
9Gene Expression to Genetical Genomics 2015:8
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ABSTR ACT: With the decrease in fertility in dairy cow, the interest towards means to control this variable through genetic selection is growing. One 
of the most important factors controlling follicular maturity and timely ovulation is the aromatase enzyme, which is encoded by the CYP19A1 gene. The 
activity of this enzyme is potentially the limiting factor in postpartum fertility. In this study, we developed a methodology, based on genetical genomics, 
to model the aromatase expression profile from granulosa cell samples. The transcriptomic expression profiles obtained were used to identify 355 genes 
or isoforms potentially associated with the regulation of aromatase. From those genes, 23,388 single-nucleotide polymorphism (SNPs) in the genome of  
Holstein cows were identified. Results showed that some SNPs (on KRT8, LHCGR, CREB, ANXA1, and on CYP19A1 itself) were relevant to aromatase 
expression and the model generated could predict 44% of the observed phenotype. This study demonstrated the value of genetical genomics to generate 
better biomarkers for the dairy industry.
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Introduction
Over the last decades, intense selective pressure has been 
applied to cows for milk production. As a direct or indirect 
consequence, cows’ fertility decreased gradually, creating 
a major problem for the dairy industry in terms of produc-
tion costs.1 Fertility is a complex phenotype, which depends 
on both genetic and environmental factors.2 One important 
fertility factor is the aromatase enzyme, which is directly 
involved in estradiol production.

The aromatase is an enzyme that belongs to the cyto-
chrome P450 family. It catalyzes the aromatization of testos-
terone to estrogen mostly in the ovary. The aromatase encoding 
gene, cytochrome P450, family 19, subfamily A, polypeptide 1  
(CYP19A1), is expressed in the granulosa cells of recruited 
follicles with a diameter larger than 4 mm in cows.3 Expres-
sion of the gene is controlled by paracrine and endocrine fac-
tors and also by DNA methylation.4 Aromatase activity is key 
during follicular development as it controls part of follicular 
differentiation and the exchange between the ovary and the 
brain. The estradiol concentration is linked to expression of 
CYP19A1, which encodes the limiting enzyme of the steroido-
genic cascade.5 Estrogens then regulate follicle-stimulating 
hormone (FSH)–stimulated gene expression in granulosa 
cells, stimulate follicle growth, gap junction development, cell 
proliferation, upregulation of FSH and luteinizing hormone 
(LH) receptors, modulate progesterone secretion, and protect 

granulosa cells from reactive oxygen–induced apoptosis.6 The 
level of aromatase expression is central in the postpartum 
dairy cow. Indeed, the high lactation content increases the 
metabolic clearance of estradiol and requires a higher expres-
sion of aromatase to maintain the programmed blood surge 
essential to ovulation.7 In addition, a previous study using an 
aromatase inhibitor, letrozole, during growth of the ovulatory 
follicle delayed ovulation by 24 h,8 partially mimicking the 
ovulation delays associated with lower oocyte quality.9,10

This study proposed to identify genetic markers in the 
bovine genome related to the CYP19A1 gene expression, 
using a methodology based on genetical genomics. Genetical 
genomics is a new methodology to analyze and find genetic 
markers for a complex trait that was developed by Jansen and 
Nap11 in Arabidopsis thaliana. A year later, the principle of 
genetical genomics was validated in yeast12 and has since been 
extended to mice, maize, rats, poultry, and humans to suc-
cessfully identify Expression quantitative trait loci (eQTL) for 
different traits.13–15 The central principle of genetical genomics 
consists in dissecting a complex physiological trait of interest 
into a list of genes for which the expression levels are related to 
variations of the trait (the genomics part) and then to link the 
expression-level variations of each gene with genetic marker 
variations between genomes (the genetics part). In genomics, 
the global transcriptomic profile of each individual is ana-
lyzed and compared to a control profile. This analysis shows 
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transcriptomic variations associated with the complex trait 
variations and therefore provides a list of genes the expression 
of which is influenced by the complex trait. In genetics, each 
individual is genotyped for markers. Then, genetic variations 
are linked to transcriptomic variations previously identified 
with association studies. The results reveal the genetic mark-
ers that are related to the complex trait of interest and also 
generate complex biological pathways related to this trait. The 
results therefore provide explanations on gene architectures 
and mechanisms, which are typically poorly understood when 
only genetic studies are performed. Indeed, genetical genom-
ics provides local and distant eQTL for a complex trait, at a 
scale never observed before, by a precise and high-throughput 
study with a genetic and a genomic component.16 With the 
improvements of new technologies, genetical genomics is 
becoming a fast and reliable methodology to identify accu-
rate markers for a complex physiological trait. This methodol-
ogy uses fewer samples than traditional QTL analysis and is 
therefore suitable for a limited but informative experimental 
design (with fewer than 100 samples). Moreover, genetical 
genomics works at the transcriptomic level, which is closer 
to the final complex trait phenotype than genetic studies. So 
the information brought by genetical genomics is very useful 
to explore and understand the complex trait of interest, link-
ing genetics and genomics information. Therefore, the current 
study was designed to identify genetic markers related to the 

expression profile of the CYP19A1 gene, to analyze the accu-
racy and pertinence of this methodology for fertility assess-
ment, and to integrate those identified markers in selection 
schemes for dairy cows.

