noise notes

Masked Perception Thresholds of Low Frequency **Tones Under Background Noises** and Their Estimation by Loudness Model

Jishnu K. Subedi*, Hiroki Yamaguchi, Yasunao Matsumoto

Department of Civil and Environmental Engineering, Saitama University, 255 Shimo-ohkubo, Saitama, 338-8570, JAPAN *E-mail: s01d2053@post.saitama-u.ac.jp

This paper presents experimental measurements of masked thresholds of low frequency tones under background noises and application of loudness model to estimate the thresholds. The measurements of thresholds for tones at frequencies 20, 31.5, 40 and 50 Hz were conducted under three background noise conditions: one ambient noise and 60-100 Hz band-pass noises at two levels. The measurements were carried out in an uncontrolled environment in relatively quiet times. The perception thresholds of the same subjects were also measured for frequencies 31.5, 40 and 50 Hz inside a cabin with ambient noise levels well below the average hearing thresholds specified in ISO 389-7. Moore's loudness model has been used to estimate the masked thresholds. The estimated thresholds from the loudness model have been compared with the results obtained in the experiment. The results indicate that the noise above 50 Hz is effective in masking the low frequency tones at 50 Hz and below, and that Moore's loudness model can predict reasonably the average of the measured masked thresholds.

1. INTRODUCTION

Sources of low frequency noise in the environment are growing. Many house in the auditory sensations, such as appliances, such as ventilation systems loudness and annoyance, with respect to and refrigerators, and some civil the change in the sound pressure levels engineering structures, such as viaducts at low frequencies is not taken into and railway tunnels, are some of the account in the weighting networks. common sources of low frequency noise. In order to calculate the response to Recent field investigations [1-3] have complex sounds more accurately, indicated that increasing numbers of Zwicker and co-workers developed people are complaining about problems loudness models [7]. Although the arising from low frequency noise. The model is widely used for practical low frequency noise occurs, normally, as purposes, low frequency sounds below a part of a complex sound containing 50 Hz are not included in it. Moore et al. energies over wide frequency range. As [8,9] developed revised loudness models the response of the auditory system to based upon the original work by Zwicker, which could be used for sounds of different frequencies differs, the quantification of the total response frequencies down to 20 Hz. from these complex sounds is These loudness models were complicated. It is now understood that developed basically from experiments the levels obtained from commonly on masking effects, which can be used frequency weighting networks, measured quantitatively by measuring such as the A-weighting, do not the masked threshold of a test sound in correlate well with the response to the presence of masker sounds. The complex sounds with audible low measurements of masked thresholds

frequency components [4-6]. The reason for this is the fact that the rapid change

noise notes volume 4 number 3

<u>30</u>

masked Perception Thresholds of Low Frequency Tones

show that low frequency sounds below 50 Hz can also produce masking effects. Finck [10] used 100, 115 and 130 dB sound pressure levels of 10, 15, 25 and 50 Hz tones as masker sounds and measured the masked thresholds of test sounds in the frequency range of 50 to 4800 Hz. His results showed that the maskers could produce constant masking effects up to 500 Hz. Watanabe et al. [11,12] used pure tones and complex tones at frequencies of 10 and 20 Hz as masker sounds to measure the masked thresholds of tones at frequencies from 4 Hz to 50 Hz. They also used band-pass noises with different widths centered on 20 Hz as masker sounds to measure the masked thresholds of pure tone at 20 Hz. Their results varied greatly among the subjects, and in some cases the masked threshold appeared lower than the threshold in quiet. In a similar study, Fidell et al. [13] showed that sound at 40 Hz is masked by a masker with band limits of 11-400 Hz.

Although these results indicate that masking effects are present in the low frequency regions below 50 Hz, they cannot be used directly to construct a loudness model because of the limited available data and the large variations among the data. Therefore, Moore's loudness model below 100 Hz is based on the extrapolation of data above 100 Hz [9]. The application of the model to estimate the threshold of complex sounds [9] and the loudness of complex sounds [14] for high frequencies showed that the results are accurate enough within subjective variability. However, the applicability of the model for low frequencies has yet to be verified.

