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1. INTRODUCTION
In this publication we analyze all, or
almost all, the valid formulas of sound
levels in different types of halls. We will
explain all the theoretical basis of each
of them, starting with reflected
intensity, both classical and revised
theories, the total sound level and its
uses in concert venues. We will also deal
with empirical formulas mainly for
classrooms, churches and religious
buildings and industrial use.

However, the main significance of
this work is not only the wide range of
formulae exposed but also that we have
found the explanation of why the
reverberation radius, or distance radius,
cannot exist in the revised theory. This
finding can help that the revised theory
of M.Barron be slightly modified to
apply it to any room for several uses,
other than concerts

2. STEADY STATE ENERGY IN
ENCLOSURES
Perhaps the most basic quantity with
which we are closely concerned, in an

enclosure, is sound power.This
associated with the actual source of
sound. The source radiates power which
is transmitted in the form of sound. The
sound power of a source is the total
power coming from it. It is the rate at
which energy is the form of sound
leaves the source.

Now consider a point some distance
from the source, and a small area
perpendicular to the line joining the
point to the source.

Some of the power  being generated
by the source  will be  transmitted
through the area, the exact amount
depending not only on the sound power
of the source, but also on its directional
properties, the distance of the area from
the source, and the presence of sound
absorbing or sound  reflecting materials.

If the power passing through an
area A is w, we define the intensity as
power per unit area, or: 

I = wA

Although the intensity of a sound is an
important quantity, it is difficult to
measure because of its vector properties.
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Whereas sound pressure can be
measured quite readily due there is a
relationship between two magnitudes.
This is: I = p2

rms/rc. Where I is the
mean intensity of sound in a period: 

,

c ls the velocity sound in the medium
and ρ is the density of the air.  This last
relation is good for all type waves:
Plane, spherical.

The intensity, although fluctuating,
is always positive. This is clear from a
consideration of the physical meaning
and from the mathematics. Since I is
proportional to p2

rms which must always
be positive  the time average of the
intensity  will also be positive. This
mean value of the intensity is a useful
quantity.

1. CLASSICAL APPROACH
The classic steady state sound intensity
used in diffused fields is:

Idiffuse = 4wQ/A (1a),

Idiffuse = 25 w Q (T/V) 1b)

where A, the equivalent absorption is
normally: A = [-Sln(1-α)+4mV], where:
c = 345.5 m/s is sound velocity, V is the
volume, T is the reverberation time and
w is the sound power, m is the coefficient
absorption of air and Q is directivity
factor, normally in this paper is Q = 1.

2. NON-CLASSICAL APPROACH:  
a) Revised Theory of M. Barron
The sound, emitted by a source emitting
N pulse of waves transporting sound
energy towards a receiver and
producing integrated sound intensity in
the room computed by M. Barron, [1],
whose theory is based on the formulae
derived by R.H. Bolt, P.E. Doak and P.J.
Westervelt [2]. The equations derived
by them, are applicable to values, l,m,n,

large enough so that the details
regarding source and receiver positions
in the room can be disregarded.
M.Barron recognised that the precise
location of the source and receiver 
can be ignored. The sound

(“integrated”) intensity , or Idiffuse ,

arriving after time t  (the pulse from the
source having been emitted at time t=0)
is:

(3)

The equivalent formulae calculated
by M.Barron solving this problem, are
as follows:

Idiffuse = (4w/A). e–(r/4 V)A , (3a)

Idiffuse = 25 w (T/V).e–0.04 r/T (3b)

Idiffuse = 312 (w/4II)(T/V).e–0.04 r/T(3c)

Where r, is the source-receiver
distance in meters. Barron-Lee
examined the regression of measured
sound levels against the source-receiver
for 17 concert halls. There is a good
agreement between experimental data
and calculation.

The main goal of M. Barron’s
theory is that the reverberant field
decreases exponentially with the
distance; something that is a new
concept in relation to classical theory.

