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Abstract: Tumor formation results from alterations in the normal control of cell proliferation. In the past decade, much 
attention in cancer research has been focused on the function of proto-oncogenes and tumor suppressors. Prohibitin is a 
potential tumor suppressor which was originally identifi ed because of its anti-proliferative activities. Subsequent investiga-
tions led to the discovery of prohibitin mutations in sporadic breast cancers. Recent studies established that prohibitin directly 
regulates E2F-mediated transcription and growth suppression Prohibitin further attracted the attention of the translational 
cancer research community when it was recently connected to the regulation of estrogen receptor and androgen receptor 
activity. Prohibitin was shown to be required for the growth suppression of breast cancer cells induced by estrogen antago-
nists, and for therapeutic responses to androgen antagonists in prostate cancer. Through the application of new molecular 
technologies, additional novel functions of prohibitin have been revealed, demonstrating diverse and essential roles of this 
highly-conserved protein in regulating cell growth.

Introduction
The human prohibitin gene was identifi ed and cloned in 1991, as the result of a search for potential 
tumor suppressors, on the basis of its anti-proliferative activities (Nuell et al. 1991). Later studies 
revealed that prohibitin represses cell growth by modulating E2F transcriptional activity (Wang et al. 
1999a; Wang et al. 1999b). The molecular mechanisms of the prohibitin-mediated transcriptional repres-
sion and growth suppression have now been extensively characterized, revealing that prohibitin recruits 
chromatin-remodeling molecules to gene promoter elements for transcriptional repression (Wang et al. 
2002a; Wang et al. 2002b).

Prohibitin was fi rst linked to human cancers by the discoveries of prohibitin mutations in breast cancers 
(Sato et al. 1992; Sato et al. 1993). Later studies indicated that prohibitin and its co-repressors are required 
for the growth suppression induced by estrogen antagonists (Wang et al. 2004). Recent investigations 
have demonstrated that prohibitin associates with the estrogen receptor-α (ERα) and participates in ER-
mediated transcriptional regulation (Zhang et al. 2007). Prohibitin has also been linked to human prostate 
cancer through recent investigations establishing that prohibitin associates with the androgen receptor 
(AR) and participates in AR-mediated gene regulation (Gamble et al. 2007; Gamble et al. 2004).

In addition to transcriptional repression, prohibitin can induce p53-mediated transcription, indicating 
that prohibitin may have dual functions in modulating transcription (Fusaro et al. 2003; Fusaro et al. 
2002). This theory is further supported by the recent demonstration that prohibitin differentially regu-
lates the Yin-Yang1 (YY1) and caspase 7 gene promoter activities (Joshi et al. 2007).

Additional diverse functions of prohibitin were recently reported, which link this evolutionally 
highly-conserved gene to apoptosis (Chowdhury et al. 2007; Fusaro et al. 2002), to signal transduction 
through the MAPK pathway (Rajalingam and Rudel, 2005; Rajalingam et al. 2005; Wang et al. 1998; 
Wang et al. 1999b), and to mitochondrial biogenesis (Ahn et al. 2006).

The critical functions of prohibitin in transcriptional regulation and growth control indicate the 
importance of prohibitin-directed research and translational investigation to further clarify the role of 
prohibitin in cancer development.

Molecular Biology of Prohibitin
In an attempt to identify potential tumor suppressors, the rat prohibitin gene was fi rst cloned based on 
its anti-proliferative activity when overexpressed (McClung et al. 1992; Nuell et al. 1991). Microinjection 
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of prohibitin mRNA into cell nuclei blocked S 
phase entry, while down-regulation of prohibitin 
via anti-sense stimulated cell entry into S phase 
(Nuell et al. 1991). The human prohibitin gene was 
identifi ed soon afterwards and cloned based on its 
homology to the rat prohibitin gene (Sato et al. 
1992; Sato et al. 1993). The prohibitin gene is 
highly-conserved from yeast to human, and is an 
analog of Cc, a Drosophila melanogaster gene 
required for normal development (Eveleth and 
Marsh, 1986).

The molecular mechanisms underlying 
prohibitin-mediated growth suppression have been 
extensively studied over the past few years, reveal-
ing that prohibitin collaborates with chromatin 
remodeling molecules and regulates transcription 
(Wang et al. 2002a; Wang et al. 1999a; Wang et al. 
1999b; Wang et al. 1999c; Wang et al. 2002b; 
Wang et al. 2004; Zhang et al. 2007).

Associations between prohibitin and many 
other proteins have been established (Fusaro et al. 
2003; Fusaro et al. 2002; Gamble et al. 2007; 
Gamble et al. 2004; Joshi et al. 2007; Rasmussen 
et al. 1998; Rastogi et al. 2006a; Rastogi et al. 
2006b; Wang et al. 2002a; Wang et al. 1999a; 
Wang et al. 1999b; Wang et al. 1999c; Wang et al. 
2002b; Wang et al. 2004; Zhang et al. 2007). These 
prohibitin-associated proteins include established 
critical factors in transcription regulation, growth 
control, apoptosis and signal transductions 
(Table 1 and Fig. 1).