Materials and Methods
Biological samples. Figure 1 represents the overall 

experimental design of the experiments. Granulosa cell sam-
ples (N = 83) were obtained from the ovaries of slaughtered 
Holstein cows. Only follicles with a diameter greater than 
8  mm were used. Granulosa cells were washed twice with 
phosphate-buffered saline (PBS) + EDTA 10 mM and cen-
trifuged at 12,000 g for 2 min at room temperature. A third 
wash with PBS only was performed followed by a centrifu-
gation at 12,000  g for 2  min. Cell pellets were divided in 
two: one half for RNA extraction and the other half for DNA 
extraction.

RNA samples. Total RNA was extracted from each 
granulosa cell sample (N = 83) and purified using the PicoPure 
RNA Isolation Kit (Life Technologies). After DNAseI diges-
tion (Qiagen), RNA quality and concentration were checked 
using a Bioanalyzer (Agilent). Extracted RNA samples were 
considered to be of good quality when the RNA integrity 
number was .7.

DNA samples. Genomic DNA was extracted from three 
different sources of material. First from individual granulosa 

Figure 1. Flowchart of the experimental design. RT-qPCR for the selection of the plus/minus aromatase samples, microarrays for the selection of 
differentially expressed transcripts, and their DNA capture and sequencing for SNPs identification to finally lead to the association of SNPs with the 
aromatase phenotype.
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cell samples (n = 83); second, from pooled granulosa cells from 
1000 cows; and third, from bull semen (n = 40) from one com-
mercial straw. The genomic DNA extractions were performed 
using the Tissue & Cells genomic prep Mini Spin kit (GE 
Healthcare). Genomic DNA quality was checked by running 
the samples on a 0.5% agarose gel to verify DNA integrity, 
and then quantified using the Nanodrop ND-1000 (Nano-
drop Technologies).

CYP19A1 RT-qPCR. The cDNA templates for RT-
qPCR were produced from 50 ng of RNA using the qScript 
flex cDNA synthesis kit with Oligo-dT primers (Quanta 
Biosciences). The quantitative polymerase chain reaction was 
then performed using the LightCycler480 (Roche) with the 
Fast Start SYBR Green I, according to the manufacturer’s 
instructions. Primers for the CYP19A1 gene were designed 
with the Primerquest software (Integrated DNA Technolo-
gies). Quantities of CYP19A1 mRNA were normalized to 
the quantities of three housekeeping genes: ACTB (actin, 
beta), GADPH (glyceraldehyde-3-phosphate dehydrogenase), 
and CYP11A1 with the package SLqPCR from Bioconduc-
tor (http://www.bioconductor.org/packages/2.12/bioc/html/
SLqPCR.html), using the methodology of the geometrical 
mean.17 The ratio of the abundance of CYP19A1 mRNA to 
housekeeping genes mRNA was then transformed by the 
function -log10(x).

Microarray. Purified total RNA was amplified using 
the RiboAmp HSPlus RNA amplification kit (Life Technolo-
gies), labeled with Cy3 and Cy5 using the ULS Fluorescent 
Labeling Kit (Kreatech), and hybridized on the Agilent-
manufactured EmbryoGENE18 slide in a two-color swap 
design. A first group, composed of the five samples with the 
lowest CYP19A1 mRNA quantity (as determined by RT-
qPCR), was hybridized against a second group, composed of 
the five samples with the highest CYP19A1 mRNA quantity. 
One nanogram of total mRNA was used for each sample 
inside each group.

After 17 h of hybridization at 65°C, the microarray slides 
were washed for 1  min in gene Expression Wash Buffer 1 
(room temperature), 1 min in gene Expression Wash Buffer 2 
(42°C), 10 sec in 100% acetonitrile (room temperature), and 
30 sec in Stabilization and Drying Solution (Agilent). Slides 
were scanned with a PowerScanner (Tecan), and features 
extraction was done with Array-pro6.3 (Media Cybernetics). 
Intensity files were analyzed with FlexArray 1.6.1.19 Spe-
cifically, raw data were corrected by background subtraction 
and then normalized within and between each array (Loess 
and quantile, respectively). Statistical comparison between 
the two groups (lowest CYP19A1 mRNA level versus high-
est CYP19A1 mRNA level) was done with the Limma algo-
rithm. A significant difference in the expression level of a gene 
between the two groups was found if the P-value was below 
0.05 after Bonferroni correction.

Pathway analysis. Ingenuity Pathway Analysis (http://
www.ingenuity.com) was used to identify molecular pathways 

related to the differentially expressed genes identified by the 
transcriptomic array. Genes introduced into the pipeline 
had a fold change .1.5 (absolute mean) and a P-value (after 
Bonferroni correction) ,0.05. The pathways identified were 
filtered according to their P-value calculated by the pipeline.