However it seems that this formula
is not very adequate for other spaces.
Due to this other researchers have
derived other experimental formulae by
regression for other spaces of
reverberation time very higher than
concert halls. Also for theatres this
formula is not good. In section 5 we
carry out a discussion which is very
important about this subject.
Knowing the following identities :
Eyring identity A = 0.16 V / T,
Sabine Identity, for a small, α < 0.2, is A
= 0.16 V/T.
r distance is r = ct, therefore the time is
t = r/c. 
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Others identities: 0.04 r/T = 13.82 t/T
and also 0.04 r = (-
ct/4V)A,
25 (T/V) = (4/A) and
also 25 (T/V) =
(312/4II)(T/V). 

We can obtain other additional
equivalent expressions for 3a), 3b), 3c).    

When t = 0 or r =0 we obtain the
following classic expressions from
(3a,b,or c)):

Idiffuse = (4w/A) (4)

Idiffuse = 25 w (T/V) (5)

Both classic formulae are well known
and have been indicated in equation
(1a) and (1b). 

b) Alternative revised theory of M.
VORLÄNDER
Subsequent to Barron’s theory, M.
Vorlander [3] investigated another
approach considering that the lower
limit integration is: lm/c, where lm is a
mean free path, and also the average
arrival time of the first reflection of rays
on walls, running this lm. He derived:

Idiffuse = (4w/A) e-A/S, (6)

• Although the lm hypothesis is not
coherent with the results found by
Bolt, Doak and Westervelt,
Vorlander admits that it is good for
small rooms. However, by ignoring
the coefficient m air absorption we
have: Am=0 = -Sln(1-α), a new
expression is obtained using the
following mathematical identity:
eln b = b:

Idiffuse = (4w/A) (1-α), (7)

This formula was proposed, by
M.Vorländer, primarily for
reverberation chambers.

For α low values, then is (1-α) ≈ 1
using (7) we obtain the classic

expression: Idiffuse = (4w/Sa)

3. TOTAL SOUND FIELD IN
ENCLOSURE
Main Equations
Total sound level intensity can be
considered to be the sum of the direct
sound intensity and the integrated, or
diffuse intensity, from time t0 to
infinity.

The total sound intensity of the
sound wave is the sum of two parts:
Direct intensity Idirect and diffuse
intensity Idiffuse, of one source that has a
sound power w when travelling in a
room, is as follows:

Itotal = Idirect + Idiffuse (8),

The total sound pressure level is:

Lp = LI = 10 log [Itotal/Iref] (9a),

Lp =10 log (Idirect + Idiffuse)/Iref (9b),

where Iref is a reference intensity energy
Iref = 10-12 watts/m2 .

We know that Idirect = Qw / 4πr2 is
the direct component of the sound field,
r is the distance source to receiver,
where w is the sound power source.

1. CLASSIC FORMULAE:  
First classic equation, [4],

Idiffuse = 4w /A , (10a),

or other equivalent formula:
Idiffuse = 25 w (T/V) , (10b),

So, by applying (9b) equation for
(10a) and (10b) we obtain the equivalent
formulae:

Lp = Lw +10 log (Q/4πr2 + (4/A))(11a)

Lp = Lw +10 log (Q/4πr2 + (25(T/V))(11b)

Where A is equivalent absorption A
= [-S ln (1-α) + 4mv], with a
representing the exponent absorption
coefficient: a = -ln(1-α) and where α is
the absorption coefficient. When α is
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low and ignoring the absorption air
coefficient m, then A = Sα, V is room
volume, S is total surface of all walls and
Q is the directivity factor. This formula
is normally known as the Sabine
formula. The reduction in sound
pressure level as function distance r is
very important when dealing with noise
control in factories. We may check how
much higher the sound absorption is in
a room at full sound level. If the total
absorption A is doubled, the sound
pressure level is reduced by 3 dB.
Second classic formula, [5], of diffuse

field is:

Idiffuse = 4w/R, (12a)

where R = αS/1-α (R is a constant
room), therefore this can also be written
as follows:

Idiffuse = 4w(1-α)/Sα (12b)

where w represents sound power, Q the
source directivity and r the distance
between source and receiver, S total
surface of walls in a room and α the
mean coefficient absorption of walls. 