Furthermore, direct application of the model based on the auditory mechanism is questionable in the low frequency region below 50 Hz, as there are reports suggesting a presence of other mechanism of the perception besides auditory at these frequencies. From the experiments with components

of sound below 50 Hz and noise above 50 Hz, Inukai et al. [15, 16] indicated that other factors of perception such as vibration and feelings of pressure are also associated with sounds below 50 Hz. However, results from a survey of complaints about infrasound and low frequency noise showed that 93% of the complainants perceive the sound through the ears [17].

In order to understand the mechanism of perception of low frequency sounds more accurately, the measurement of masked thresholds of low frequency sounds masked by high frequency sounds is useful. The present study, therefore, has been carried out to measure masked thresholds of low frequency tones under different levels of background noise and to investigate the applicability of Moore's loudness model to estimate the thresholds. The perception thresholds of low frequency tones at 50 Hz and below are measured under different background noise conditions in controlled and uncontrolled environments and the results are compared with the estimated results from the loudness model.

2. EXPERIMENTAL METHOD 2.1 THRESHOLD MEASUREMENT

UNDER BACKGROUND NOISES In order to investigate the masked thresholds of human subjects for low frequency tones under masker sounds, a room environment with ambient sound was selected. A room (6.5 ¥ 3.75 ¥ 5.3 m), as shown in Figure 1(a), was used for the measurement, and test sounds were produced from a low frequency speaker (YAMAHA, YST 800) placed in the middle of the room at a height of 1.0 m above the ground. An infrasound microphone (RION NA-18) was used to measure the sound. In order to keep the

ambient sound at constant levels, the experiments were conducted during night hours at a relatively quiet time. A function generator (NF

Figure 1 Schematic diagram of the experimental setup for the uncontrolled environment. (a) Plan view of the experimental setup; (b) Elevation showing placement of speakers and subject.

ELECTRONIC INSTRUMENTS, E-1011A) was used as the source for the pure tone test sounds, and the frequencies of the test sounds used in the experiment were 20, 31.5, 40 and 50 Hz. Masked thresholds of the test sounds were measured under three different masker sounds: one ambient noise (Ambient Noise) and two bandpass noises from frequency 60 to 100 Hz at different levels (Noise 1 and Noise 2). The band-pass noises were generated from a PC operated by the experimenter. In later discussion, the test sounds are referred as "signals" and the masker sounds in the background are referred as "background noises".

Four male and one female subjects, aged between 26 and 29 yrs, participated hearing threshold above 50 Hz. As the in the experiment. The subjects were ambient noise was not controlled placed in front of the speaker at a during the experiments, the distance of one meter for all cases except reproducibility of these noise for signals at 20 Hz, where the subjects conditions during the measurement of were placed at 30 cm from the speaker. the perception thresholds was The change in the position was investigated. necessary to achieve sufficient level of The average 1/3 octave band sound 20 Hz signal without any significant pressure levels in the frequency range higher harmonics. During the 50-200 Hz, which were measured for measurements, the subjects were seated signals of frequency 31.5 Hz at its in an upright position with the height of masked threshold under Ambient Noise, are shown in Fig. 2(a) by filled their ear adjusted at 1.2 m as shown in Figure 1(b). The microphone was circles. Their comparison with the 1/3 placed at 0.2 m from center of the octave band sound pressure levels of subjects' head. The noises were Ambient Noise only showed that the produced from another speaker of same difference is about 1 dB at 63 Hz, 2 dB at 100 Hz and no difference at other type. The speaker was placed below the

speaker for the signal, as shown in Figure 1b.

The subjects could adjust the level of the signals from the function generator, and the thresholds were measured by the method of adjustment with four repetitions - two starting below audibility and two starting above. Before starting the measurements, the subjects were given a sufficient time for practice so that they could distinguish between the signals and the background noises.

