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Introduction
Defining the existential question for epicardial fat, the adipose 
tissue on the surface of the heart, which is especially prominent 
around coronary arteries, leads to the proposal of a number of 
putative physiologic roles for epicardial fat.1 These roles include 
homeostasis in the regulation of fatty acid metabolism for cor-
onary arteries, thermogenesis, protection of the cardiac auto-
nomic ganglia or nerves, as well as the production of hormones 
and adipokines.1–3 Epicardial fat has genetic programs for pro-
duction of substances such as adrenomedullin, adiponectin, and 
angiotensin-2 that have the potential to alter coronary artery 
vasoreactivity and possibly modulate the process of atheroscle-
rosis.4 A potentially very important proposed function of epi-
cardial fat is “to buffer the coronary artery against the torsion 
induced by the arterial pulse wave and cardiac contraction or to 
offset rapid changes in the width of the blood vessels with arte-
rial pulse.”1 Epicardial fat was proposed to also “limit the 
motion of the coronary arteries perhaps reducing the potential 
extremes of coronary artery velocity.”1 Although most of the 
(other) roles proposed for epicardial fat were based on bio-
chemical or physiologic data, the mechanical role of buffering 
the coronary arteries was more speculative and the basic data to 
support this proposal were not presented. Since then, more 

data have accumulated to support the adverse effect of epicar-
dial fat on the development of coronary atherosclerosis,5,6 
including the finding that removal of some epicardial fat may 
mitigate atherosclerosis development.7 Thus, it has become 
more important to examine and even justify this potential 
physiologic role of epicardial fat in the protection of coronary 
arteries. The basis of the buffering effect of epicardial fat on 
coronary arteries will be examined based on the known 
mechanical properties and stresses of the coronary artery and 
the data on the benefits of a layer of material surrounding a 
flexible tube carrying pulsatile fluid which is analogous to a 
coronary artery.

Methods
OvidSP Medline, Embase, and PubMed were systematically 
searched. The search strategy was vibration or deformation 
AND coronary arteries or coronary vessels. The inclusion cri-
teria were human studies and those in English. The exclusion 
criteria were studies on percutaneous coronary intervention 
or coronary stents and studies of vessels other than coronary 
arteries, eg, aorta, myocardial deformation rather than coro-
nary artery deformation, and methods of study or modeling 
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approaches. The initial search identified 286 studies. Eligible 
articles on vibration in arteries and deformation of coronary 
arteries were assessed, and articles that met the inclusion and 
exclusion criteria were identified. The reference lists were 
scanned for other studies. A total of 24 studies were identified 
and used. Because of the paucity of data on vibration and 
coronary arteries, books on flow-induced vibration were 
consulted.

Results
Mechanical deformation of coronary arteries

During cardiac contraction and relaxation, there is considerable 
mechanical deformation of coronary arteries. Indeed, coronary 
arteries have been considered unique because they undergo sub-
stantial deformations with twisting, bending, and stretching 
that are due to cardiac contraction and the tethering of the large 
coronary arteries to the epicardial surface of the heart.8 The 
cyclic change in coronary artery shape not only alters coronary 
artery curvature but also produces discrete flexion points.9

Another unique feature of coronary arteries is that phasic 
pressure and blood flow are not synchronous as the maximum 
pressure is in systole and most coronary blood flow occurs dur-
ing diastole (although there are rare exceptions).10–12 This 
unique relationship is responsible for a highly negative stress 
phase angle between coronary artery circumferential strain and 
wall shear.13 The highly negative stress phase angle between 
circumferential strain and wall shear may play a role in localiza-
tion of coronary atherosclerosis. Stein et al14 showed that there 
is a significant correlation between the mechanical stresses due 
to cyclic flexion of the artery and the rate of progression of 
coronary atherosclerosis assessed by serial coronary angiogra-
phy. They concluded that these mechanical stresses contribute 
to arterial tissue damage or fatigue leading to accelerated pro-
gression of atheromatous plaques.14 Three-dimensional intra-
vascular imaging of the human coronary artery identifies 
stress-strain patterns that represent, in part, the level of defor-
mation in plaques.15 The mechanical stresses of arterial torsion 
can be modified, to some extent, by the myocardial tissue on 
one side and epicardial fat on the other side which likely limit 
the positive remodeling of coronary arteries during the devel-
opment of the atherosclerotic plaque.16