The total sound level for both
expressions are:

Lp = Lw +10 log (Q/4πr2 + (4/R))(13a)

Lp = Lw +10 log (Q/4πr2 + (4(1-α)/αS))
(13b)

This last formula is known as
Sabine-Franklin-Jaeger.

2. NON-CLASSICAL FORMULAE:
a) Revised Theories M. Barron and
alternative M. Vorlander
1. First- Barron [6], [7], [8], we have:

Idiffuse = 312.(w/4π)(T/V).e–0.04 r/T, (14a)

Idiffuse = 25.w (T/V)e-0.04 r/T (14b)

Idiffuse = (4w/A)e–(r/4V)A, (14c)

where A is: A = [-Sln(1-α)+4mv], r is
the distance, r = ct, t is the time (lower
limit integration), S is the overall
surface of a room, α is the average
coefficient absorption, T  is the

reverberation time, V is the volume of
the room and m is the absorption
coefficient of air.  Barron’s equation was
developed for concert halls originally.
The total sound level, applying (9b) is:

Lp = Lw + 10 log (Q/4πr2 + 
(312/4π)(T/V).e-0.04 r/T, (15a)

Lp = Lw + 10 log(Q/4π r2+
25(T/V).e-0.04 r/T), (15b)

Lp = Lw + 10 log (Q/4π r2 +
(4/A).e-(r /4V)A, (15c)

Total sound level up to 10 m from
source, is:

Lp10 = Lw + 10 log [Q/π 400 +
25 (T/V) e-0.04 r/T] (16)

The strength G  is the level
measured at a direct level position, 10 m
from an nondirectional source, Q=1, in
an anechoic environment: G= Lp10 –
Ld=10 (anechoic), 

G =  10 log {[1/π400 + 25 (T/V)
e-0.04 r / T]/1/π400} = 10 log {100/r2 +
31200 (T/V) e-0.04 r/T] (17) 

The early reflected (Ier) and late
reflected (Il) intensities, for 80 ms and
50 ms respectively.  

(Ier)80 = 25 (T/V) e-0.04 r/ T . (1- e-1.11/T)
(18a)

(Ier)50 = 25 (T/V) e-0.04 r/ T . (1- e-0.69/T)
(18b)

(Il)80 = 25 (T/V) e-0.04 r/ T .e-1.11/T(19a)

(Il)50 = 25 (T/V) e-0.04 r/ T .e-0.69/T(19b)

From here and (9b) to Lp10 we obtain
several Gi, i= 50 or 80 ms, Q=1:

(Ger)80 = 10log{100/r2 +31200 (T/V)
e-0.04 r/T (1- e-1.11/T)} (19a)

(Ger)50 = 10 log{100/r2 +31200 (T/V)
e-0.04 r/T (1- e-0.69/T)} (19b)

(Gl)80 = 10 log {31200 (T/V) e-0.04 r/T .
e-1.11/T} (19c)
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(Gl)50 = 10 log {31200 (T/V) e-0.04 r/ T .
e-0.69/T (19d)

2. Second- Nijs et al.,[9]: Here, T is
reverberation time of Eyring formula:
TEyring = - 0.04 lm / ln(1-α). On
substituting this formula in (13b) they
obtained the following simplified
expression, using the following
mathematical identity: e ln b = b.

I diffuse = (4(1-α) r / lm/Sα) (20)

The total sound level is:

Lp = Lw + 10 log {Q/4πr2

+ [4(1-α) r/lm]/Sα} (21)

3. Third- H. Arau ,[10], in rooms with
asymmetric absorption distribution:

I diffuse = 25w(T/V) (0.9.e- 0.04 r/EDT

+ 0.1. e- 0,04 r/T) (22a)

I diffuse = 25w(T/V) (0.9.e- 13,82/EDT

+ 0.1. e-13.82 t/T) (22b)