The 1/3 octave band sound pressure levels of the three background noises are shown in Figures 2(a) and 2(b) by continuous lines. As seen in the figures, the background noises exceed the ISO

masked Perception Thresholds of Low Frequency Tones

noise notes volume 4 number 3

<u>32</u>

masked Perception Thresholds of Low Frequency Tones

Figure 3 Schematic diagram of the plan view of the experimental facilities inside the cabin.

frequencies. Similar comparison for measurements under Noise 1 (shown by crosses in the figure) with Noise 1 only and Noise 2 (shown by filled triangles in the figure) with Noise 2 only showed th

40 and 50 Hz. Therefore, the background noises were considered reproducible for the measurement of perception thresholds at frequencies 31.5, 40 and 50 Hz and they are

that the differences are within a similar	represented by the measured 1/3 octave				
range. The results were similar for	band sound pressure levels of the noise				
measurements of perception threshold	only conditions in further discussion.				
at frequencies	However, as seen in Fig. 2(b), the				

masked Perception Thresholds of Low Frequency Tones

average 1/3 octave band sound pressure levels of signal at 20 Hz under background noises, shown by symbols in the figure, differ significantly from the measurements for noise only cases. The measurements showed that higher harmonics at 60 Hz exceeded the ISO threshold by about 5 dB when the sound pressure level of 20 Hz signal was at 80 dB. Although the levels of background noises were at sufficiently high to mask these 60 Hz harmonics, there was an effect of varying the sound pressure levels of the background noises in some sets of measurements. Therefore, the three background noise conditions (Ambient Noise, Noise 1 and Noise 2) for the signal at 20 Hz are represented by the average 1/3 octave band sound pressure levels measured for all the subjects.

2.2 THRESHOLD MEASUREMENT IN QUIET

The measurements of the thresholds in quiet for the same subjects were conducted in a cabin of size 1.8 ¥ 1.2 ¥ 2.3 m (Fig. 3) designed for experiments on low frequency noise. Four speakers (YST 800) placed in two horizontal lines were used, and the subjects were placed in front of the speakers at a distance of

1.0 m. The microphone (RION NA-18) was placed 0.2 m from center of the subjects' head position near their right ear. The measured background noise in the cabin at the location of the microphone is shown in Fig. 4 along with the average hearing threshold level specified in ISO 389:7 [18]. The sound pressure level of the background noise crosses the ISO hearing threshold curve above 160 Hz. The noise conditions above 100 Hz in the cabin were similar to another experiment room for low frequency noise [19].

The threshold measurement method was the indirect method of adjustment with UP and DOWN sequence, where the subjects did not have direct control over the sound pressure level. During the measurements, the subjects and the experimenter could not see each other and specially designed buttons and indicators were used for communication. In the UP sequence, the subjects were presented continuous signals well below their hearing threshold and they were asked to press the 'UP' button until the sound was just noticeable to them. The experimenter would increase the level until the subject responded by pressing the

Background noise measured inside the cabin at the position of the Figure 4 microphone shown in Figure 3.

noise notes volume 4 number 3

<u>34</u>

masked Perception Thresholds of Low Frequency Tones

'DECISION' button. In case the signal became sufficiently high and the subjects asked to decrease the level, the signal was decreased to the level below audibility and the process started again. The process was similar for the 'DOWN' sequence, but the starting sound pressure level was well above the audible level of the subjects. The subjects were then asked to press DOWN button to decrease the level of the sound. The higher harmonics produced during the measurement of perception threshold at 20 Hz in quiet were significant in the absence of the background noises. Because of this limitation, the measurement of thresholds for 20 Hz tone was not carried out. Two repetitions at each frequency were made for four subjects, and four repetitions were made for one subject. The summary of all the experimental conditions is given in Table I.