Coronary artery deformation due to myocardial contraction 
has a significant effect on wall shear rate patterns in the coro-
nary arteries.17 During cardiac contraction, the radius of curva-
ture of the coronary artery decreases considerably near 
bifurcation points, and at its maximum, the radius of curvature 
decreases at a rate of 2.3% per millisecond.18 The radius of cur-
vature or the angle of cyclic flexion contributes to arterial stress. 
The geometry of coronary arteries can be characterized by 
their curvature, torsion, and tortuosity.19 Arterial wall shear 
stress increases with an increase in artery curvature and torsion 
which may promote the development or acceleration of athero-
sclerosis in arteries.20

Vibrations originating from arteries

The capacity of arteries to resonate was apparently first recog-
nized by the physiologist Otto Frank.21,22 Lin Wang et al23,24 
have recently refocused attention on this topic and contend 
that one of the functions of the heart is to generate radial oscil-
latory motion or resonance or vibrations of the arterial system. 
Fluid flow–induced sound and vibrations are well recognized 
in physics and have been well characterized mathematically.25-27 
A basic physics principle is that a system of finite dimension 
will have its own natural frequencies. The arterial system will 
have natural frequencies dependent on its geometry, physical 
properties of the vessel wall, constituents of the blood flowing 
through it, and boundary conditions at junctions.23 Vessels can 
also produce subharmonic and chaotic vibrations.28 Cardiac 
contraction generates an input force into the arteries that can 
be decomposed by Fourier series analysis into many harmonic 
forces of different frequencies.24 This is analogous to and sup-
ported by the observations that pulsatile fluid flow through 
pipes conveying fluid generate a time-dependent harmonic 
component superposed on a steady-state harmonic.29

The overall principle is that the magnitude of the vibration 
will be dependent on the vessel wall size, axial tension, vessel 
characteristics including size, as well as the composition of the 
fluid in the vessel.26,29,30 Thus, the type and extent of coronary 
artery oscillatory displacement are dependent on these factors 
in coronary arteries which in turn are influenced by coronary 
artery anatomy. There are differences in diameter, length, and 
tortuosity between the right coronary artery and left anterior 
descending and circumflex coronary arteries. The resonance 
frequency will depend on the displacement (transverse or tor-
sional), elasticity, and length of each of these coronary arter-
ies.31 Another factor is the presence, degree, and location of 
arterial stenosis that can excite vibrations with the specific fre-
quencies dependent on the nature of the arterial wall.32

Arterial vibration can produce damage to and reductions in 
the function of the elastin component of the arterial wall.33,34 
Vibration can cause damage in vascular endothelial cells35 and 
produce endothelial cell dysfunction.36

Reductions in the extent of deformation and 
vibration: the putative role for epicardial fat based 
on engineering principles

