Access provided by Rice University

Thermally and hydrodynamically fully developed combined pressure-driven and electroosmotic flow through a channel with three immiscible fluids has been simulated for isoflux wall boundary conditions. Closed form expressions have been developed for velocity and temperature profiles and Nusselt number. The results indicate strong effects of fluid layer thickness, force fields and boundary conditions.

Free first page
< >

Issue Details

International Journal of Micro-Nano Scale Transport


International Journal of Micro-Nano Scale Transport

Print ISSN: 1759-3093

Related Content Search

Find related content

By Author

Subscription Options

Individual Offers