3. EXPERIMENTALLY **MEASURED THRESHOLDS**

3.1 THRESHOLDS FOR PURE TONES IN QUIET

Results of threshold measurements for frequencies, the results cannot be the five subjects in the quiet are shown compared directly with results from by the filled symbols in Fig. 5(a). As can other frequencies. However, it can be be seen in the figure, the average seen from the results that the increase threshold in quiet is 6.6, 8.9 and 8.0 dB in the perception threshold with above the average threshold of hearing increase in the level of background defined in ISO 389-7 [18] for noise is observed at 20 Hz also. The frequencies 31.5, 40 and 50 Hz, results suggest that masker sounds at respectively. The large difference in the frequencies 50 Hz and above can produce masking effects to sounds down two thresholds could not be due to the presence of the noise in Fig. 4, because to 20 Hz. However, the increase in the the sound pressure level of the noise perception threshold decreased with higher than ISO hearing threshold only decreases in the frequency for all above 160 Hz should not affect the background noises. This tendency results at 50 Hz and below adversely. suggests that the masking effect Although the recommended age limit of decreased with increases in the the subjects for ISO hearing threshold is frequency separation between the noise from 18 to 25 years inclusive, all of the and the signal. subjects of this study were of age above The possible indication of these results 26 years. Hence, it is possible that the would be that the main mechanism of perception of sounds at 50 Hz and below subjects' thresholds were higher than

average thresholds specified in the ISO. As separate audiometric tests were not conducted for the subjects, this could not be verified, while the average thresholds obtained in this study are similar to the average thresholds obtained by Inukai et al. [20] for subjects aged between 19 and 62 years. For further discussion in this study, the perception thresholds measured inside the cabin are considered as the threshold in quiet for the subjects.

3.2 MASKED THRESHOLD

The average masked thresholds with different levels of background noises are also shown in Fig. 5(a). The standard deviations of the thresholds among five subjects for all the cases are shown in Fig. 5(b). The detailed experimental results for individual subjects are given in Subedi et al. [21]. It can be seen in the figure that increases in the level of background noise cause an increase in the perception threshold level. As the sound pressure levels of background noises vary among the subjects for the case of test sound at 20 Hz and average sound pressure levels of the noises are different from those at other

masked Perception Thresholds of Low Frequency Tones

Table I. Summary of the experimental conditions									
		Distance (m) from speaker to the						Number	
Background		subjects for test frequencies					of		
condition	Noise type	20 Hz	31.5 Hz	40 Hz	50 Hz	Environment	Method	repetitions	
Quiet	-	-	I	Ι	I	Controlled environment inside cabin	Indirect method of adjustment	2*	
Ambient Noise	Ambient noise in relatively quiet time	0.3	I	Ι	Ι	Uncontrolled environment	Method of adjustment	4	
Noise I	60-100 Hz band-pass noise	0.3	Ι	Ι	I				
Noise 2	60-100 Hz band-pass noise	0.3	Ι	Ι	I				
*4 repetitions	were made for one subject								

Perception thresholds in quiet and under background noises. (a) Figure 5 Average thresholds (The reference hearing threshold curve specified in ISO 389-7 is also shown.); and (b) Standard deviation.

noise notes volume 4 number 3

masked Perception Thresholds of Low Frequency Tones

is an auditory mechanism. If the masker sounds in the frequencies above 50 Hz are perceived only by auditory mechanism, these sounds should be able to produce masking effects mainly on the auditory mechanism, and perception by other mechanisms, such as vibration, pressure feeling and vibrotactile perception, would not be masked by these masker sounds. As the masker sounds caused increase in the perception thresholds of the test sounds at 50 Hz and below by more than 20 dB, it could be possible that the main mechanism of perception of these test sounds is an auditory mechanism. However, other mechanisms of perceptions, such as vibro-tactile perception, are also involved at sufficiently higher sound pressure levels as suggested by Landstrom et al. [22].