I diffuse= 312(w /4π)((T/V)
(0.9.e- 0.04 r/EDT + 0.1. e- 0.04 r/T)(22c)

This expression could be applicable
to spaces with asymmetric absorption
distribution..
4. Fourth- M.Vorlander, [3]:

I diffuse = (4w /A) e- A/S (23a)

I diffuse = (4w /A).(1-_) (23b),

In this case, he assumed that m of air is
m=0.
The total sound level of these
expressions is:

Lp = Lw + 10 log (Q/4πr2 + (4/A) e-A/S)
(24a)

Lp = Lw + 10 log (Q/4πr2 + (4/A) (1-α)
(24b)

For α low values and ignoring m air
coefficient the formula (24b) is
converted to expression (11a), when
A=Sα, (1-α) ≈ 1. The expression most
typically used for room reverberation is:

Lp = Lw + 10 log (Q/4πr2 + (4/Sα)(25)

4. RADIUS, OR DISTANCE, OF
REVERBERATION
Here, our aim is to obtain the radius of
reverberation of the main formulae
shown above.  To find the “reverberation
distance” rrev we can carry out the
following equality (26), to see if from
this equality we can meet the
reverberation distance. This distance is
that at which the direct sound reaches
the same level as the reverberant or
diffuse field.

Idirect = I diffuse (26)

Classical Formulae: 
Matching the corresponding term of the
direct sound with the term of the diffuse
sound field of the formulae (11a), (11b),
(13a), (13b), (15a) and (15b) and solving
for r, we obtain rH ,for each case. 

r H = (QA /16π )1/2 (27a)

rH = (QV/T100π )1/2 (27b)

rH = (QαS/16π (1-α))1/2 (27c)

rH = (QA /16π )1/2 (27d)

where: A= [-Sln(1-α)+4mv], but when
α is a low value then A= Sα and
ignoring m, then the formula (27d) is
equal to (27c) being (1-α) ≈ 1  .

Non-Classic Formulae:
Matching the corresponding term of the
direct sound with the term of the diffuse
sound field for formulae (15b), (15c),
(21), (24a) and (25b) and (13b) solving
for r we obtain the following for each
case:
a) Barron 
From (15b):

Q/4πr2=25(T/V).e-0.04 r/T (28a)

From (15c):
Q/4πr2 = (4/A).e-(ct/4V)A (28b)

Therefore r in equations (28a) and
(28b) only can be solved by iteration.
Iteration means that the left term value
is equal to the right term for one r
searched by computation.

Additionally, from equation (28a)
for Q=1, we have obtained:
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r = (1/100π)(V/T)e -0.04 r/T, (29a)

If in equation (28b) we write ct =
lm= 4V/S in exponent terms, then r is:

rH = {[AQ/16π] eA/S}1/2 (29b)

this last equation is equal to (31a)
according to Vorländer.

b) Nijs et al
From (24)

if Idiff = Idir we obtain: Q/4πr2

= [4(1-α) r/lm]/Sα (30)

This equation is derived also from
Barron’s equation; therefore r is only
solved by iteration.

c) Vorlander 
From (24a) we obtain:

rH = {[AQ/16π] eA/S}1/2 (31a)

And from (24b):
rH = {[AQ/16π (1-α)]1/2 (31b),

5. COMPARISON BETWEEN
SEVERAL REVERBERATION
RADIUS FORMULAE rH . A NEW
DISCUSSION ABOUT STEADY
STATE ENERGY IN ENCLOSURES 
1) Concept:
The Euclidean distance between sound
source and receiver is a scalar quantity
between two points in same medium
and does not depend on any external
influence that exist in the same
medium. 

We imagine that the sound from a
source propagates in a room. In this
room the sound is transmitted directly
between the sound source and a
receiver. But we also know that the
sound collides against the walls
surrounding the room. These walls can
have low or high absorption. The
reflected sound from the walls creates a
diffused sound field or a reverberated
sound field. The receiver gets the direct
sound first and shortly afterwards the
reflections that collided against the
walls reach the receiver. Usually, at first

the direct sound level is more intense
than the reverberated sound level that is
practically silenced, but gradually the
reverberated sound increases while the
direct sound fades away when moving
away from the sound source.