Prohibitin and E2F/Rb
The anti-proliferative activities and evolutionary 
conservation of prohibitin attracted the attention 
of researchers in the fi eld of cell cycle control and 
cancer development, resulting in the discovery of 
the relationship between prohibitin and the E2F 
pathway (Wang et al. 1999a; Wang et al. 1999b). 
The fundamental importance of E2F family of 
transcriptional factors in cell cycle control, 
apoptosis, differentiation and transformation has 
been well established (Berk, 2005; Dannenberg 
and te Riele, 2006; Du and Pogoriler, 2006; 
Gladden and Diehl, 2005; Halaban, 2005; Harbour 
and Dean, 2000; Johnson and Schneider-Broussard, 
1998; Khidr and Chen, 2006; Korenjak and Brehm, 
2005; Macleod, 1999; Muller and Helin, 2000; 
Nevins, 2001; Nevins et al. 1997; Qin et al. 1995; 
Rogoff and Kowalik, 2004; Ruiz et al. 2006; 
Sebastian and Johnson, 2006; Sellers and Kaelin, 

1997; Wang et al. 1999c; Zhu, 2005). E2F activity 
is essential for the expression of critical cellular 
genes required for progression into, and through, 
the DNA-synthetic S-phase of cell cycle. The Rb 
family of tumor suppressors interacts with the E2F 
family members and regulates their function in 
order to control cell cycle progression (Fig. 2) 
(Wang et al. 1999a; Wang et al. 1999b).

In an attempt to identify factors that associate 
with Rb family of tumor suppressors, using the yeast 
two-hybrid system, we and others initially discov-
ered that prohibitin associates with p130, a member 
of the Rb family (Wang et al. 1999a; Wang et al. 
1999b). Later studies established that prohibitin 
associates with all three members of Rb family, both 
in vitro and in vivo. We therefore investigated 
whether prohibitin participates in the regulation of 
E2F, and demonstrated that prohibitin specifi cally 
represses E2F-mediated transcription and growth 
(Wang et al. 1999a; Wang et al. 1999b).

A number of findings now mechanistically 
distinguish the regulation of E2F transcriptional 
activity by prohibitin, in comparison to the regula-
tion of E2F by Rb family members:
• Prohibitin and Rb target different regions of the 

E2F molecule; Rb interacts with and, targets, 
the trans-activation domain of E2F, at its C-
terminus, while prohibitin targets the highly-
conserved “Marked-box” domain, in the center 
of the E2F protein (Wang et al. 1999b).

• Rb is regulated by cyclins and cyclin-dependent 
kinases (Yamasaki, 2003). In contrast, prohibi-
tin responds to a different set of signals, and not 
to cyclin-dependent kinases (Wang et al. 
1999b).

• The fi nding that prohibitin associates with the 
IgM receptor suggested that prohibitin may play 
a role in IgM signaling (McClung et al. 1995; 
Terashima et al. 1994). Later studies indicated 
that IgM stimulation can reverse prohibitin-
mediated, but not Rb-mediated, E2F repression 
(Wang et al. 1999b).

• Rb is targeted by viral onco-proteins such as E1A, 
SV40Tag, and E7 (Berk, 2005; Dannenberg and 
te Riele, 2006; Dasgupta et al. 2006; Dasgupta 
et al. 2004; Delston and Harbour, 2006; Du and 
Pogoriler, 2006; Galderisi et al. 2006; Halaban, 
2005; Khidr and Chen, 2006; Korenjak and 
Brehm, 2005; Korenjak and Brehm, 2006; 
Sebastian and Johnson, 2006; Yamasaki, 2003; 
Zhu, 2005). In contrast, prohibitin-mediated 
repression of E2F transcriptional activity is not 
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affected by E1A, suggesting that prohibitin 
represses E2F activity through mechanisms dis-
tinct from those utilized by the Rb family mem-
bers (Wang et al. 1999a).

• The MAPK pathway is intimately connected to 
cell cycle progression, and we and others 
recently established that Raf1, a central mole-
cule of the MAPK pathway, associates with Rb 
and regulates its activity by phosphorylation 
(Wang et al. 1998). Studies of potential roles of 
Raf1 in the prohibitin-mediated E2F modulation 
revealed that Raf1 also associates with pro-
hibitin and reverses its repressive effects on 
E2F-mediated gene transcription and growth 
(Wang et al. 1998). Interestingly, further 
investigation revealed that different regions of 

Raf1 are involved in its binding to Rb compared 
to prohibitin. Raf1 targets the C-terminus of 
prohibitin, while Rb associates with prohibitin 
via a domain located in the middle of the protein 
(Fig. 1) (Wang et al. 1999b). These fi nding 
suggest the ability of prohibitin-mediated 
E2F transcriptional repression to be responsive 
to a different set of signal transduction events 
than is the repression conferred by the Rb fam-
ily members. The molecular mechanisms of 
Raf-mediated prohibitin regulation are not yet 
fully elucidated. Recent studies fi nd that pro-
hibitin is required for Raf1 activation by Ras 
signaling, further demonstrating the inter-play 
between prohibitin and the MAPK pathway 
(further discussed in Section V).

