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Abstract
Longevity of entrapped air is an outstanding problem for using superhydrophobic
coatings in submersible applications. Under pressure and flowing water, the air
micropockets eventually dissolve into the ambient water or burst and diminish. Herein,
we analyze from first principles a simple mass transfer problem.  We introduce an
effective slip to a Blasius boundary layer, and solve the hydrodynamic equations. A
slowly evolving, non-similar solution is found. We then introduce the hydrodynamic
solution to the two-dimensional problem of alternating solid–water and air–water
interfaces to determine the convective mass transfer of air’s dissolution into water. This
situation simulates spanwise microridges, which is one of the geometries used for
producing superhydrophobic surfaces. The mass-transfer problem has no similarity
solution but is solvable using approximate integral methods. A mass-transfer solution is
achieved as a function of the surface geometry (or gas area fraction), Reynolds number,
and Schmidt number. The analytical results are compared to numerical simulations of the
laminar Navier–Stokes equations. Longevity,  or time-dependent hydrophobicity,  can be
estimated from the resulting mass-transfer correlation.

1. INTRODUCTION
Superhydrophobic coatings possess a strong water-repellent characteristic, which enhances the
mobility of water droplets over such surfaces [1]. The coating traps air within its micropores, such that
a submerged, moving body experiences shear-free and no-slip regions over, respectively,  the air
pockets and the solid surface. This, in turn, may lead to significant skinfriction reduction [2, 3].
Additional applications of hydrophobic surfaces include enhancing evaporation [4–6], hindering frost
[7–10], and resisting corrosion [11, 12].

A popular method of manufacturing a superhydrophobic surface is microfabrication in which
microridges or posts are placed on a surface in a regular configuration [13–15]. The orientation with
respect to the flow, spacing, and aspect ratio of the microposts or microridges can be adjusted to
optimize the drag reduction [16] and the stability of the air–water interface [17] against transition from
dewetted Cassie [18] to wetted Wenzel [19] state.

The coating maintains its superhydrophobicity as long as the air remains entrapped. Even when the
air–water interface on a submerged superhydrophobic surface is mechanically stable, the surface is
likely to lose its entrapped air over time. This effect is believed to be due to the dissolution of air into
water, and is expected to accelerate when the hydrostatic pressure is increased,  as the solubility of air
into water increases with pressure  [20, 21], and when the flow speed increases, which enhances
convective mass transfer [22]. Several approaches have recently been developed to measure the
longevity of superhydrophobic surfaces [20, 23–25]. Analytical approaches are lacking, however, due
to the complexity of the problem.

In this work, we present a first-principles model to predict the rate of mass transfer of air from
superhydrophobic surfaces with spanwise ridges. We assume a two-dimensional, laminar boundary
flow over such a surface and solve the decoupled hydrodynamic and mass transfer problems.  A single-
phase flow is assumed, and the air pockets supply only a linearized boundary condition. While more



detailed models exist, their solutions are more complex and limited than the method presented herein
[16, 26–28].

The theoretical approach is described in the next section. Section 3 discusses the numerical
simulations used. Comparison between the theoretical and numerical results is demonstrated in Section
4. This is followed by Section 5 in which the results are presented and a mass-transfer correlation is
developed. Conclusions are given in Section 6.

2. THEORETICAL APPROACH
We consider laminar boundary layer flow over a superhydrophobic surface comprised of spanwise
microridges, as shown in Figure 1. The solution is obtained for different Reynolds numbers (based on
plate length), Schmidt numbers (ratio of water kinematic viscosity to mass diffusivity of air into water),
and gas fractions (ratio of shear-free surface area to total surface area). The hydrodynamic boundary
layer thickness δ(x) continuously evolves in the flow direction.  After a starting length of 1 cm, the plate
is considered as alternating sections of no-slip solid–water interface with zero concentration of air (C∞)
and free-shear air–water interface with 100% saturation of air (Cs).  At each change in position x1, x2,
· · · , there is a newly growing mass-transfer boundary layer thickness, δc (x), due to the abrupt change
in the concentration boundary condition.  The pitch of the superhydrophobic surface is fixed at 200 µm.
Gas fraction increases are achieved by reducing the width of each ridge. The solution is obtained for a
total of ten consequent sections (five peaks and five troughs). The hydrodynamic boundary layer
solution is obtained using a modified Blasius model with an effective slip, while the decoupled mass
transfer problem is solved using the approximate integral method.