DNA capture. The Nimblegen Capture Array 2.1M was 
designed to capture DNA from the selected genes (N = 351).  
The capture was done on pooled DNA from 1000 cows 
according to the manufacturer’s protocol (Roche/Nimblegen) 
and the Institut de Biologie Intégrative et des Systèmes (Uni-
versité Laval, Québec, CA). Briefly, DNA was sheared by 
sonication and adaptors were ligated to the resulting frag-
ments. DNA was amplified by ligation-mediated PCR, puri-
fied, and hybridized to the capture array at 42.0°C using the 
manufacturer’s buffer. The array was washed twice at 47.5°C 
and three more times at room temperature using the manu-
facturer’s buffers. Bound genomic DNA was eluted, purified, 
and amplified by ligation-mediated PCR. The average length 
of fragments captured on the array was 200 base and 89.7% 
of asked bases were captured on the array, which represents 
19.4 million bases.

Sequencing. The DNA captured by the Nimblegen array 
was washed and sequenced by paired-end on one lane of an 
Illumina HiSeq array at McGill University (Montréal, QC, 
Canada) according to the manufacturer’s instructions. Sequence 
alignment and SNP analysis were performed by the Institut de 
Biologie Intégrative et des Systèmes (Université Laval, Québec, 
QC, Canada). The number of reads was 130 million. The reads 
were aligned on the BTA3.1 genome and the mean base coverage 
was 73.61x. The tool Genome Browser (http://emb-bioinfo.fsaa.
ulaval.ca/bioinfo/html/index.html), developed by the Embryo-
GENE network at Université Laval for the bovine genome, was 
used to visualize and analyze the SNP data to select those that 
were the most interesting for this study.

SNP genotyping. The SNP selection was based first 
on the gene role and function according to pathway analy-
sis, and second on the SNP position inside the gene. SNP 
genotyping was done by high-resolution melting curve, using 
the LightCycler480 (Roche) with the Gene Scanning proto-
col, in respect of the conditions defined by the manufacturer. 
Primers were designed by the Primer3 tool National Center 
for Biotechnology Information (NCBI) to generate a DNA 
fragment containing the SNP. Primer sequences and melting 
temperatures can be found in Supplementary Table 1. Fifty 
nanograms of DNA from each granulosa cell sample (n = 83) 
and each bull semen sample (n = 40) were used for genotyping.

Statistical analyses. All the statistical analyses were 
performed by R (2.12.1) (http://www.r-project.org/). Genetic 
analysis and association/modeling were performed with the 
library Genetics. The modeling was performed using the lin-
ear model function of R (lm function). The model used was 
the following:

	 Yi k k SNPk i ei b= + +∑ β ( ) 	
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where Yi is the phenotypic value for the sample i (the ratio 
of the CYP19A1 mRNA abundance), βk is the linear regres-
sion coefficient for the SNP k, SNPk(i) is the genotype of the 
sample i for the SNP k, ei is the residual for the sample i, and 
b is the intercept of the model.

Results
Phenotyping. Aromatase (CYP19A1) mRNA was quan-

tified by RT-qPCR in 83 samples as described in Materials and 
Methods. The CYP19A1 mRNA ratio from four samples was 
not determined, and three samples were considered as outliers 
and removed for the analysis; therefore, 76 samples remained. 
The quantities of CYP19A1 mRNA constituted the phenotypic 
variable to predict, with a ratio (mRNA/housekeeping gene) 
mean of 1.66 and a coefficient of variation of 28.9%.

To analyze the transcriptomic profiles related to the dif-
ference in CYP19A1 mRNA abundance, two groups were 
constituted. The first one, “Aromatase Plus”, contained the 
five samples with the highest CYP19A1 mRNA ratio (mean 
of 2.99). The second group, “Aromatase Minus”, contained the 
five samples with the lowest CYP19A1 ratio (mean of 1.07).

Microarray. The transcriptomic analysis contrasting 
the two groups Aromatase Plus/Aromatase Minus identified 
1,805 differentially expressed transcripts with a fold change 
value .1.5 in absolute mean and an associated P-value ,0.05 
after Bonferroni correction. The CYP19A1 gene was overex-
pressed with a fold change of 1.53 and a P-value inferior to 
0.001 in this contrast.

Pathways. Differentially expressed transcripts were 
imported in the Ingenuity Pathway Analysis pipeline to iden-
tify pathways affected by the CYP19A1 differential expression 
pattern. This analysis showed that the differentially expressed 
genes constituted 10 different networks with different func-
tions (Table 1). Network 1 represented cell death and gene 
expression, and CYP19A1, our main target, was included in 
this network. The first 10 canonical pathways, in term of sig-
nificance, are illustrated in Figure 2, which also shows their 
relative proportion according to the number of genes involved. 
These pathways included the categories of molecular network 
involved in the aromatase differential gene expression: metab-
olism, oxidative stress, immune response, estrogen signaling, 
apoptosis, and coagulation. Using the IPA software, we were 
able to analyze the differences in terms of major upregulated 
functions within those categories associated to high and low 
aromatase expression (Table 2).

Genotyping of 1000 cows. By filtering the genes based 
on their accuracy and importance in the pathways, or known 
to have an important function were also kept (regulators for 
example), a list of 355 genes related to the aromatase expres-
sion profiles in the two groups of samples was generated. Those 
355 selected genes were genotyped on a panel of 1000 cows 
to determine the genetic variability in these genomic regions. 
The SNPs were filtered and cleaned based on the data qual-
ity and SNP frequencies. SNPs with a minor allele frequency 

(MAF) inferior to 10% were not selected since they are not 
interesting from a selection scheme point of view. A list of 
23,388 SNPs was generated from those 355 genes, which con-
stituted our genetic database.