Table 1. Binding partners of prohibitin.

 Proteins Related functions Citation
1 E2Fs Transcription factor, cell (Wang et al. 1999b)
  cycle control
2 Rb Tumor suppressor (Wang et al. 1999a)
3 P130 Tumor suppressor (Wang et al. 1999a)
4 P107 Tumor suppressor (Wang et al. 1999a)
5 P53 Transcription factor, (Fusaro et al. 2003)
  tumor suppressor
6 IgM receptor IgM signaling (Terashima et al. 1994)
7 Raf1 MAPK signaling (Wang et al. 1998)
8 Brg1 Chromatin remodeling (Wang et al. 2002b;
   Wang et al. 2004)
9 Brm Chromatin remodeling (Wang et al. 2002b;
   Wang et al. 2004)
10 HDAC1 Chromatin remodeling (Wang et al. 2002a)
11 HP1 Chromatin remodeling (Rastogi et al. 2006a)
12 NCoR Chromatin remodeling (Wang et al. 2002a)
13 Estrogen receptor Nuclear receptor (Wang et al. 2004)
14 Androgen receptor Nuclear receptor (Gamble et al. 2007)
15 Bcl2 Apoptosis suppressor (Chiarugi et al. 1997)
16 MLK2 JNK signaling (Wang et al. 2002b)
17 SV40Tag Viral-onco protein (Wang et al. 2002b)

Figure 1. Regions of prohibitin involved in binding to E2F, ER, Raf1, and Rb proteins. Regions of the prohibitin protein responsible for 
binding to the Rb tumor suppressor, the E2F transcription factors, the Raf1 protein, and the estrogen receptor (ER) are indicated.

74         116 184         214 243       275

Rb      E2F            Raf1
ER
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The molecular mechanism of prohibitin-
mediated suppression of E2F-mediated gene tran-
scription and cellular growth have been more fully 
elucidated through our utilization of the recently-
developed chromatin immuno-precipitation (ChIP) 
assay, which reveals that prohibitin recruits chro-
matin remodeling molecules (HDAC1, Brg1, Brm, 
and HP1) to E2F-responsive promoters. In addi-
tion, the use of siRNA techniques for selective 
knock-out of proteins has allowed us to demon-
strate that prohibitin requires association with 
chromatin-remodeling molecules for its effects on 
transcriptional regulation and growth suppression 
(Fig. 3) (Wang et al. 2002a; Wang et al. 2002b; 
Wang et al. 2004; Zhang et al. 2007).

Prohibitin and p53
The essential role of p53 in the development of 
apoptosis is well established, and cooperation 
between E2F1 and p53 has been demonstrated 
(Berk, 2005; Funayama and Ishikawa, 2007; Harris 
and Levine, 2005; Rogoff and Kowalik, 2004; 
Stanelle and Putzer, 2006; Sugimoto et al. 2006), 
raising the possibility that prohibitin, as an E2F 
repressor, might play a role in E2F1/p53-mediated 
apoptosis. Studies addressing this question revealed 
that prohibitin associates with p53 and enhances 
p53 transcriptional activities by increasing the abil-
ity of p53 to bind to its consensus sites on DNA 
(Fusaro et al. 2003; Fusaro et al. 2002; Joshi et al. 
2007). This discovery was the fi rst indication that 
prohibitin can also function as a transcription acti-
vator, in addition to being a transcriptional repres-
sor, which places prohibitin in a unique position to 
mediate cross-talk between the E2F and p53 

pathways. Similar opposing, promoter-specific 
regulatory activities of prohibitin have been further 
demonstrated in a recent report that prohibitin 
represses Yin-Yang1 gene promoter activity via 
newly-identifi ed E2F-binding sites, while enhanc-
ing levels of caspase 7 promoter activity through 
p53, via p53-binding sites (Joshi et al. 2007).

Previous studies indicated that prohibitin may 
associate with the inner membrane of mitochondria, 
a node where pro-apoptotic signals converge, under 
certain circumstances. Sub-cellular localization stud-
ies of prohibitin revealed that the protein is 
predominantly nuclear, where it co-localizes with 
E2F1 and p53. In response to apoptotic stimuli, 
however, prohibitin is exported from the nucleus and 
localizes to the mitochondria, indicating a potential 
connection between the differential localization of 
prohibitin and its roles in both growth suppression 
and apoptosis (Joshi et al. 2007). Further investiga-
tion to establish a causal relationship between sub-
cellular localization of prohibitin and cellular fate 
may lead to discovery of novel regulatory machinery 
bridging the E2F and p53 pathways in the processes 
of cell cycle modulation and apoptosis.