The distance between the sound
source and the receiver is very
important and it is called reverberation
distance or reverberation radius. The
reverberation distance rH is the distance
from a sound source and a receiver,
where the direct sound pressure level of
the direct sound field becomes equal to
the reverberated sound field. This
distance is the minimum distance
between source and receiver where all
the sound pressure levels of different
nature become equal. 

The different types are the direct
sound field, (which are free of
propagation, and its pressure level
decrease 6 dB to the square of the
distance), and the reverberated sound
field (caused by the reflections from the
walls that produce the reverberation of
the room).

Initially the direct sound level is
high and conceals the reverberated
sound. Our hearing, during a lapse of
time, cannot hear the reverberated
sound although the first sound
reflections have already been formed on
the walls of the room. In our ear the
reverberation is only produced when we
are able to hear it. If the room is very
reverberant we will hear the
reverberated field almost instantly. But
if the space is very dry or with low
reverberation it will be a lot harder to
hear the reverberated sound field. 

Therefore, we perceive the
reverberation when it reaches us but not
when the first sound reflections are
produced against the walls of the room.

2) Comparison between distance, or
radius, of reverberation
For comparison purposes, we are using a
theoretic space of volume V=400 m3,
with a variable reverberation time. First
the radius of reverberation r = rH of the
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enclosure is calculated using the
classical theory (27b), Barron’s equation
(28b) and Vorländer’s equation (31a),
for the following directivity factors of
sound source Q: 1, 5, 10 and several
reverberation times T= 0.5, 1, 3, 10 s,
for a room of dimensions 10 x 8 x 5 m.
The calculated values for each case of T
and Q, are displayed in Table 1:

In reality, it has not been possible,
experimentally to show the difference of
reverberation distance rH between
classical and revised theories. In next
paragraph 3), we explain the reason
because these calculations are
unsuccessful.

3) A new discussion about steady state
energy in enclosures
We know that radius or distance of
reverberation is the distance at which
the direct and reverberant levels become
equals.

Because of this distance rH, the
direct sound level is masking the
reverberant sound level. It is by this
question that the reverberant sound is
not perceived in our ear. It is this point
that defines the distance rH to source. At
this point the reverberant sound
subjectively is borne into to our ears.

Therefore it is required that the
lower limit of integral of reflected

noise notes volume 11 number 4

Table 1. Analysis of the reverberation radius rH using several methods.
Room: 10 m x 8 m x 5 m, S=260 m2, T=0.5 s

Example 1 Radius reverberation rH (m)
(Q) Classical (33b) Barron Vorlander
1 1.60 1.71 2.04
5 3.57 4.23 4.56
10 5.05 6.56 6.45

Room: 10 m x 8 m x 5 m, S=260 m2, T=1 s

Example 2 Radius reverberation rH (m)
(Q) Classical (33b) Barron Vorlander
1 1.13 1.15 1.28
5 2.52 2.66 2.85
10 3.75 3.85 4.04

Room: 10 m x 8 m x 5 m, S=260 m2, T=3 s

Example 3 Radius reverberation rH (m)
(Q) Classical (33b) Barron Vorlander
1 0.65 0.65 0.68
5 1.46 1.47 1.52
10 2.06 2.09 2.15

Room: 10 m x 8 m x 5 m, S=260 m2, T=10 s

Example 4 Radius reverberation rH (m)
(Q) Classical (33b) Barron Vorlander
1 0.36 0.36 0.36
5 0-80 0.80 0.81
10 1.13 1.13 1.14
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intensity must start with td = t - tH or rd/
c = r/c - rH/c, where rH , r H =
(QA/16π )1/2, for Q = 1 normally. 

So the revised theory of Mike
Barron must be corrected in this sense
but to do it in the Michael Vorländer
formula is not possible. 