Figure 1:  (a) SEM image of spanwise ridges to effect superhydrophobicity,  from Maynes et
al. [16] (b) Schematic of both hydrodynamic and mass-transfer boundary layers evolving

over microridges.

Strictly speaking, the concentration boundary condition at the solid–water interface downstream of the
starting length should be [∂C/∂y]y = 0 = 0. The boundary condition at the air– water interface is correct as
stated above, [C]y = 0 = Cs. However,  the use of mixed Dirichlet and Neumann boundary conditions
would preclude the employment of the superposition principle to be described in Section 2.1. The
present model, though difficult to realize in practice, provides a first-principles analytical result, which
is indeed rare. In the analogous heat transfer problem, alternating hot and ambient temperatures are
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used. This situation requires heated and cooled portions of the plate, which is different from heated and
unheated portions.

2.1 Mass Transfer Solution Using Integral Method
The mass-transfer integral is derived via manipulation of the species conservation equation. The integral
normal to the wall reduces to the following numerically solvable integrodifferential equation [29]:

(1)

where D is the mass diffusivity of air into water, δc (x) is the concentration boundary layer thickness,
and ϑ(y)  is the approximate concentration profile,  which for a typical laminar boundary layer takes
the form [30]:

(2)

where Cwall is the concentration at the wall, and C(y) is the concentration distribution below δc (x).
In our solution, the velocity profile, u(y), and the hydrodynamic boundary layer thickness, δ(x), are

obtained from the solution of the hydrodynamic problem, as discussed in detail in Section 2.2. Note
that in the present approximate integral method, other approximate velocity profiles could also be used.
For example, those resulting from a third-order polynomial fit.

The mass transfer coefficient hm and its dimensionless equivalent Sherwood number Shx ≡ hm x/D
are found from the relationship between the molar flux transfer equation, the convective molar flux
equation,  and Fick’s law [31].  Thus, hm = 32 (D/δc (x)) and Shx = 32 (x/δc (x)).

It is observed that the only impact of the no-slip assumption on the integral method is in the input
of u(y), which we create as an effective slip velocity profile. The slip Blasius solution can output u in
the region y < δ(x). One can omit the step of finding δ(x) from the hydrodynamic equations and proceed
directly to the mass transfer solution of the integral method.

The integral method can be altered to find the value of the local mass flux m′′ over a plate with
arbitrary wall concentrations. Bejan [29] describes the process for heat transfer, noting that the
derivations for heat flux and mass flux are analogous. This m′′ is found by observing that due to the
newly growing δc (x) at each abrupt change in concentration,  there are also newly growing values of
hm(x).  Since the decoupled concentration equation is linear, the local m′′ is found by using
superposition along the plate

(3)

where hm (x) is the sum of all the newly growing hm (x) at and prior to that local section or change in
wall concentration, and ∆C is the change in concentration between the microridges.

To find the average mass flux m′′ , the total average mass transfer coefficient h
–

m must first be
computed. The total h

–
m is the summation of all the local h

–
m . Thus

(4)

where L is the length of the entire superhydrophobic region, and the local h
–

m is computed as follows

(5)
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The summation in Equation (4) is accurate for any gas fraction φg , and does not require equidistant
segments of the microridges.  Equations (4) and (5) could be combined and generalized to yield

(6)

where n is the total number of peaks and troughs (ten in the present formulation).

2.2 Blasius Boundary Layer for Slip Flow
The classical Blasius boundary layer uses the no-slip boundary assumption at the wall. Following [32,
33], this assumption is relaxed due to the slip flow effect of superhydrophobic surfaces. We use the
effective slip boundary condition of Navier [34]:

(7)

where uwall is the streamwise slip velocity at the wall, (∂u/∂y)wall is the magnitude of the wall strain rate,
and S is the slip length. The effective S could be estimated via experimental observations [35] or
numerical simulations [14, 36]. Herein we estimate the slip length for each gas fraction using numerical
simulations of the two-dimensional, laminar Navier–Stokes equations, as explained in Section 3.