Prohibitin and Breast Cancer
Previous genetic studies revealed that the prohibitin 
gene is located at chromosomal position 17q21-q22, 
a region genetically linked to early-onset human 
breast cancer (Sato et al. 1992; White et al. 1991). 
Investigation of a possible connection between 
prohibitin and breast cancer revealed mutations of 
prohibitin genes in primary breast cancers, indicat-
ing that prohibitin may play important roles in 
breast cancer development (Sato et al. 1992; 

Figure 2. E2F-Dependent Transcriptional Activation. E2F binds to E2F-binding sites in the promoter regions of E2F-responsive genes, 
in cooperation with the DP1 dimerization partner protein, to elicit transcriptional activation.

E2FE2FDP1DP1

E2F Binding SiteE2F Binding Site

TranscriptionTranscription

E2FE2F--Responsive GeneResponsive Gene
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Sato et al. 1993). Our studies later revealed that 
prohibitin is required for the growth suppression 
of breast cancer cells induced by estrogen antago-
nists (Wang et al. 2004). More recently, we have 
shown that prohibitin participates in estrogen 
receptor (ER)-mediated transcription regulation 
(Zhang et al. 2007).

Mutations of prohibitin in breast 
cancers
To investigate potential clinical importance of pro-
hibitin in breast cancer development, tumors from 
twenty-three patients with sporadic breast cancer 
were surveyed and four somatic mutations of the 
prohibitin gene were identifi ed (Sato et al. 1992; 
Sato et al. 1993). Among the mutations detected, 
two were mis-sense mutations, in one case a 2-base 
deletion resulting in truncation of the gene product 
due to a frame shift; and in the second, a C to T 
transition in an intron adjacent to an intron-exon 
boundary. One additional point mutation (Ala-Val) 
was identifi ed by the same group in a subsequent 
larger scale survey (Sato et al. 1992; Sato et al. 
1993). The effects of these mutations on prohibitin 
function remain currently unknown. Interestingly, 

three of the four exon mutations were located in the 
Rb-binding domain and the last was within the 
E2F-binding region (Fig. 4). These results suggest 
that prohibitin may be a tumor suppressor, associ-
ated with breast cancer development and/or pro-
gression. Further large-scale translational-clinical 
investigation and analysis of the functional sig-
nifi cance of the mutations identifi ed to date are 
required for a better understanding of the relation-
ship between mutations in prohibitin and breast 
cancers.

Roles of prohibitin in estrogen 
antagonist-mediated growth 
suppression
Estrogen antagonists, such as tamoxifen, are the 
most commonly prescribed agents for the treatment 
and prevention of breast cancer. Although most 
patients with tumors expressing the estrogen 
receptor initially respond to estrogen antagonists, 
the inevitable development of resistance limits 
their long-term use. The molecular mechanisms of 
tamoxifen-mediated tumor growth suppression 
have not been fully elucidated (Ali and Coombes, 
2002; Ariazi et al. 2006; Boccardo et al. 2005; 

Figure 3. Repression of E2F-Dependent Transcription by Prohibitin. Prohibitin recruits chromatin remodeling molecules for the tran-
scriptional repression of E2F-responsive genes.
Abbreviations: PHB: prohibitin; Rb: retinoblastoma protein; HP1: Heterochromatin protein 1; HDAC: Histone deacetylase.
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Cuzick et al. 2006; Ellis, 2004; Gradishar, 2004; 
Howell et al.  2005; Hussain et al.  2004; 
Kurebayashi, 2003; Lofgren et al. 2006; Mousavi 
and Rezaei, 2006; O’Regan, 2006; Osborne et al. 
2005; Robertson et al. 2005; Saeki et al. 2005; 
Schiff et al. 2003; Wang et al. 2004). Because 
mutations of prohibitin have been linked to breast 
cancer development, the potential involvement of 
prohibitin in estrogen antagonist-induced growth 
suppression was explored.

Previous studies indicated that estrogen antag-
onists induced growth suppression at G1, which 
coincides with the phase of cell cycle arrest 
induced during prohibitin-mediated repression of 
cell cycle progression (Saeki et al. 2005; Wang 
et al. 2004), suggesting that the two processes 
might be functionally related. We found that 
depletion of prohibitin from tamoxifen-sensitive 
breast cancer cells using siRNA prevented 
tamoxifen-induced cell cycle arrest, demonstrating 
a necessary role for prohibitin in estrogen antag-
onist-induced growth suppression (Wang et al. 
2004). E2F is a critical regulator of the G1-S 
transition, and as discussed above, prohibitin is 
a well-established repressor of E2F activity. Stud-
ies were therefore undertaken to determine 
whether estrogen antagonists target the E2F path-
way, and confi rmed that E2F transcriptional activ-
ity is indeed repressed by exposure to estrogen 
antagonists, and that this repression requires 
prohibitin (Wang et al. 2004).