We know that the sound
(“integrated”) intensity , or I diffuse . In
this case we write: 

(32)

Where now the lower limit must be
td = t - tH , for td ≥ 0, where tH is the
interval of time of the distance of
reverberation rH, 

The equivalent formulae calculated
by M.Barron solving this integral, are as
follows:

Idiffuse = (4 /A).e -((r – r
H

)/4 V)A (33a)

Idiffuse = 25 w (T/V).e-0.04 (r - r
H

)/T(33b)

Idiffuse = 312 (w/4π)(T/V).e-0.04 (r - r
H

)/T

(33c)

If any formula (33a,” or, b, or c”) is
td = 0 then t = tH or r/c = rH/c.
Therefore for td = 0 we obtain that the
equation (33a), (for example), becomes
to classical equation (10a). Using now
the formula (27a) we obtain rH , This rH

is the classical distance reverberation rH

= (A /16π )1/2, for Q = 1.. 
This shows that the revised theory

must not have a rH value different than
the classical expression  therefore the
several values of distance of
reverberation computed by revised
theories in 5 section are wrong. It is
Only possible to find the distance rH

from the classical formula.
This correction is not possible in

the formula of M.Vorlander because his
formula would lose its identity by
becoming the revised formula of
M.Barron modified.

We remark that rH increases, when
the reverberation time decreases, or
when the absorption unit A increases.

Therefore td = t - tH change with
reverberation time (or absorption A) of
hall.

This means that the value tH

produces a time delay when the
reflected intensity field arises, in the
hall, after that the sound has been
produced by the source in time t=0 s.

Here we have solved only one small
aspect of revised theory. This perhaps
may solve the calculation for all types of
usages of rooms with reliability, and not
only for concerts.

Many years ago, after 1995, we
thought that the theory of M.Barron
was true if radius reverberation
calculated from his theory was checked
experimentally. But we never did get it 

Here we have finished many years
of research, [11], always occupied in
obtaining the radius of reverberation of
revised theories, but our experiments
were useless. Now theoretically we
know this is not possible. 

We remark that rH increases, when
the reverberation time decreases, or
when the absorption unit A increases.
Therefore td= t - tH change with
reverberation time (or absorption A) of
hall.

This means that the value tH

produces a time delay as the reflected
intensity field arises, in the hall, after
that the sound has been produced by the
source in time t=0 s.

Therefore we write the new
formulae of revised theory of Barron-
Lee, so:

d= 100/r2,
e= (31200 T/V) e-0.04 (r-rH)/T. (1- e-1.11/T),
l =  (31200 T/V) e-0.04 (r-rH)/T. e-1.11/T,

Thus we can to write:

C80= 10 log (d+ e)/l
G= L-L0 = 10 log (d+e+l), 

which is equal to:G = 10 log { 100/r2

+ 31200 (T/V) e-0.04 ( r-rH) / T] (34)

When r = rH, we obtain the
classical expression:

I w V e dt
t

c t t v A

td

H

∞
− −

∞

= ⋅∫( / ) ( ( )/ )4

I
t

∞
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G = 10 log { 100/r2 + 31200 (T/V),

6. OTHER EXPERIMENTAL
EQUATIONS
Classrooms
Sato and Bradley [12] recently proposed
the following experiment:

I diffuse = (4w/αS)(1-α) ε..r/lm (35)

Factor ε here represents order 2.
This factor was introduced in a study
carried out in classrooms.

The total sound level of this
expression is:

Lp = Lw + 10 log {Q/4πr2 +
(4/αS)(1-α) ε..r/mfp} (36)

From expression (15c), formula
Eyring, and (21) we can derive:

Lp early = Lw speech + 10log (Q/4πr2 + 
(4(1-α) r/lm/αS).(1-e-0.69/T) (37)

Lp late = Lw speech + 10 log (4(1-α)r/lm

/αS).(e-0.69/T) (38)

C50 (without noise) is defined by the
difference between two values: 

Lp early - Lp late (39)

It is sometimes necessary to
introduce noise in this last expression to
account for noise made by traffic or
ventilation systems, therefore for (15a)
the following formula can be written:

Lp noise = Lw noise + 10 log (4/A)(40)

From formula (39) and (40) we
have:

Lp late+noise = Lw speech + 10 log (4(1-α)
r/lm/αS).(e-0.69/T) + (4.10-S/N/10)/αS (41)

where SN is SN = Lw speech – Lw noise.