4. APPLICATION OF MOORE'S LOUDNESS MODEL

4.1 AUDITORY SYSTEM IN THE MODEL

Moore's loudness model [9] is an Hz. As the sound pressure levels empirical approach to estimate the measured under the noise only conditions differed from the average loudness from the sound stimulus. The model takes into account the processing sound pressure levels measured in the of the sound stimulus in different parts presence of the noise and signal of 20 of the auditory system at different stages Hz, the model was not applied to to calculate the loudness. The subestimate the masked thresholds of 20 systems of the model are shown Hz. schematically in Fig. 6. The sound Because the input for the masker stimulus 6(a) passes through outer and sounds, i.e. the background noises, was middle ear, and the processing in the limited for frequencies up to 200 Hz, it outer and middle ear is achieved in the was assumed that the sounds above 200 model by fixed transfer functions 6(b). Hz did not have any masking effects for signals below 50 Hz. In order to verify The stimulus after the processing in the outer and middle ear reaches the inner this assumption, the specific loudness ear and excites the inner ear where the for a 50 Hz signal under Noise 2 at its masked threshold is shown in Fig. 7. As impedance increases with decrease in seen in the figure, the specific loudness the frequency. The increase in the impedance suggests that the auditory for the 50 Hz signal approaches an system has less efficiency at lower insignificant level above 80 Hz. Hence, frequencies. This impedance in the the contribution to the masked inner ear is represented in the model by threshold is only from the frequency the "excitation at the threshold" 6(c), below 80 Hz. Although the maximum which is a threshold expressed as the contributing frequency changes with

sound pressure level reaching the inner ear. The inner ear is modeled as bank of overlapping auditory filters, and the "excitation pattern" 6(d) is calculated as an output of the filters for the corrected stimulus reaching the inner ear. The excitation pattern corresponds directly to the specific loudness 6(e), and the summation of the specific loudness across the ERB scale gives the loudness 6(f) for that sound. The ERB stands for the "equivalent rectangular bandwidth" of the auditory filter at certain frequency and is a function of frequency [23]. Besides the loudness of pure tones and complex sounds, the model can also be used to estimate their thresholds.

4.2 INPUT OF MASKER SOUNDS TO THE MODEL

The sound pressure levels of the 1/3 octave band spectrum up to 200 Hz, which were measured under the noise only conditions, were taken as inputs representing the masker sounds in the model to estimate masked thresholds of pure tones at frequencies 31.5, 40 and 50

Schematic diagram showing different stages in the Moore's loudness Figure 6 model (based upon Moore et al. [9]).

the level of masker sound, the choice to limit the frequency up to 200 Hz for all three levels of background noises might seem appropriate.

The unit of specific loudness in Fig. 7 is sone/ERB and loudness is obtained by summing specific loudness across the ERB scale. The ERB scale is also shown on the upper axis in the figure. The obtained loudness in sones can be converted to loudness level in phons from the relation given by Moore et al. [9]. The total estimated loudnesses from Moore's model for Ambient Noise, Noise 1 and Noise 2 are 25.4, 46.5 and 55.0 phon, respectively.

AND MEASURED MASKED THRESHOLDS

estimate the masked thresholds for the comparison of the equal loudness level low frequency tones at frequencies 31.5, contours calculated from the model and 40 and 50 Hz under the background the ISO is shown in Fig. 9. It can be noises. Comparison of the average of the observed in the figure that at lower

measured masked thresholds for the five subjects under the three background noises with the estimated results from the model is shown in Fig. 8.

As shown in the figure, the estimated results in Ambient Noise are lower than the measured masked thresholds, while the estimated results are higher than the measured masked thresholds for Noise 1 and Noise 2. The differences in the estimated and average of measured results are within 6 dB for these frequencies. The differences are larger for the frequencies 40 and 50 Hz in the case of Ambient Noise, while they are larger for 31.5 Hz in the case of Noise 1 and Noise 2.

In order to further investigate the 5. COMPARISON OF ESTIMATED estimated results of the model, the estimated loudness levels from the model were compared with the loudness Moore's loudness model was applied to levels specified in ISO 226 [24]. The

noise notes volume 4 number 3

38

Average measured thresholds under three different background Figure 8

noises and estimated results from Moore's loudness model (E -Estimated values, M - Measured values). The reference hearing threshold curve specified in ISO 389-7 is also shown.

Figure 9 Equal loudness contours from ISO 226 and estimated from Moore's loudness model. Loudness levels in phon are shown for each estimated contours. The lowest solid line is hearing threshold estimated from the model.

loudness levels the estimated contours are lower than the contours specified in ISO 226, and with increase in the loudness levels the estimated contours gradually become higher than the contours specified in the ISO. As shown in Fig. 8, a similar change in the trend is observed also in the case of the measurements of masked thresholds, where the estimated thresholds are lower than the measured thresholds in Ambient Noise and higher in Noise 1 and Noise 2. However, the change in the trend occurred at lower sound pressure level in case of the thresholds compared to the case of loudness contours.