Gene list. The selection of genes to be genotyped on the 83 
studied samples was based on the fold change in the transcrip-
tomic analysis study and the biological relevance with the phe-
notype as assessed by Ingenuity Pathway Analyzer. The density 
of known SNPs in our genetic database was also taken into 
consideration to technically allow genotyping with the high-
resolution melting curve. Nine genes were selected: KRT8 (ker-
atin 8), CYP19A1 (cytochrome P450, family 19, subfamily A, 
polypeptide 1), TBX18 (T-box 18), CREB1 (cAMP-responsive 
element binding protein 1), LHCGR (luteinizing hormone/
choriogonadotropin receptor), ANXA1 (annexin A1), GPNMB 
(glycoprotein [transmembrane] nmb), PLXD2 (plexin domain 
containing 2), and LOXL4 (lysyl oxidase-like 4) (Table 3).

Genotyping of granulosa cell samples. The nine selected 
genes were investigated to determine which SNPs inside these 
genes would be interesting to genotype. The first criterion for 
SNP selection was based on a technical limitation related to 
the high melting resolution technique, which was edited by 
the manufacturer: SNPs should be at least 100–150 bp from 
each other, and the variation should not be A to T and G 
to C. The second criterion taken into consideration was the 
MAF estimated on a Holstein-based population. A minimal 
MAF of 0.2 was considered, to generate SNPs with a minimal 
interest for selection by the industry. The third criterion used 
was the SNP position in the gene and its potential value as 
a marker: SNPs in regulatory elements or near exon–intron 
junctions were preferred. Eighteen SNPs were selected for 

Table 1. Pathways identified has being affected by the CYP19A1 
differential expression pattern.

ID NETWORK FUNCTION

1 Cell Death, Gene Expression

2 Lipid Metabolism, Small Molecule Biochemistry, 
Molecular Transport

3 Cellular Movement, Cellular Development,  
Tissue Development

4 Cell-To-Cell Signaling and Interaction,  
Nervous System Development and Function

5 Gene Expression, Cellular Growth and  
Proliferation, Cellular Development

6 Gene Expression
7 Cell Death, DNA Replication, Recombination,  

and Repair, Cellular Growth and Proliferation
8 RNA Post-Transcriptional Modification, Cell-To-Cell 

Signaling and Interaction, Tissue Development
9 Cellular Movement, Cellular Assembly and 

Organization, Cellular Function and Maintenance

10 Cell Cycle, DNA Replication, Recombination,  
and Repair, Cellular Assembly and Organization

Notes: This analysis showed that the differentially expressed genes 
constituted ten different networks with different functions. Networks identified 
by the pathway analysis. Functions were given by the IPA software.
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genotyping of our samples (Table 4) based on these criteria. 
The genotyping of 18 SNPs on 76 samples resulted in 1,368 
data sets. Six genotypes from two samples were impossible 
to determine. These samples were deleted from the studied 
population for the modeling procedure; therefore, 74 samples 
remained.

Association/modeling. The phenotypic and genotypic 
data were analyzed with the Genetic library of R. The link-
age disequilibrium (LD) was estimated by the R2 between 
SNPs inside a gene. Only KRT8-3/KRT8-5 and LOXL4-1/
LOXL4-4 had significant LD values, respectively, at 0.71 and 
0.9. The SNP TBX18-2 presented an LD value of 0.35 with 
PLXDC2-1.

A first iteration gave a model with an R2 value of 0.07 
and a P-value of 0.27. No SNPs and no genotypes were sig-
nificant in this model. After this first iteration, the three 
SNPs with high LD (KRT8-5, LOXL4-1, and TBX18-2) 
were removed from the analysis, as their inclusion in the dif-
ferent models slightly decreased the quality of the prediction. 
The second iteration gave a model with an R2 of 0.08 and a 
P-value of 0.2. Three SNPs were significant for four different 
significant genotypes. With this iteration, four samples were 
found as outliers in the model and were removed for the fol-
lowing step. A third iteration was performed and gave a model 
with an R2 of 0.46 and a P-value of 6.88e-5. Seven SNPs were 
significant for nine different genotypes. For this third itera-
tion, 70 samples and 15 SNPs were used. A summary of the 
different iterations is presented in Table 5.

In this model, we found seven SNPs significantly associ-
ated with the aromatase mRNA level: KRT8-3, CYP19A1-1, 
CREB1-4, CREB1-5 (2 genotypes), LHCGR-3 (2 geno-
types), LHCGR-7, and ANXA1-3 (Table 6). The QQ-plot of 
the last iteration is illustrated in Figure 3 and shows that the 
model is relevant.

Figure 2. Canonical pathways. The first 10 canonical pathways, in terms of significance, are illustrated here. The percentage represents the relative 
proportion in the number of genes inside each pathway. These pathways included the categories of molecular network involved in the aromatase 
differential gene expression.