Churches and Religious Buildings
Several recent measurement exercises
carried out in religious
buildings,[12],[13],  show that diffuse

sound levels generally decrease when
distance r increases between source and
receiver.

In these cases the formula is
corrected by empirical measurements: 

Idiffuse = (4w/A).e-0.04 β r/T (42)

β are experimental values.
The total sound level of this

expression is:

Lp = Lw + 10 log {Q /4πr2

+(4/A)e-0.04 β r/T} (43)

Industrial Enclosures
In this case we write the complete
formula Lp in each case:

Kuttruff Models [15]:
Kuttruff proposed one model for
predicting octave band sound
propagation which only applies to wide
and long fitted workrooms. The models
are based on the assumption that
workrooms with floor fittings can be
modelled as an empty workroom with a
diffuse reflecting floor.

One model further assumes that the
ceiling is also diffuse reflecting. This
diffuse model can be expressed as
follows:

SPtot(r)= 10 log [(1/4π r2)+
(1-α){[1+r2/h2)1.5 +

b(1-α)(b2+r2/h2)1.5/α]/πh2}] (44)

in which h=H, the room height, r is the
source-receiver distance, α is the
average surface absorption coefficient
and β is a tabulated factor, with β
representing a constant value 3 for a
rectangular halls.

Osipov,Sergei and Shubin Model [16]:
This model assumes that sound
propagation is cylindrical but that the
room geometry is rectangular.

Lp = Lw + 10 log [1/2πr2+ ((1-α)
(r+W) J(α,ρ)) HW(r+H)] (45)

where J(α,ρ)) = 0.1/α2+ρ2 e0.65r, in
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which is: ρ =- r S ln(1-α)/4V is a
dimensionless distance, r is the distance
from source- receiver and α is the
average absorption coefficient of the
room surfaces, as the room was empty
for the purposes of Table 1. The empty
factory values are used for the walls and
ceiling; the values for the appropriate
industry are used for the floor. Here, m
is air absorption in Np/m. H is room
height, W is room width.

Thompson et al. [16] Model:
They proposed a modification to the
existing steady sound level formula:

Lp = Lw + 10 log [(e-mr/4πr2) +
4V/rS(αS+4mV)] + 10 log{(t0 +
460)/527 + 30/p0} (46)

where: t0 is temperature in 0C and p0 is
the barometric air pressure.

R.E. Jonckheere, F. Verbandt Model [18]
They described a new model based on the
classic general formula (19b), developing
it until the experimental result fitted best
with the calculated values.

The final model established is:

Lp =Lw+ A log ((C/r2)+(D/rB)+(E/rF))
(47)

with, Lp: Sound pressure level dB at a
distance r from source.
Lw Sound power level of the
source.
r distance between source and
receiver.
A = -5.9407 logH + 5.8267 logSg-
3.0125 log Sw -2.5933 log T-1.9651
log + λ 8.3711,

B = -0.84669 log H + 0.0099740
log Sg-0.027103 log Sw + 0.14816
log T-0.025967 log + λ 1.0898
C = +0.31944 log H - 0.20796 log
Sg + 0.25196 log Sw - 0.025819
logT - 0.12450 log - λ 0.14910
D = -072493 logH + 0,071599 log
Sg - 0.0504311 log Sw - 0.0035823
logT + 0.0058199 log + λ 0.7056,
E = +031220
F = +1.5302
H = room height, Sg= floor area,
Sw = Total area of all surfaces T=
Reverberation Time, λ sound
wave length.

The mean deviation of the
measured and the calculated values
amounts to 1.24 dB for 88000
measurements. The application range of
this formula is between 400 and 14000
m3, absorption coefficients between
0.07 and 0.21, frequencies between 500
and 5000 Hz. This method allows us to
make a prediction with a mean accuracy
of 1.8 dB.  