Attenuation of deformation and vibration has been the subject 
of intense investigation.37,38 Damping is the phenomenon by 
which mechanical energy is dissipated in dynamic systems.38 
The basic principle is that vibration, resonance, and deforma-
tion energy are lost when they hit the surface of an absorbing 
material.39 It is of special interest in pipes carrying fluid that 
are potentially harmful and is important to industries trans-
porting fluid, such as oil from underwater sites or across land.27 
Vibration dampening materials and approaches have been 
developed over many years. It has been known for a long time 
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that the external application of a material wrapping round a 
pipe carrying fluid will reduce the vibrations of the pipe.40 The 
damping properties of a composite wrap can reduce the sound 
pressures in the wall of the pipe, reducing the likelihood of 
fatigue failure.40 The composition of the wrapping material has 
been studied and varied to improve the damping properties 
and includes materials such as carbon fiber–reinforced polymer 
composites and multiple fluidic flexible matrix composites.41,42 
Each material can be characterized by propagation constants—
which identify the amount of wave that will be propagated by 
the material and an attenuation constant—indicating how 
much of the wave will be reduced as it travels through the insu-
lating material.39 Such wrapping decreases the acceleration in 
the wall of the pipe, reduces the amplification of the oscilla-
tions, and in turn decreases the vibrations in the pipe.40

Although epicardial fat might appear to be a flimsy wrap-
ping material, adipose tissue has defined tensile strength and 
“toughness” which are due in large part to the extracellular 
matrix and collagen network surrounding the adipocytes.43,44 
Vibration dampening material, however, can be as seemingly 
flimsy as felt or as thin as tape. Vibration dampening materi-
als have been the subject of many patents. The dampening of 
vibration consists of wrapping the conduit with material as 
simple as felt (US patent 12/040,870) or adhesive tape (US 
patent 3,217,832). Over the years, the wrapping material 
composition has become more complex so as to permit fluids 
under high-pressure impulses to be transported while mini-
mizing the structural damage to the conduit (US patent 
5381834).

The protective benefit of material surrounding a vessel can 
be explained from an arterial perspective. Lu et al45 modeled 
the coronary artery as a two-layered structure—one with the 
intima and media consisting of vascular smooth muscles, 
endothelial cells, elastin, and some collagen and the other con-
sisting of the adventitia containing collagen, fibroblasts, and 
elastin. They found that shear modulus after the application of 
a transverse force is greater for the adventitia than the intima/
media layer, but the artery’s biophysical properties are the sum 
of both layers.45 Epicardial fat is contiguous with the adventitia 
of the coronary arteries.1 The moment of inertia and shear 
modulus of a vessel is the sum of the products of polar moment 
of inertia and shear modulus of each layer. Thus, the stress-
strain characteristics of the coronary artery will be the sum of 
all of its layers including the layer applied externally to it, 
namely, the epicardial fat.

This study suggests an explanation for the controversy sur-
rounding the role of epicardial fat in coronary atherosclerosis. 
Small or “normal” amounts of epicardial fat can play the physi-
ologic role to buffer the deformations and vibrations in the 
coronary artery that can accelerate atherosclerosis. In contrast, 
larger amounts of epicardial fat because of its capacity to secrete 
hormones and cytokines2,4 may overcome the beneficial effects 
to mitigate arterial stress and instead lead to atherosclerosis.

Study limitations

There are no data that directly measured vibration, deforma-
tion, and wall stress in vivo in coronary arteries in the presence 
and absence of different amounts of epicardial fat.

Conclusions
In summary, coronary arteries undergo substantial deforma-
tions with twisting, bending, and stretching that are due to car-
diac contraction and the tethering of the large coronary arteries 
to the epicardial surface of the heart. In addition, they are sub-
ject to fluid flow–induced arterial vibrations that can damage 
the structure of arterial wall, especially elastin and endothelial 
cells. The lessons from pipes and flexible tubes transporting 
pulsatile fluid are that applying material to the outside of the 
conduits will not only reduce the vibration but also decrease 
the movement of the conduit. The overall impact is a reduction 
in the probability of conduit fatigue and failure. The current 
epidemic of obesity which is translated into increases in epicar-
dial fat46 may transform a beneficial mechanical function of 
epicardial fat into a deleterious biochemical one that acceler-
ates atherosclerosis.5,6 Integration of the biophysics of coronary 
arteries with knowledge of material damping principles sup-
ports a physiologic role for epicardial fat to buffer deformation 
and vibration in coronary arteries.
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