 78

HERV-E, R RNA (env) 154

Lung

HERV-K Pr (gag) 78

HERV-E RNA (LTR) 155

HERV-R RNA (env) 156

Pancreatic
HERV-K RNA (env) 157

HERV-H RNA (gag) 76

Gastro-
intestinal

HERV-K Pr (gag) 78

HERV-K RNA (env) 143

HERV-H RNA (gag) 76, 105, 106

Ovarian

HERV-K RNA, Pr (gag) 78

HERV-K, E, R RNA, Pr (gag) 74, 75

HERV-E RNA (-) 158

HERV-K Pr (gag) 159

HERV-H RNA (LTR) 160

Endometrial HERV-W Pr (env) 161

Testicular/
germ cell

HERV-K Pr (gag, env) 77, 92, 159, 
162–164

HERV-K RNA (gag) 165, 166

HERV-K, H RNA (LTR) 160, 167

HERV-K Pr (gag) 77
 

Table 2. EST-based expression profiles of HERV-H, -K, -W, and -E 
in colon cancer tissues.102

CANCEROUS 
TISSUE

HERV-H 
RATIO*

HERV-K 
RATIO*

HERV-W 
RATIO*

HERV-E 
RATIO*

Testis 129.85 106.24 – 11.80

Intestine 27.50 – – –

Colon 20.96 4.73 0.68 1.35

Stomach 20.45 13.01 – 1.86

Bladder 18.35 – – 6.12

Prostate 15.14 1.51 – 1.51

Bone marrow 10.92 – – –

Cervix 9.98 – – –

Bone 8.99 – – –

Endocrine glands 5.35 – – 5.35

Head and neck 5.25 5.25 – –

Lung 5.19 – – –

Ovary 4.54 6.05 – 1.51

Breast 4.35 6.96 – 2.61

Lymph node 3.69 3.69 – –

Pancreas 1.69 3.38 – –

Skin 1.13 3.38 – –

Brain 0.55 2.20 – –

Note: *HERVs ratio: EST counts/total number of ESTs in tissues × 105.
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Using massively parallel signature sequencing techniques, 
Alves et al106 identified many genes and several HERVs 
sequences that seemed to be differentially expressed in colon 
cancer samples when compared to normal tissues. The testing 
of a subset of these candidate genes by semiquantitative Reverse 
Transcriptase-Polymerase Chain Reaction (RT-PCR) analysis 
showed the differential expression of a specific gag transcript 
from the HERV-H located on chromosome 22 (Xp22.3) in 
the majority of primary and metastatic colon cancer samples 
analyzed, as well as in the adenoma. In contrast, no detectable 
expression was found in any normal tissues tested, except blad-
der. In particular, the candidate genes were tested in 25 primary 
colon cancer samples, 6 colon cancer metastases to the liver, and 
1 sample of tubule-villous colon adenoma. The amplified cDNA 
from the gag region was sequenced and an amber mutation was 
found 280 bp downstream from the initiation codon, in all the 
analyzed samples. The authors concluded that this protein may 
serve as a target for antitumor therapy. In a large-scale analysis 
of 139 colon cancer samples and adjacent normal tissue pairs, 
Pérot et al,100 about 10 years later, confirmed the expression 
of the HERV-H Xp22.3 transcripts in half of the analyzed 
tumor samples (70/139). Furthermore, HERV-H expression 
patterns were assessed with regard to clinical parameters and 
molecular features of the cancer, showing a strong correlation 
between HERV-H expression and the microsatellite instable 
(MSI) tumor as well as lymph node invasion of the tumor cells. 
The authors showed great enthusiasm for the results, affirm-
ing that “HERV-H sequences in addition to tumor-specific 
mutations may represent clinically relevant, truly CRC specific 
markers for diagnostic, prognostic, and therapeutic purposes”. 
Due to the immunosuppressive property of the envelope pro-
tein of HERV-H, many studies focused on the env-related 
transcripts and their association with colorectal cancer.101,107–109 
Liang et al105,110,111 reported in different studies that there were 
many spliced noncoding RNAs transcribed from HERV-H 
elements, both in normal and cancerous colon tissues, as well as 
colon cancer cell lines. They observed that the expression pat-
tern of the spliced noncoding transcripts from HERV-H was 
not clear and that the overall expression of HERV-H elements 
in colon cancer was complex and different between tumor 
samples and adjacent normal samples. Finally, they reported 

that all the active HERV-H elements found in their study were 
structurally incomplete, with six fragments commonly deleted, 
which were distributed through the gag, pol, and env-regions, 
but, even so, some of them (40%) retained putative ORFs 
(Fig. 3).43 Although they observed no difference in the RT-
PCR products between tumor and adjacent normal samples, 
the total numbers and loci of active HERV-H elements were 
significantly different. In particular, seven HERV-H elements 
were found to be transcriptionally active in the adjacent normal 
colon samples and 14 elements were found to be active in the 
tested colon tumor tissues.43

Multiplex degenerate PCR assays also indicated that 
HERV-H was increased in colon tumor tissues, but not in 
other types of tumors.101

The possible mechanism driving to the HERV upregula-
tion in colon cancer has been studied and hypothesized by sev-
eral authors. Increase in HERVs transcription in cancer cells 
has been linked to the liberation of HERV LTRs from epigen-
etic controls via demethylation in agreement with data showing 
that 5%–8% of repetitive elements demonstrate cancer-related 
DNA methylation patterns.112,113 Liang et al43 and Wentzensen 
et al76 showed that the expression of HERV-H Xp22.3 was 
correlated with the demethylation of the 5′ LTR and its pro-
moter activity, strongly supporting the hypothesis that changes 
in the methylation status were tumor specific.