Prohibitin recruits Brg1 and Brm to E2F-
responsive promoters for repression of E2F tran-
scriptional activity (Wang et al. 2002b). Brg1 and 
Brm are the core ATPase components of the SWI/
SNF complex family, and mediate transcriptional 
regulation via local chromatin remodeling 
(Dasgupta et al. 2004; Dunaief et al. 1994; Giacinti 
and Giordano, 2006; Inayoshi et al. 2006; Wang 
et al. 2004; Zhang et al. 2007). Earlier studies 
indicated that Brg1 and Brm were primarily 
involved in the activation of transcription, while 
more recent results demonstrate that they also 
function as co-repressors with prohibitin and Rb 
in the regulation of E2F activity (Wang et al. 
2004). Mutations or silencing of Brg1, Brm and 
other members of SWI/SNF have been found in 
many types of cancers, including breast cancers 
(Inayoshi et al. 2006). To test the potential involve-
ment of Brg1 and Brm in estrogen antagonist-
induced E2F repression and growth suppression, 
we employed siRNA and dominant-negative muta-
tion strategies to suppress endogenous Brg1 and/
or Brm levels, and demonstrated that both of these 
two chromatin remodeling molecules are required 
for estrogen antagonist-induced E2F transcrip-
tional repression and growth suppression. Treat-
ment of breast cancer cells with estrogen 
antagonists induced a temporal association 
between prohibitin and its co-repressors (Brg1, 
Brm), which correlates with the recruitment of 
Brg1 and Brm to endogenous E2F-responsive 

Figure 4. Somatic mutations of prohibitin identifi ed in breast cancers. Four reported mutations of prohibitin identifi ed in breast tumors 
are illustrated.

Rb E2F Raf/ER

74     116 184     214 243    275

Ala 214(GCT)-Val 214(GTT)Val 88(GTC)-Ala 88(GCC)

Frame-shift 91-92
(TCACACT-TCACT) Arg 105(CGC)-His 105(CAC)
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promoters. These findings demonstrate the 
essential importance of the prohibitin/E2F path-
way in estrogen antagonist-induced growth sup-
pression, and identify prohibitin and Brg1/Brm as 
potential novel targets for the design of improved 
anti-breast cancer therapy (Wang et al. 2004). 
However the clinical importance of the prohibi-
tin/Brg1/Brm and E2F axis in the treatment of 
breast cancer remains to be examined.

Regulation of estrogen receptor (ER) 
activity by prohibitin
Brg1 has been reported to be involved in the 
activation of ERα-mediated transcription 
(Fig. 5) (DiRenzo et al. 2000). The potential 
involvement of prohibitin/Brg1/Brm in ER regu-
lation was therefore investigated, and we found 
that prohibitin interacts with, and represses, 
ERα-mediated transcription after the binding of 
an estrogen antagonist to the ERα, through a 
mechanism requiring both Brg1 and Brm (Zhang 
et al. 2007). These fi ndings indicate that the 
SWI/SNF complex participates in both the acti-
vation and the repression of ERα-mediated tran-
scription, in a ligand-dependent fashion, and 
studies were next conducted to elucidate the 
mechanisms underlying the disparate functions 
of these chromatin remodeling molecules on the 
same promoters.

The SWI/SNF complex contains protein com-
ponents in addition to Brg1 or Brm, designated 
BAFs, based on their association with Brg1 
(Battaglioli et al. 2002; Fryer and Archer, 1998; 
Huang et al. 2005; Kang et al. 2004; Lee et al. 
1999; Letimier et al. 2007; Lickert et al. 2004; 
Rando et al. 2002; Takeuchi et al. 2007; Trotter 
and Archer, 2004; Underhill et al. 2000; Wang 
et al. 1996; Zhao et al. 1998; Zhao et al. 2005), 
raising the possibility that specifi c BAFs might 
participate in the differential regulation of ERα-
mediated transcription by the SWI/SNF complex. 
Endogenous ChIP assays demonstrated that spe-
cifi c BAFs were differentially-recruited to the 
ERα-responsive promoters for activation versus 
repression. When SWI/SNF was recruited to 
ERα-responsive promoters directly by estrogen-
bound ER, leading to activation, the complexes 
contained both BAF155 and BAF170. In con-
trast, when SWI/SNF was recruited to respon-
sive promoters indirectly, through prohibitin 
recruited to an antagonist-bound ER, leading to 

repression, the complexes contained only BAF 
155 (Fig. 6) (Zhang et al. 2007).