According to the classical Blasius solution [37], the momentum and continuity equations can be
reduced to the third-order ordinary differential equation

(8)

where f (η) is the dimensionless stream function, η ≡ y/δ(x) is the similarity coordinate, and ′ denotes
derivative w.r.t. η.  The streamwise velocity component can be expressed in terms of the freestream
velocity as u = U∞ f ′ (η). The boundary conditions, modified to admit slip, are

(9)

where v is the normal velocity component. The boundary conditions can be rewritten in terms of f and
η as

(10)

where Rex = U∞ x/ν is the Reynolds number, and ν is the kinematic viscosity of water.
Martin and Boyd [32] point out that self-similarity is lost because of the slip boundary
condition (10), which depends on x, and that the velocity will be a function of both η and the

dimensionless slip length given by

(11)

At the wall, ∂u/∂x is no longer zero, and therefore, ∂v/∂y is also not zero. Mathematically, the
inhomogenous wall boundary condition breaks down the similarity.  The normal velocity is modified
to incorporate the derivative of the stream function with respect to S*.  When all other derivatives in x
are rewritten to include S*, the ordinary differential equation (8) becomes a partial differential equation
with an additional term that is proportional to the slip length
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(12)

The slip velocity and the change of f with slip length are, however, very small and therefore the
obtained solution over the relatively small extent of the microridges is not too far from that using a
slowly evolving Blasius profile with an indicated slip. Nevertheless, we numerically integrated, using
Mathematica, the exact equation derived by Martin and Boyd [32] and the boundary conditions given
therein. The 1-mm section of the plate containing microridges was divided into fifty, 20-µm
subsections, and the integral in Equation (1) was carried out.

3. NUMERICAL SIMULATIONS
The present study focuses on the steady, two-dimensional,  incompressible,  laminar flow of water over
a superhydrophobic surface comprised of spanwise ridges, with consideration for air mass transfer
between the ridges. The problem is simplified by considering only a singlephase flow of water. In other
words, the air between the microridges only effects a shear-free boundary condition at each air–water
interface.  Meniscus effects are also neglected.  Those effects can be included, but not without added
complexity to the problem [26]. To supply the effective slip length as well as to validate the integral
method results, numerical simulations of the continuity, momentum, and mass transfer equations are
carried out using FLUENT.  A user defined function (UDF) for the mass diffusivity of air into water (e.g.,
D = 2.5 × 10–9 m2 /s at STP) is built using c++ programming language and loaded to FLUENT.

(13)

(14)

(15)

where ui is the velocity field, xi are the Cartesian coordinates, ρ is the fluid density, p is the pressure, µ
is the water viscosity, and C is the air concentration in water. We only simulated the flow over the
microridges, with a velocity inlet boundary condition, at a location of 0.99 cm from the leading edge,
obtained from the classical Blasius solution. The outlet boundary condition at the end of the plate is
zero pressure. Symmetry boundary condition is assigned outside the boundary layer. A no-slip
condition is imposed at the solid–water interface, while a shear-free boundary condition is imposed at
the air-water interface

(16)

The concentration boundary conditions are distributed as shown in Figure 1. The saturation
boundary condition of air in water Cs is calculated using Henry’s law at atmospheric pressure and 20˚C
[22]. The numerical domain was meshed using 250,000 square cells (2.5 × 2.5 µm). Mesh
independence was observed at this resolution.
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Figure 2: (a) Slip length versus Reynolds number at 50% gas fraction. Present numerical
simulations (solid diamonds), and equation of Lauga and Stone [36]  at low Re (green

arrow).(b) Slip length versus gas fraction.

4. VALIDATION
4.1 Slip Length
Figure 2a shows the influence of Reynolds number on the slip length using the numerical simulations

at 50% gas fraction. It is clear that the slip length decreases with Reynolds number increase. The slip
length is calculated using the numerically estimated area-weighted average slip velocity and velocity
gradient at the superhydrophobic wall, which both increase with Reynolds number. It appears that the
increase rate of the velocity gradient is larger than that of the slip velocity, which leads to a reduction in
the slip length with Re increase. For reference, the figure also shows the slip length (the green arrow) at
the same gas fraction computed from the equation of Lauga and Stone [36]. Their result was developed
for a creeping, pressure-driven flow through a pipe with spanwise microridges. Figure 2b shows the
effect of φg on the slip length at different Reynolds numbers. It is clear that the slip length increases
exponentially with gas fraction for superhydrophobic surfaces comprised of microridges, which, despite
the different flow regime and geometry, agrees well with the equation of Lauga and Stone [36].