Furthermore, it can be pointed out that the two contours from estimated results and ISO 226 are not parallel to each other. At 20 phons loudness level the two contours cross each other roughly at 25 Hz. Although this trend is observed at all levels, the crossing point is shifting towards higher frequencies with increase in the loudness level. The possible reason for this is that the assumed efficiency of the auditory system in the loudness model at lower frequencies is lower with respect to the Hz. assumed efficiency at higher frequencies in comparison to the real behavior, and this tendency increases 6. CONCLUSIONS with increase in the loudness level. The The perception thresholds of low

comparatively large differences in estimated and measured thresholds at 31.5 Hz for Noise 1 and Noise 2 can also be explained by this phenomenon.

The possible reason for the relatively lower efficiency in the low frequencies is because of the assumption in the model that the assumed auditory filters in the inner ear are limited only down to 50 Hz [9]. It is considered in the model that the frequencies below 50 Hz are detected because they produce outputs from the auditory filters tuned above 50 Hz. This contradicts the experimental study on low frequencies, which suggest that tonal behavior of the sound is present down to 20 Hz [25]. Furthermore, it has been observed that the change in the slope of hearing threshold from approximately 20 dB/octave at higher frequencies to 12 dB/octave at lower frequencies occurs at about 15-20 Hz [26]. These studies suggest that the change in the hearing mechanism occurs at 20 Hz not at 50 Hz. Hence, it is recommended that the lower limit of the assumed auditory filters should be extended at least to 20

noise notes volume 4 number 3

<u>40</u>

masked Perception Thresholds of Low Frequency Tones

frequency pure tones at 50 Hz and below were measured under four background conditions in controlled uncontrolled and environments. Moore's loudness model was applied to estimate the thresholds and its performance in the low frequency region was investigated. The findings of this study are summarized as follows:

- 1. The masked perception thresholds of low frequency tonal sounds at 50 Hz and below increased with increases in the level of the background noises above 50 Hz. The thresholds increased by more than 20 dB by adding higher levels of background noises. The increase in the threshold indicates that sounds below 50 Hz can be masked by masker sounds above 50 Hz.
- 2. The estimated thresholds from Moore's model and the average of measured masked thresholds match reasonably well within the subjective variability. However, it can be pointed out that the gradients of the equal loudness-level contours for frequencies below 50 Hz specified in ISO 226 are steeper than the contours obtained from the loudness model.

ACKNOWLEDGEMENTS

The authors are grateful to Prof. Brian R. Glasberg and his co-workers at University of Cambridge for providing data tables of figures from their Journal of Audio Engineering Society paper. The authors also gratefully acknowledge the help of Mr. Mitsutaka Ishihara in the experiments. The research was supported by the Japan Society for the Promotion of Science, the Grant-in-Aid for Scientific Research (15656108, 15760343), and the TOSTEM Foundation for Construction Materials Industry Promotion.

Ochiai, H., Community responses to low frequency noise and administrative actions in Japan, Proceedings of 32nd Internoise, Korea, 2003, 1221-1226.

- 2. Persson-Waye K. and Rylander, R., The prevalence of annoyance and effects after long-term exposure to low-frequency noise, Journal of Sound and Vibration, 2001, 240(3), 483-497.
- 3. van den Berg, F., Low frequency sounds in dwellings: A case control study, Journal of Low Frequency Noise, Vibration and Active Control, 2000, 19(2), 59-71.
- 4. Bryan, M.E., Low frequency noise annoyance, in: Tempest, W., ed., Infrasound and Low Frequency Vibration, 1976, Academic press, London, 65-96.
- Kjellberg, A., Goldstein, M. and Gamberale, 5. F., An assessment of dB(A) for predicting loudness and annoyance of noise containing low frequency components, Journal of Low Frequency Noise and Vibration, 1984, 3(3), 10-16.
- 6. Møller, H., Comments to: Infrasound in residential area - case study, Journal of Low Frequency Noise and Vibration, 1995, 14(2), 105-107.
- 7. Zwicker, E. and Fastl, H., Pyscho-acoustics -Facts and Models, Second updated edn., Springer-Verlag, Germany, 1999.
- 8. Moore B.C.J. and Glasberg B.R., A revision of Zwicker's loudness model. Acustica - acta acustica, 1996, 82, 335-345.
- 9. Moore, B.C.J., Glasberg, B.R. and Baer, T., Model for the prediction of thresholds, loudness, and partial loudness, Journal of Audio Engineering Society, 1997, 45(4), 224-239.