Further studies revealed that Brg1 and Brm 
participate in both transcriptional repression and 
activation on the same promoter, through ligand-
specifi c differential collaboration with, and recruit-
ment of, HDAC1 or p300, depending upon the 
composition of BAFs in the SWI/SNF complex 
(Zhang et al. 2007). siRNA knockdown studies 
demonstrated that BAF155 is necessary for the 
recruitment of both HDAC1 and p300 to responsive 
promoters, depending upon the ligand bound to the 
ER, whereas BAF170 is required only for p300 
recruitment and ER-mediated transcriptional acti-
vation by estrogen, but not for HDAC1 recruitment 
and repression of ER-mediated transcription by 
estrogen antagonists. The recruitment of other 
additional members of BAF family to the ER-
responsive promoters has also been detected, sug-
gesting their potential involvement in ER-mediated 
transcriptional regulation. For example, BAF57 
recruitment occurs in response to estrogen antago-
nists, but not to estrogen. The roles and mecha-
nisms of the additional BAFs in ER-mediated 
transcriptional regulation remain to be elucidated 
(Fig. 6) (Zhang et al. 2007).

Prohibitin 2 is a protein closely-related to pro-
hibitin, sharing a high degree of homology (Heron-
Milhavet et al. 2007). A recent report that 
prohibitin 2 (known also as REA or BAP37) also 
associates with the estrogen receptor, and represses 
its activity, further demonstrates the importance of 
the prohibitin family in ER-mediated transcrip-
tional regulation (Bitter, 2007; Delage-Mourroux 
et al. 2000; Gamble et al. 2007; Kurtev et al. 2004; 
Montano et al. 1999; Morrow et al. 2002; Murphy 
et al. 2000; Mussi et al. 2006; Park et al. 2005; 
Simon et al. 2000).

Role of prohibitin in vitamin D-induced 
growth suppression of breast cancer
The active metabolite of vitamin D3, 1α,25(OH)2D3, 
plays an important role in regulation of cell pro-
liferation and differentiation, in addition to its 
critical activity in bone mineralization, and ana-
logs of vitamin D3 have demonstrated activity 
against breast cancers in vitro and in vivo (Hus-
sain-Hakimjee et al. 2006; Peng et al. 2006; Peng 
and Mehta, 2007; Suh et al. 2004). Recent studies 
in breast cancer cells have identifi ed prohibitin as 
the vitamin D target gene which participates in 
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Vitamin D-induced growth suppression of breast 
cancer cells (Hussain-Hakimjee et al. 2006; Peng 
et al. 2006; Peng and Mehta, 2007; Suh et al. 
2004). This discovery adds yet another aspect to 
the relevance of prohibitin to breast cancer treat-
ment strategies.

Prohibitin and Prostate Cancer
Prostate cancer is one of the leading causes of death 
and the most commonly diagnosed cancer in males 
(Bostwick and Meiers, 2007; Cummings, 2007; 
Freedland and Moul, 2007; Li, 2007; Lukka et al. 
2006; Ryan and Beer, 2007). Prostate tumors 
depend, at least initially, upon circulating androgens 
for their growth and development (Aragon-Ching 
et al. 2007; Dehm and Tindall, 2007; Dudderidge 
et al. 2007; Emberton et al. 2007; Fleshner et al. 
2007; Illing and Chapman, 2007; Lukka et al. 
2006; Msaouel et al. 2007; Ryan and Beer, 2007; 
Shrivastava et al. 2007; Yee et al. 2007). A pro-
teomic survey for androgen-responsive gene prod-
ucts identifi ed prohibitin as a target gene of the 
androgen receptor, with the expression of pro-
hibitin being transcriptionally repressed by andro-
gens. Further studies suggested that prohibitin may 
play a role in the cellular growth response to andro-
gen stimulation in prostate cancer cells and that 
prohibitin represses the androgen-dependent gene 

expression and growth of prostate cancer cells 
(Gamble et al. 2007; Gamble et al. 2004; Zhu et al. 
2006).

The molecular mechanisms involved in the 
prohibitin-mediated regulation of the AR are 
incompletely understood (Gamble et al. 2007; 
Gamble et al. 2004; Zhu et al. 2006). A recent 
study indicates that prohibitin interacts with the 
androgen receptor indirectly. Over-expression of 
SRC1e, a co-activator for AR-dependent tran-
scription, increased ligand-dependent AR activ-
ity, which was in turn suppressed by the 
over-expression of prohibitin in a dosage-
dependent fashion, suggesting that prohibitin 
may compete against this co-activator in the 
modulation of AR activity. Furthermore, over-
expression of prohibitin also caused a dissocia-
tion of ligand (androgen) from the AR (Gamble 
et al. 2007; Gamble et al. 2004; Zhu et al. 2006). 
Our very recent studies demonstrate that, analo-
gous to the necessary role for prohibitin in the 
repression of ER-dependent transcription induced 
by estrogen antagonists, prohibitin is also 
required for repression of AR-dependent tran-
scription induced by androgen antagonists (Yan, 
D. and Faller, D.V., unpublished data). Androgen 
antagonists induce recruitment of prohibitin to 
the AR complex on AR-responsive promoters, 
concomitant with recruitment of Brg1, but not 