Table 2. Modification of pathways between fertile and sub-fertile 
follicles.

PATHWAY CHANGE

Metabolism

Xanthine -

Adenosine +

dGTP -

deoxyGTP +

Proteasome +

Deubiquitination -

Ubiquitination +

Uracile +

Carnitine -

Ubiquinol +

Pyruvate +

Fumarate +

Citrate -

Acetyl-CoA +

ATP +

Oxydative stress

Heat Shock Proteins +

ROS +

Antioxydant +

Immune

Leukocyte extravasation -

Chemotraction/Adhesion -

Cell retraction +

Vascular contraction +

Estrogen signaling +

Apoptose -

Coagulation +

Notes: This table gives the major biological functions associated with the 
variation in CYP19A1 gene expression. Those can be directly or indirectly 
linked. (+/-) Means the pathway is significantly more or less expressed in 
fertile cows. Analyses done by the IPA software.
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A simplified model was built in a fourth iteration which 
took into account only the significant SNPs identified in the 
Iteration III. This model gave an R2 of 0.44 and a P-value of 
1.54e-6. The parameters are summarized in Table 7. Using the 
models, we calculated the CYP19A1 mRNA ratio predicted 
from SNPs in our data set. The third and fourth iterations 
gave error rates of 15% and 17%, respectively. Correlations 
between the measured and predicted phenotypic values were 
0.8 and 0.72 for Iterations III and IV, respectively.

Genotyping bull semen. To demonstrate the beneficial 
use of genetical genomics for the fertility thematic and in 

order to evaluate our model, we selected 40 bulls with known 
genetic evaluation. We used the seven SNPs with significance 
extracted from Iteration IV and ran our model. The model was 
able to significantly correlate four phenotypic characteriza-
tions (Table 8) about health/fertility, calving rate, daughters’ 
fertility, and calving rate.

Discussion
This analysis is the first application of genomic–genetic stud-
ies to the ovarian aspect of bovine infertility. The method 
used here revealed a limited number of highly significant 

Table 4. SNPs select for genotyping in our studied population. 

SNP GENE CHROMOSOME POSITION GENE REGION MAF REFERENT VARIANT BOVINE SNP50

ANKDR1-1 ANKDR1 26 12574849 Exon—Read change 0.22 A G No

ANXA1-3 ANXA1 8 49637458 Exon 0.2 T C No
CREB1-4 CREB1 2 96295119 1.5 kb from 5′UTR 0.25 T G No
CREB1-5 CREB1 2 96302726 Near intron/exon junction 0.54 A G No
CYP19A1-1 CYP19A1 10 59223175 4.7 kb from 5′UTR 0.74 T C No
GPNMB-2 GPNMB 4 32010219 0.6 kb from 5′UTR 0.54 A G Yes
GPNMB-3 GPNMB 4 32020662 1.4 kb from 3′UTR 0.33 T G No
KRT8-1 KRT8 5 27212607 1 kb from 5′UTR 0.42 G A No
KRT8-3 KRT8 5 27216778 Near intron/exon junction 0.45 T C Yes
KRT8-5 KRT8 5 27221526 0.4 kb from 3′UTR 0.48 A G Yes
LHCGR-3 LHCGR 11 30889191 1 kb from 5′UTR 0.53 A G No
LHCGR-7 LHCGR 11 30865516 Near intron/exon junction 0.39 G T No
LOXL4-1 LOXL4 26 19228026 4.5 kb from 5′UTR 0.39 C T No
LOXL4-4 LOXL4 26 19202400 3′UTR 0.52 T C No
PLXDC2-1 PLXDC2 13 21581875 13 kb from 5′UTR 0.44 G A No
PLXDC2-3 PLXDC2 13 21808961 3′UTR 0.53 A C No
TBX18-1 TBX18 9 65570080 9 kb from 5′UTR 0.75 A G No

TBX18-2 TBX18 9 65597983 Intron 0.36 G A No

Notes: The presence/absence of the SNPs in the available BovineSNP50 v2 DNA Analysis BeadChip (Illumina) is indicated. Referent used is the Hereford breed. 
Variant are indicated for the Holstein breed.

Table 3. Fold change and P-value of the mRNA levels for genes targeted in this study and obtained by microarray analysis. 

GENE SYMBOL NAME CHROMOSOME FOLD CHANGE P-VALUE

KRT8 Keratin 8 5 -5.68 1.63E-11

CYP19A1 Cytochrome P450. family 19. subfamily A. polypeptide 1 10 1.53 3.00E-04

TBX18 T-box 18 9 -2.86 7.72E-07

ANKDR1 Ankyrin repeat domain 1 (cardiac muscle) 26 -3.85 9.24E-07

CREB1 CAMP responsive element binding protein 1 2 0 1.00E+00

LHCGR Luteinizing hormone/choriogonadotropin receptor 11 3.1 2.84E-07

ANXA1 Annexin A1 8 -2.76 4.48E-07

GPNMB Glycoprotein (transmembrane) nmb 4 -4.03 1.89E-09

PLXDC2 Plexin domain containing 2 13 -3.19 1.17E-07

LOXL4 Lysyl oxidase-like 4 26 -4.02 3.39E-09

Note: CYP19A1 and nine genes were selected based on the fold change in the transcriptomic analysis study and the biological relevance with the phenotype. 
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through a marker function. As a consequence, aromatase 
expression can be modulated by multiple conditions, from 
genetic to environmental.