Pérot et al100 added many other information to the hypo-
thetic function of HERV-H in colon cancer. They found an 
increased HERV-H expression in MSI colon cancer and spec-
ulated that HERV-H ORF interrupted by inactivating muta-
tions might be restored by MSI-induced frameshift mutations. 
Thus, a better prognosis was connected with MSI. HERV-H 
reactivation was also shown to be correlated with lymph node 
infiltration and consequently with the aggressiveness of the 
tumor, even if no correlation with the presence or absence of 
metastasis was observed. It seems that HERV-H expression 
may induce epithelial–mesenchymal transition in the early 
phases of metastasization, and then may not play any role in 
the subsequent phases of tumor progression. Cancer immu-
noevasion may be another mechanism employed in order to 
facilitate the transformation of cells. It has been shown that 
HERV-H expression increased in tumor cells undergoing 

Figure 3. (A) Genomic structure of HERVs. (B) Scheme of the commonly deleted regions (white box) of the active HERV-H-X elements in colon cancer. 
(C) Genomic structure of the HERV-HX.105
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Additionally, the expression of HERV-R env protein resulted 
increased in all stages of colon cancer with no differences 
according to cancer stage.115

Negative results of association between HERV-W and 
colon cancer were observed by Kim et al,116 who examined the 
expression pattern of the HERV-W env gene using a real-time 
RT-PCR system and did not find any significant difference 
among the colon tumor and the normal adjacent tissues. Inter-
estingly, the same authors, one year later, found high levels of 
expression of HERV-P in colon cancer tissues, as compared to 
the adjacent normal tissues (Table 3).117

Immunotherapy of HERVs-Positive Colon Cancer
Although the overexpression of HERV-H and HERV-R was 
found to be correlated with the development of colon carci-
noma, any relationship to chemotherapy resistance or tumor 
aggressiveness has not been described. Regarding this topic, 
a study by Mullins and Linnebacher118 reported that stimula-
tion of peripheral T-cells with retroviral peptides presented 
by autologous antigen-presenting cells clearly resulted in 
sustained proliferation of predominantly CD8+ T-cells, sug-
gesting that HERV-H env gene may be suited as colon cancer-
specific tumor-associated antigen. This scenario can provide 
the rationale for inclusion of HERV-H Xp22.3 into clinical 
vaccination protocols. A study conducted by Díaz-Carballo 
et al119 demonstrated that the expression of various HERVs 
proteins was not only detectable in colon cancer cells but might 
also have therapeutic implications for the patients, especially 
in chemorefractory tumors. In particular, several retrovi-
ral transcripts resulted overexpressed in HCT8 colon cancer 
cell line up to three times in chemotherapy refractory HCT8 
cells, suggesting a relationship to chemoresistance. The group 
hypothesized that the chemotherapy resistance might be a 
result of the interaction between retroviral proteins with cell 
membrane structure, promoting cell fusion and generation of 
multinucleated giant cancer cells, representing an alternative 
membrane-mediated defense mechanism. This evidence pro-
posed the HERVs’ overexpression as a tool for monitoring the 
therapy resistance.119 Bronte et al120 reported that the inocula-
tion of a DNA plasmid encoding mouse gp70 or p15E (two 
products of the env gene of an endogenous murine leukemia 
virus) elicited the T-lymphocyte response and resulted in par-
tial protection of the mouse tumors possessing these antigens. 
Furthermore, systemic administration of agonistic anti-CD40 
monoclonal antibodies increased the therapeutic potential of 
the DNA vaccine uniquely when administrated during the 
tumor rejection phase. This effect was observed to be associ-
ated with the increase of ERV-specific CD8+ T-lymphocytes 
count. These data taken together suggest that HERVs overex-
pression, with particular regard to HERV-H, might help to 
further improve existing tests for the detection of precancer-
ous colorectal lesions. The issue/entity specificity of HERV-H 
expression may also provide a diagnostic tool for tumor and 
metastases of unknown origin.100

Table 3. Expression of HERVs proteins and/or transcripts in colon 
cancers.