REFERENCES

1. Kamigawara, K., Tokita, Y., Yamada, S. and

10. Finck, A., Low frequency pure tone masking, Journal of the Acoustical Society of America, 1961, 33(8), 1140-1141.

- 11. Watanabe, T. and Yamada, S., Study on the masking of low frequency sound, Proceeding of 10th International Meeting on Low Frequency Noise and Vibration and its Control, 2002, UK, 41-46.
- 12. Watanabe, T. and Yamada, S., Study on perception of complex low frequency sounds, Proceeding of Ninth International Meeting on Low Frequency Noise and Vibration, 2000, Denmark, 199-202.
- 13. Fidell, S., Horonjeff, R., Teffeteller, S. and Green, D. M., Effective masking bandwidths at low frequencies, Journal of the Acoustical Society of America, 1983, 73(2), 628-638.
- 14. Meunier, S., Marchioni, A. and Rabau, G., Subjective evaluation of loudness models using synthesized and environmental sounds, Proceeding of 29th Internoise, France, 2000.
- 15. Inukai, Y., Taya, H., Miyano, H. and Kuriyama, H., An evaluation method of combined effects of infrasound and audible noise, Journal of Low Frequency Noise and Vibration, 1987, 6(3), 119-125.
- 16. Inukai, Y., Taya, H., Miyano, H. and Kuriyama, H., A multidimensional evaluation method for the psychological effects of pure tones at low and infrasonic frequencies, Journal of Low Frequency Noise and Vibration, 1986, 5(3), 104-112.
- 17. Møller, H. and Lydolf, M., A questionnaire survey of complaints of infrasound and lowfrequency noise, Journal of low frequency noise, vibration and active control, 2002, 21(2), 53-64.
- 18. International Organization for Standardization, Acoustics - Reference zero for the calibration of audiometric equipment - part 7: Reference threshold of hearing under free field and diffuse-field listening conditions, ISO 389-7, 1996.

35, 480-488

- 20. Inukai, Y., Nakamura, N. and Taya, H., Unpleasantness and acceptable limits of low frequency sound, Journal of Low Frequency Noise, Vibration and Active Control, 2000, 19(3), 135-140.
- 21. Subedi, J. K., Yamaguchi, H. and Matsumoto, Y., Application of psychoacoustic model to determine perception threshold of low frequency sound in the presence of background noise, Proceeding of 32nd Internoise, Korea, 2003, 2768-2775.
- 22. Landstrom, U., Lundstrom, R. and Bystrom, M., Exposure to infrasound – Perception and changes in wakefulness, Journal of Low Frequency Noise and Vibration, 1983, 2(1), 1-11.
- 23. Moore, B.C.J. and Glasberg, B.R., Suggested formulae for calculating auditory-filter bandwidths and excitation patterns, Journal of the Acoustical Society of America, 1983, 74(3), 750-753.
- 24. International Organization for Standardization, Acoustics-Normal equalloudness-level contrours, ISO 226, 2003.
- 25. Yeowart, Y., Bryan, M.E. and Tempest, W., The monaural M.A.P. threshold of hearing at frequencies from 1.5 to 100 c/s, Journal of Sound and Vibration, 1967, 6(3), 335-342.
- 26. Leventhall, G., A review of published research on low frequency noise and its effects, Report for Defra, 2003.

19. Takahashi, Y., Yonekawa, Y., Kanada, K. and Maeda, S., An infrasound experiment system for industrial hygiene, Industrial Health, 1997,

noise notes volume 4 number 3

<u>41</u>

Noise Notes 4-3 final 29/03/06 3:43 pm Page 42