The analysis of the pathways in high and low aroma-
tase follicles revealed some differences between these two 
groups (Table 2). Estrogenic follicles tended to have a high 
oxidative metabolism and a better capacity to counter oxida-
tive stress. Estrogenic follicles also induced changes in the 
immune-related pathways with a decrease in leukocyte signal-
ing. The immune system is present in reproductive organs and 
is involved in normal reproductive functions as inflammation 
accompanies ovulation and atresia. Since the follicles selected 
were not preovulatory (size limitation), lower leukocyte sig-
naling probably means a lower level of atresia.20

Table 5. Results of the different iterations.

  ITERATION I ITERATION II ITERATION III

Model R2 0.07 0.08 0.46

Model P-value 0.27 0.2 6.88E-05
Significant SNP 0 3 7

Significant genotypes 0 4 9

Notes: The phenotypic and genotypic data were analyzed with the Genetic library 
of R. The Linkage Desequilibrium (LD) was estimated by the R2 between SNPs 
inside a gene. Iteration I: all SNPs and samples taken into account. Iteration II: 
SNPs KRT8-5, TBX18-2 and LOXL4-1 removed. Iteration III: 4 outlier samples 
removed.

Table 6. Parameters of the Iteration III. 

  COEFFICIENT P-VALUE SIGNIFICANCE

Intercept 2.28 0.0004 ***

KRT8-3 C/T -0.35 0.001 **

CYP19A1-1 C/T 0.16 0.18

CYP19A1-1 T/T -1.13 0.01 **

KRT8-1 A/G 0.07 0.61

TBX18-1 G/A 0.40 0.18

TBX18-1 G/G 0.42 0.16

ANKDR1-1 A/G -0.14 0.23

ANKDR1-1 G/G 0.07 0.78

CREB1-4 T/T -0.19 0.05 *

CREB1-5 G/A -0.37 0.008 **

CREB1-5 G/G -0.46 0.001 **

LHCGR-3 G/A -0.58 0.002 **

LHCGR-3 G/G -0.43 0.02 *

LHCGR-7 T/T 0.97 0.000001 ***

ANXA1-3 T/T -0.22 0.04 *

GPNMB-2 G/A -0.24 0.41

GPNMB-2 G/G 0.04 0.89

GPNMB-3 T/T -0.12 0.22

PLXDC2-1 G/G 0.08 0.43

PLXDC2-3 C/A 0.05 0.82

PLXDC2-3 C/C 0.16 0.54

LOXL4-4 G/G 0.09 0.49

Notes: Iteration III is the complete model, after deleting the outliers. Seven 
SNPs were significant for nine different genotypes. Significant parameters are 
in bold. (0.001 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1).

Figure 3. QQ-plot of Iteration III. The QQ-plot show that the model has 
an R2 of 0.46 and a P-value of 6.88e-5 and is accurate with the samples 
and no outliers are present.

biomarkers associated with aromatase expression and there-
fore relevant for the infertility phenotype.

Pathway analysis. This analysis showed that the molecu-
lar network associated with the aromatase gene expression is 
complex since 10 different networks are involved. These net-
works could have direct effects on CYP19A1 expression (net-
work 1) or indirect effects (other networks). Several factors 
are involved in the control of the aromatase gene expression 
(Fig. 3) and many more can be used to assess this expression 

Table 7. Parameters of the Iteration IV. 

  COEFFICIENT P-VALUE SIGNIFICANCE

Intercept 2.58 0.0000 ***

KRT8-3 C/T -0.33 0.001 **

CYP19A1-1 C/T 0.05 0.56

CYP19A1-1 T/T -0.79 0.04 *

CREB1-4 T/T -0.15 0.10

CREB1-5 G/A -0.40 0.003 **

CREB1-5 G/G -0.49 0.0003 ***

LHCGR-3 G/A -0.43 0.01 **

LHCGR-3 G/G -0.33 0.06 t

LHCGR-7 T/T 0.89 0.000002 ***

ANXA1-3 T/T -0.18 0.047 *

Notes: Iteration IV is Iteration III upgraded, with the significant parameters. 
This model gave a R2 of 0.44 and a P-value of 1.54e-6. This iteration is easier 
to use because it requires less SNPs to genotype. Significant parameters are 
in bold (0.001 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1).
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Table 8. Parameters obtained on 7 SNPs from the Iteration IV run on 
40 bull semen samples.