Figure 5. ER-Dependent Transcriptional Activation by Estrogen. Chromatin remodeling molecules Brg1, Brm and BAF155, and the 
histone acetylase (HAT) p300, are involved in estrogen receptor (ERα)-dependent transcriptional activation by estrogen (E2).
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Brm (in contrast to ER-dependent antagonist-
induced repression, which requires both Brg1 
and Brm). The precise mechanisms and clinical 
implications of prohibitin-mediated AR regula-
tion are under active investigation.

The connection between prohibitin and prostate 
cancer was recently further illustrated by another 
study, which revealed that prohibitin participates 
in Transforming Growth Factor-β (TGF-β) signal-
ing in prostate cancer cells (Zhu et al. 2006). 
TGF-β modulates growth, apoptosis, cell motility, 
and angiogenesis via a series of signal transduction 
events involving the phosphorylation of down-
stream receptors (Adler, 2007; Agarwal et al. 
2006; Ao et al. 2007; Ding et al. 2006a; Ding et al. 
2006b; Lauth and Toftgard, 2007; Narayanan, 
2006; O’Connor et al. 2007; Rubenstein et al. 
2006; Sampson et al. 2007; Sharifi  et al. 2007; 
Shidaifat et al. 2007a; Shidaifat et al. 2007b; Tsai 
et al. 2007; Turley et al. 2007; Uchida et al. 2007; 
Wang et al. 2007; Yang et al. 2007; Ye et al. 2007a; 
Ye et al. 2007b). TGF-β acts as a tumor suppressor 
in prostatic tissues by inducing apoptosis and 
repressing cell proliferation in normal prostatic 

epithelium. Conversely, TGF-β promotes tumor 
progression and metastasis in tumor cells by 
inducing cell invasion, enhancing angiogenesis 
and immuno-suppression. To identify novel mol-
ecules involved in TGF-β signal transduction, a 
proteomic approach was employed and identifi ed 
prohibitin as one of the proteins dramatically 
increased in response to TGF-β, suggesting that 
prohibitin may be a potential effector of TGF-β 
signaling. Subsequent investigation revealed that 
prohibitin was exported from nucleus in response 
to TGF-β. While the precise mechanisms and 
function of prohibitin in TGF-β-mediated prostate 
cancer apoptosis await further investigation, 
prohibitin appears to interact with Bcl2, an inducer 
of apoptosis, and this physical association between 
prohibitin and Bcl2 can be induced by TGF-β, 
suggesting the possible involvement of prohibi-
tin/Bcl2 in the signaling events leading to apop-
tosis (Zhu et al. 2006). Depletion of prohibitin by 
siRNA suppressed TGF-β-mediated cell migration 
of prostate cancer cells, suggesting a potential role 
of prohibitin in the suppression of prostate tumor 
spread or metastasis.

Figure 6. Repression of ER-Dependent Transcription by Estrogen Antagonists. Members of the SWI/SNF complex (Brg1, Brm and 
BAF155, BAF170, BAF 57) and histone deacetylase 1 (HDAC1) are differentially recruited to ER-dependent promoters, via prohibitin (PHB) 
and estrogen receptor (ERα), for transcriptional repression in response to estrogen receptor antagonists such as tamoxifen (4HT).
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Additional Cancer-Relate Functions 
of Prohibitin
Ras signaling mediates the growth promoting sig-
nals initiated by many diverse growth factors and 
regulates normal cellular growth as well as malig-
nant transformation. Earlier investigations have 
demonstrated that prohibitin interacts with Raf1, 
a central molecule of the MAPK pathway involved 
in Ras signaling (Wang et al. 1998; Wang et al. 
1999b). A search for additional proteins involved 
in the regulation of apoptosis by a RNA-interfer-
ence-based loss-of-function screen identified 
prohibitin as a required effector for Ras-mediated 
activation of MAPK and cell migration (Rajalin-
gam et al. 2005). EGF receptors effect their growth 
promoting functions via Ras proteins, which in 
turn activate multiple diverging pathways involved 
in cell proliferation and differentiation, including 
the Raf-MEK-ERK cascade (Agarwal et al. 2006; 
Dhillon et al. 2007; Duh et al. 1997; El-Mowafy 
and White, 1999; Mandlekar and Kong, 2001; 
Margutti and Laufer, 2007; Rabenoelina et al. 
2002; Rajalingam et al. 2005; Roberts and Der, 
2007; Signorelli and Ghidoni, 2005). Depletion of 
prohibitin by siRNA blocked serum- or EGF-
induced phosphorylation of the ERK and Raf1 
signaling kinases, demonstrating a requirement of 
prohibitin in Ras-Raf1-MAPK signal transduction 
(Dhillon et al. 2007).