TUMOR 
TYPE

 HERV 
TYPE

DETECTION (GENE) REFERENCES

Colon 
cancer

HERV-H RNA (gag, env, pol, LTR) 100

HERV-H RNA (pol) 101

HERV-H RNA (EST) 102

HERV-H RNA (pol) 103

HERV-H RNA (env) 104

HERV-H RNA (env) 107

HERV-H RNA (env) 105

HERV-H RNA (gag) 106

HERV-H Pr (env) 108

HERV-H RNA (env) 109

HERV-H RNA (env) 110

HERV-H RNA (env) 111

HERV-H RNA (gag, env, pol) 43

HERV-H Pr, RNA (gag, env, pol, rec) 113

HERV-H RNA (gag, env, pol) 76

HERV-R Pr (env) 115

HERV-W RNA (env) 116

HERV-P RNA (env) 117

Abbreviation: EST, expressed sequence tag.

epithelial–mesenchymal transition and that the HERV-
H-derived H17 peptide further amplified these events. The 
HERV-H-derived H17 peptide induced the production of 
CCL19, which has been connected with immune dysfunc-
tion and which in turn recruited and expanded a popula-
tion of pluripotent immunoregulatory CD271+ cells, which 
included mesenchymal stem cells and myeloid-derived sup-
pressor cells. Notably, changes in the expression of HERV-H 
or CCL19, or depletion of CD271+ cells, improved immune 
responses in vitro and in vivo accompanied by tumor regres-
sion (Table 3).114

Other HERVs and colon cancer. If on one hand there 
are many data concerning colon cancer and HERV-H family 
association, very few studies are focused on all the other 
HERVs families. Only one scientific study analyzed the 
expression of HERV-R env protein product in colon cancer, 
using a tissue microarray containing 55 colon cancer, normal 
colon, and metastatic colon cancer tissues. The results were 
confirmed using five colon cancer samples and the surround-
ing normal colon fresh tissues by Western blot analysis. The 
expression of HERV-R env resulted significantly increased 
in the colon cancer tissues, and also when compared with 
the surrounding normal tissue of the same patient. In par-
ticular, the expression of HERV-R env protein was signifi-
cantly upregulated in both primary and metastasized colon 
cancer with no change between the two types of tumor. 
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Role of LINE-1 Hypomethylation in Colon Cancer
The methylation status of LINE-1 was first demonstrated in 
cancer cell lines in 1993.121 Thererafter, LINE-1 hypomethyl-
ation was detected in several tumors, such as bladder, gastric, 
and head and neck cancers, and its association with poor 
prognosis of the disease was demonstrated.122,123 Concerning 
the colon cancer patients, several studies investigated the 
potential value of LINE-1 hypomethylation and they were 
recently analyzed and summarized in a meta-analysis by Tang 
et al.124 The authors confirmed the previous observation that 
the methylation level of LINE-1 repeats declines in colon 
cancer and consequently it may be considered as a potential 
prognostic biomarker of the risk of colon cancer. One of the 
highly cited studies regarding the role of the hypomethylation 
of LINE-1 in colon cancer studied two different populations, 
comprising more than 170,000 patients. The authors showed 
that LINE-1 hypomethylation was associated with a statis-
tically significant increase in colon cancer-specific mortality 
and in overall mortality.125 The same group, more recently, 
confirmed this association and further observed that LINE-1 
hypomethylation association with higher colorectal cancer-
specific mortality was stronger in proximal colon cancers than 
in distal colon cancers or rectal cancers.126 Again, it was shown 
that the association of LINE-1 hypomethylation with infe-
rior survival was stronger in colon cancer patients with high 
microsatellite instability than in patients with microsatellite 
stability, confirming that tumor LINE-1 methylation level 
may be a useful prognostic biomarker to identify the aggres-
sivity of the cancer.127

Conclusions
Colorectal cancer is one of the most common malignancies 
throughout the world, with more than 140,000 new cases every 
year in United States.128 Over the last decade, the expression 
of HERVs sequences and their potentially immunogenic 
proteins have been detected in different colon cancer tissues 
and in several other tumor types, indicating a possible role of 
HERVs as tumor promotes. However, a clear pathogenic role 
for HERVs remains difficult to be proven conclusively, partic-
ularly due to the complexity of HERVs structure and biology, 
such as their repetitive nature and abundance among the 
human genome. The hypothesis of HERVs-mediated onco-
genesis is so far based on the evidences that they contribute 
to genomic instability of the cells, through epigenetic changes 
and activation of the LTR sequences, upregulation of the pro-
teins’ expression, and probably retrotransposition and recom-
bination. Additionally, the immunosuppressive properties of 
the env proteins should not be forgotten, since they lead to 
the induction of immune tolerance at the maternofetal barrier 
via a physiological expression in the placenta,129 but also to 
the suppression of an antitumoral immune response through 
aberrant expression in cancers.

Specifically regarding colon cancer, the expression of the 
only HERV-H family has been associated essentially with 

colon cancer, but, to date, the identification of individual reac-
tivated HERV-H loci remains poor. One unique HERV-H 
locus on Xp22.3 has been repeatedly described to be upreg-
ulated in colon cancer. The lack of an association between 
HERVs and colon cancer may also be due to the lack of studies, 
focused on this topic. Consequently, this should be consid-
ered a widely open area of investigation, especially taking into 
account the strong potentialities of the HERV-H family to 
produce proteins, that could be good candidates as biomarkers 
of diseases, or, more interesting, as tumor-associated antigens, 
target of therapeutic approaches.
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