COEFFICIENT P-VALUE SIGNIFICANCE

Daughter’s fertility

Intercept 104.88 8.42E-10 ***

KRT8-3 C/T 12.57 0.01 *

LHCGR-7 T/T -3.87 0.45  

CYP19A1-1 C/T -4.42 0.50  

CYP19A1-1 T/T 11.50 0.43  

CREB1-5 G/G -8.36 0.12  

LHCGR-5 A/G -4.55 0.65  

LHCGR-5 G/G -9.92 0.34  

CREB1-4 T/T 0.70 0.89  

ANXA1-3 T/T 1.64 0.74  

Calving 

Intercept 103.42 ,2e-16 ***

KRT8-3 C/T 0.80 0.49  

LHCGR-7 T/T 0.30 0.82  

CYP19A1-1 C/T -1.67 0.33  

CYP19A1-1 T/T -1.14 0.74  

CREB1-5 G/G -0.42 0.75  

LHCGR-5 A/G -2.99 0.22  

LHCGR-5 G/G -4.35 0.09  

CREB1-4 T/T 2.60 0.04 *

ANXA1-3 T/T -0.91 0.45  

Daughter’s calving

Intercept 103.79 ,2e-16 ***

KRT8-3 C/T 1.62 0.36  

LHCGR-7 T/T -3.58 0.06  .

CYP19A1-1 C/T -1.40 0.55  

CYP19A1-1 T/T 1.12 0.83  

CREB1-5 G/G -0.77 0.69  

LHCGR-5 A/G -4.21 0.25  

LHCGR-5 G/G -3.28 0.39  

CREB1-4 T/T 2.05 0.26  

ANXA1-3 T/T 0.46 0.80  

Health/Fertility

Intercept 311.92 0.07  

KRT8-3 C/T 200.40 0.01 **

LHCGR-7 T/T -76.12 0.35  

CYP19A1-1 C/T -75.57 0.45  

CYP19A1-1 T/T 123.71 0.57  

CREB1-5 G/G -138.69 0.10  

LHCGR-5 A/G -96.39 0.53  

LHCGR-5 G/G -136.51 0.39  

CREB1-4 T/T 66.13 0.39  

ANXA1-3 T/T 35.04 0.65  

Notes: Significant parameters are in bold (,0.001 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05  
‘.’ 0.1).

Upregulation of the estrogen receptor is critical for nor-
mal granulosa cell development and a defect in this path-
way can have important consequences for fertility.21 Lower 
apoptosis in fertile follicles is logical, as apoptosis occurs in 
atretic follicles and is a normal process of follicle selection.22 
The coagulation pathway seems to be important in compe-
tent follicles according to this study and recent publications 
from mouse studies23 and our group have further identified 
SERPINE1 (Serpin peptidase inhibitor, clade E (nexin, plas-
minogen activator inhibitor type 1), member 1), SERPINA5 
(serpin peptidase inhibitor, clade A [alpha-1 antiproteinase, 
antitrypsin], member 5), F3 (coagulation factor III (thrombo-
plastin, tissue factor), A2M (alpha-2-macroglobulin), PLAUR 
(plasminogen activator, urokinase receptor), and F2R (coagu-
lation factor II [thrombin] receptor) as a determinant of oocyte 
quality.24,25

Gene selection. In this study, genes with high fold 
change values, interesting positions in pathways, and good 
genetic opportunities (availabilities of SNPs and their MAFs) 
were selected. Complementary studies could be performed 
to enrich the existing model with other genes to improve the 
model accuracy. However, the results obtained demonstrated 
that our gene selection was accurate enough to provide a 
good model to predict the tested phenotype (R2 of 0.44 for a 
P-value of 1.54e‑6).

Genes of the model. In the final iteration (Iteration IV), 
we found six SNPs significantly related to CYP19A1 expres-
sion on five genes: KRT8, CYP19A1, CREB1, LHCGR, and 
ANXA1. Of course, the presence of an SNP in the CYP19A1 
gene itself was not surprising. Its position, at 4.7 kb from the 
5′UTR (Table 4), could directly affect CYP19A1 gene expres-
sion regulation since the genotype T/T is relevant to the 
model. In a study on oocyte competence, the gene KRT8 was 
previously identified as being relevant to fertility.26 This gene 
was also found to be underexpressed in preovulatory granulosa 
cells.23 In the present study, this gene had the highest nega-
tive fold change and was the top candidate to analyze. The 
SNP selected on KRT8-3 is positioned at 16 bp from an exon–
intron junction (Table 4) and could therefore play a role in the 
regulation of KRT8 mRNA splicing. The genotype C/T was 
significantly associated with CYP19A1 mRNA abundance.

The transcription factor CREB is associated with the 
response to gonadotropins (LH and FSH) and requires CREB1 
for its synthesis; CREB1 was analyzed in this study and path-
way analysis revealed that it is an important node linking sev-
eral genes with differential fold change, notably CYP19A1. Two 
SNPs of CREB1 were identified: CREB1-4 and CREB1-5. 
The former appeared in the third iteration (with all genes in 
the model) but not in the fourth (with only genes related to 
CYP19A1 expression). Its position at 1.5 kb from the 5′UTR 
could explain its role in the regulation of CREB1 expression. 
Because of its absence in the fourth iteration, this SNP was not 
the most interesting one from this gene. The SNP CREB1-5 
was identified in this study as being significantly related to 
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CYP19A1 expression. Its position near an intron–exon junc-
tion (less than 150 bp) could explain its role in the regulation 
of CREB1 expression (Table  4). Since CREB is a transcrip-
tion factor related to CYP19A1, we can propose that the SNP 
CREB1-5 has a trans effect on CYP19A1 expression regulation. 
The two different genotypes (G/A and G/G) had a significant 
effect on CYP19A1 mRNA abundance.