C.Bodrone-Sacerdote and G.Sacerdote
[19] ,reference A.Cops [20], model

If the dimensions of the floor of a
closed room are more than five times
the height of the ceiling, the reflections
of the walls are negligible. In this
circumstance, the diffuse sound field is
reduced. The reflected sound pressure
level is no longer uniform and decreases
with the increasing distance. A
theoretical approximation based on
image points, gives the following
relationship between the sound
pressure level. Lp, the sound power level
Lw, the absorption coefficient α of
ceiling and the relation number x=r/d,
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Table 1. Absorption coefficients for typical factories and furnished factories (several
authors)

Frequency Hz 250 500 1000 2000 4000
Empty factories 0.09 0.09 0.09 0.08 0.09
Textile Industry 0.25 0.29 0.40 0.40 0.43
Print industry 0.31 0.27 0.26 0.31 0.31
Metal work 0.32 0.30 0.34 0.34 0.38
Low freq. fittings 0.20 0.10 0.10 0.10 0.10
Mid freq. fittings 0.35 0.30 0.25 0.15 0.10
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with r representing the distance
between source and receiver and d, the
height of ceiling:

Lp= Lw + 10 log (1.05/4πd2) +10log 
{∑

n
(1-α)n/2 [(2/(n2+x2) +

((2-α)/(x2+(n+1)2]- (1/x2)} (48)

Where n is the number of sources. 
The reflected sound pressure level

is not constant at considerable distances
from the sound sources, as located in a
diffuse sound field.

1. We see in example 1, that when the
reverberation time T is low, the
radius of reverberation increases
with the factor directivity of source.
In this case, we can see an important
discrepancy between classical and
non classical theories where the
directivity factor increases.

2. When the reverberation time is
increased, the radius of
reverberation of all theories is
similar. Where reverberation time
is very high, we see that all
theories studied are equal for each
directivity factor analysed.

7. CONCLUSIONS
The objective of this paper was to
present many theories and empirical
formulae of interest in the field of
architectural acoustics, developing the
full range of equations that may be of
interest for technical studies in areas
such as classrooms, churches, concert
halls, industrial enclosures, restaurants,
…... 

We have analized a new aspect of
the refllected intensity finding a new
lower limit of the integral. We have
found the explanation of why the
reverberation, or distance, radius,
cannot exist in the Revised theory.
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TOUGHER PROTECTION NEEDED AGAINST WIND FARM NOISE, CALL

The Welsh Parliament Petitions Committee has called for faulty wind turbines to be switched off at night and
for the introduction of buffer zones to protect nearby residents. The report was produced in response to a
petition with more than 1,000 signatures calling for greater control of noise from wind turbines. The
committee concluded measures could be applied if the Welsh Government amended statutory planning
guidance. with regards to faulty turbines and buffer zones. The Welsh Government only has powers over
planning concerning the siting of on-shore installations generating less than 50MW, but heard that noise
nuisance was not always commensurate with the size of the installation. William Powell AM, chair of the
Petitions Committee, said: “We were told that some people no longer enjoyed being outside in their own
gardens, others were afraid that their homes would be devalued and some had sleep problems leading to
mental and physical health issues. The health and wellbeing of people living in Wales is a top priority and it
is vital that residents living close to wind turbines are protected. The Committee recognises the importance of
securing green energy sources to meet our energy needs in the future, however, this should not be done at
the expense of people’s health.”

CHENNAI GET NOISIER

Just when it seemed Chennai could not get any noisier, it did. The numerous flyovers under construction along
with the massive Metro Rail project snaking through the city have resulted in higher levels of noise pollution
than ever before, especially in the residential and “silent” zones. A study, by an IIT-Madras team, measured
sound levels across the city, and found that even in the “silent zones” - a 100 metre radius around educational
institutes, hospitals and courts - noise pollution was between 40 and 70 decibels louder than the permissible
level of 50 dB during the day and 40 dB at night.