As mentioned previously, Raf1 interacts with, 
and regulates, prohibitin. The precise mechanism 
of prohibitin regulation by Raf1 remains unde-
fi ned, but Raf1 kinase activity is required for this 
regulation. The reciprocal discovery of the neces-
sary role for prohibitin in the activation of Raf1 
and ERK suggests a possible feedback type of 
auto-regulation loop, in which prohibitin promotes 
Raf1 activation by Ras, leading to transduction of 
growth-stimulatory signals through the MAPK 
pathway, but Raf1 then also activates prohibitin, 
which suppresses the E2F node, thus providing a 
balance between growth suppression and prolif-
eration. The newly-discovered roles of prohibitin 
in both transcriptional activation and growth sup-
pression are consistent with such an auto-regula-
tory hypothesis, further delineating prohibitin as 
a critical modulator in the processes of transcrip-
tional regulation, growth control and apoptosis.

In addition to the emerging importance of pro-
hibitin in growth control in normal and transformed 
cells, the list of other functions ascribed to 

prohibitin is rapidly growing (Mishra et al. 2006; 
Mishra et al. 2005). As mentioned, at least a portion 
of prohibitin locates to the mitochondria, where it 
is believed that prohibitin chaperones imported 
proteins into the mitochondria (Wang et al. 2002a). 
An earlier report showed that prohibitin regulates 
the turnover of membrane proteins by the ATP-
dependent protease of the inner membrane of 
mitochondria (m-AAA protease) (Steglich et al. 
1999), and a recent study further linked prohibitin 
with the F(1)F(O)-ATP synthase complex, suggest-
ing an alternative pathway for regulation of growth 
by prohibitin (Graef et al. 2007; Osman et al. 
2007). The connections, if any, between these func-
tions and the roles of prohibitin in growth control, 
apoptosis and signal transduction remain to be 
determined and reconciled. One potential link may 
stem from the discovery of the association between 
prohibitin and Bcl2, an anti-apoptotic protein 
located in mitochondria (Chiarugi et al.1997). 
Elucidation of the role of mitochondrial prohibitin 
in apoptosis may lead to the identifi cation of addi-
tional novel pathways connecting prohibitin with 
cancer development.

The recent and surprising fi nding of a potential 
connection between prohibitin and obesity elicited 
a response in the popular media (http://www.pro-
hibitin.com/). Mishra, et al. attempted to develop 
a potential anti-obesity therapy based on targeted 
induction of apoptosis in the vasculature of adipose 
tissue, using in vivo phage display to isolate a 
peptide motif (sequence CKGGRAKDC) that 
homes to the vasculature of white fat. They identi-
fi ed that their fat tissue vasculature-targeted peptide 
bound to prohibitin, thereby establishing prohibi-
tin as a marker of adipose vascular tissue (Mishra 
et al. 2005). Furthermore, targeting of a pro-apop-
totic peptide to prohibitin in the adipose vascula-
ture caused ablation of white fat, providing a 
potential basis for the design of a novel anti-obesity 
treatment. While any immediate connection 
between this fi nding and the roles of prohibitin in 
growth control is not apparent, it does illustrate the 
diversity of prohibitin’s functions. Furthermore, 
the concept of utilizing prohibitin and/or its related 
factors for inducing targeted-apoptosis might be 
exploitable as an anti-cancer strategy.

Summary
Since the discovery of prohibitin as a protein with 
anti-proliferative activities more than a decade ago, 
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major investigative efforts have resulted in the 
elucidation of the molecular mechanisms involved 
in prohibitin-mediated growth control. It is now 
clear that prohibitin is a transcriptional regulator, 
participating in both the activation and suppression 
of transcription. Further investigation into the 
clinical signifi cance of this unique dual function 
may lead to better understanding of normal growth 
control and cancer development. The direct asso-
ciation between prohibitin and nuclear hormone 
receptor complexes (ER and AR) has further 
revealed the functions of prohibitin in transcrip-
tional regulation of diverse genes and suggests the 
potential importance of prohibitin in breast and 
prostate cancers. Further translational studies to 
establish clinical importance of prohibitin signal-
ing or loss in cancers may lead to the identifi cation 
of novel strategies for the design of improved anti-
cancer therapies. The requirement for prohibitin in 
one critical effector arm of Ras signaling also 
indicates the potential importance of prohibitin in 
signal transduction, and the possible existence of 
an auto-regulatory Raf1-prohibitin loop in the 
regulation of growth. Future investigation of the 
interplay between prohibitin and its diverse bind-
ing partners may lead to identifi cation of novel 
molecular mechanisms regulating tumor cell and 
normal cell proliferation.
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