The ovarian LH receptor is LHCGR. Stimulation of 
LHCGR by LH provokes the aromatization of androgens to 
estradiol by the action of CYP19A1 in granulosa cells from 
dominant follicles. This receptor is therefore important for 
fertility and is the target of several studies.27,28 The two SNPs 
studied in this gene, LHCGR-3 and LHCGR-7, were sig-
nificantly associated with CYP19A1 mRNA abundance. 
The SNP LHCGR-3 is located 1  kb from the 5′UTR and 
could potentially have a functional role in expression regula-
tion (Table 4). Two genotypes are relevant: G/A and G/G 
but only the G/G genotype had a significant association with 
aromatase mRNA levels in the third and fourth iteration. The 
genotype G/A only had a tendency for association with aro-
matase mRNA in the fourth iteration, which makes it less 
interesting. The SNP LHCGR-7 is situated 45 bp from an 
intron–exon junction (Table 4), so it could affect the splicing 
of LHCGR mRNA. There are seven isoforms of this recep-
tor in bovine granulosa cells29 and as LHCGR is in the 
same pathway as CYP19A1, SNPs inside LHCGR may affect 
CYP19A1 in a trans effect.

The gene ANXA1 codes for an anti-inflammatory pro-
tein. The SNP identified in this gene, ANXA1-3, is situated 
in an exon (Table 4). The triplet containing this SNP codes for 
isoleucine, with the T referent. If the genotype changes for 
a C, the amino acid changes for a threonine (mistranslation 
mutation). Those two amino acids have different properties: 
the isoleucine is apolar, contrary to the threonine. The protein-
folding process, and the final protein properties, could be then 
affected, explaining why this SNP had a significant effect on 
our phenotype. As the inflammatory process is important in 
ovulation as discussed above,30 the SNP in ANXA1 could act 
in trans, in a pathway correlated with CYP19A1 mRNA abun-
dance. Only the genotype T/T is significantly relevant to the 
mRNA abundance.

Bull analysis. Samples from 40 bulls were used to assess 
the possible association of the seven SNPs with known fertil-
ity phenotypes. The model was able to significantly correlate 
four phenotypes: health/fertility, calving rate, and the daugh-
ters’ fertility and calving rate. As the markers were related 
to an enzyme regulating follicular function, it makes sense 
that the SNPs were associated with fertility more than with 
calving. Although calving ease could be associated with the 
amount of estradiol at the time of parturition, the main effect 
observed for this phenotype is associated with calf size and 
therefore not directly related to ovarian function.

Accuracy of the methodology. With this methodology, 
we can study precise regions of genes related to the target 

phenotype, according to their relevance with the gene func-
tion (exon, exon–intron junction, UTR regions). The SNPs 
identified (KRT8-3, CYP19A1-1, ANXA1-3, CREB1-5, 
LHCGR-3 and LHCGR-7) belonged to these different cat-
egories (Table 4) and could identify causative SNPs inside a 
known QTL. For example, the SNP marker KRT8-3 is inside 
a QTL for easy calving and present on the BovineSNP50 
v2 DNA Analysis BeadChip (Illumina) (Table 4). The SNP 
ANXA1-3, which is also inside a QTL for easy calving, is not 
on the bovine chip. The majority of our SNPs was not on the 
commercially available bovine chips and therefore could not 
be used at this time to assess fertility. This study demonstrated 
that this methodology is able to enrich the current knowledge 
in genetic markers for complex phenotypes. We were able to 
finely dissect the complex trait in some SNP effects and iden-
tify eQTL with cis and trans effects. These SNPs could be 
effective markers and could avoid some LD issues between 
generations. Used as genetic markers for selection, the identi-
fied SNPs could increase accuracy of selection after a few gen-
erations. The last iteration (Iteration IV) showed that seven 
SNPs were enough for a prediction test for CYP19A1 mRNA 
abundance.

The generated model was able to predict 44% of the 
phenotype variability (Iteration IV), which is a good result 
suitable for use by the dairy industry. Taking the sum of all 
the coefficients of the model for an animal, we can directly 
calculate a breeding value for the animal. The error rate in the 
prediction was satisfactory, at 17%.

This methodology presents the advantage of having 
more observations than variables (74 samples and 18 SNPs 
in this study), contrary to genetic association studies, where 
the main problem is to have much more variables than 
observations (millions of variables versus only hundreds of 
samples). Consequently, this methodology allows us to by-
pass one of the major problems in genetic analysis and is 
simpler to do.

Moreover, the experimental scheme does not require a 
complex design with related animals on two or three genera-
tions. Unrelated and unknown animals were used in this study.

Conclusion
This study, based on a genomic–genetic approach, was able to 
identify biomarkers related to a complex phenotype, demon-
strating its relevance to find genetic targets for such phenotypes.

Because of its simple design, this methodology is easy to 
use in genomic laboratories, for lower costs than a complex 
genetic association study. Therefore, the genetical genomics 
approach is a good complement to genetic association studies, 
as it is possible to zoom inside a QTL of interest previously 
identified by genetic studies to identify the causative SNPs.
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