4.2 Sherwood Number
For further validation,  we compared the Sherwood number calculated using the integral method with
that obtained from the Navier–Stokes simulations.  In both cases, the Sherwood number is averaged
over the 1 mm extent of the superhydrophobic region.  The results are plotted versus Reynolds number
at 50% gas fraction, as shown in Figure 3. It is clear that as the Reynolds number increases,  the
Sherwood number increases indicating higher rate of air dissolution into water. It can also be seen that
the results of the approximate integral method are in close agreement with the more-exact numerical
simulations.  Both indicate a power-law dependence,  with an exponent of 0.53 for the former method
and 0.49 for the latter.  Within the limitations of the present model, the integral method provides fairly
accurate results, and longevity can therefore be calculated from first principles.

Figure 3: Sherwood number versus Reynolds number. Comparison between the integral
method and the numerical simulations. Schmidt number = 400; Gas fraction = 50%.
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5. RESULTS AND DISCUSSION
5.1 Effect of Reynolds Number and Schmidt number
Using the approximate integral method , we calculate the dimensionless air mass-transfer convection
coefficient (Sherwood number) for spanwise microridges subjected to laminar flow with different
Reynolds numbers and Schmidt numbers.  Reynolds number is changed in the range of 1,000–10,857,
by changing the flow speed and maintaining a fixed plate length. Schmidt number is changed in the
range of 200–1,000, which corresponds to changing the water temperature in the range of 35–5°C. The
surfaces have different gas fractions ranging from 50–90%.  We considered this range of gas fraction
because below 50%,  the slip length is too small to sustain superhydrophobicity, and above 90%, the
longevity diminishes appreciably.

Figure 4a shows Sherwood number versus gas fraction at five different Reynolds numbers. It can be
seen that as gas fraction increases, the convection coefficient increases.  We reason that the increase in
gas fraction increases the area of air–water interface,  which leads to augmentation of the mass transfer.
The figure also shows that increasing the Reynolds number results in higher convection coefficient.
Increasing flow velocity enhances the dissolution of entrapped air into water, as has been shown
experimentally by Samaha et al. [22].

We also estimate the convection coefficient at five different Schmidt numbers, as shown in Figure
4b. As the Schmidt number increases, Sherwood number increases, agreeing with the canonical case of
no-slip Blasius flow for either heat or mass transfer.

Figure 4: Dimensionless mass transfer convection coefficient versus gas fraction. (a) At
different Reynolds numbers with Sc =  400. (b) At different Schmidt number with Re = 10,857.

5.2 Longevity
Longevity of superhydrophobic surfaces depends on how long the surface can entrap air. The present
results indicate how the flow affects the dissolution of air into water via convective mass transfer.
Figure 5 shows the rate of mass flux corresponding to the results presented in Figure 4. Again,
increasing the gas fraction or Reynolds number results in accelerating the rate at which air dissolves
into water, or in reduced longevity. On the other hand, increasing the Schmidt number reduces the air
mass transfer owing to the reduction in the mass diffusivity D of air into water.

Figure 5: Average air mass flux versus gas fraction. (a) At different Reynolds numbers with
Sc = 400. (b) At different Schmidt number with Re = 10,857.
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5.3 Mass-Transfer Correlation
It is useful to develop a mass-transfer correlation of the form

(17)

The classical correlation for mass-transfer forced convection from a solid flat plate subjected to a
laminar, Blasius flow reads

(18)

As φg → 1, there is near perfect slip, and the hydrodynamic boundary layer is very small compared to
the concentration boundary layer. In that case, u(y) ≈ U∞ , and Equation (15) could readily be integrated.
The solution is

(19)

We propose the following correlation for the ranges of Re, Sc, and φg investigated

(20)

where Sh is the Sherwood number averaged over the superhydrophobic region. Fitting the data
presented in Figure 4, we arrive at K = 0.145 ± 0.01.  In the limit of φg = 0, there is no mass transfer
and Sh = 0.* At small φg , the exponent of Sc reduces to ≈ 1/3, the same exponent as in the classical
equation (18). At φg = 1, the exponent of Sc is 1/2, the same as the perfect slip case described by
Equation (19). Finally, we also allowed an arbitrary exponent for the first gas fraction appearing in
Equation (20). At 1.168 ± 0.08, the resulting exponent is very close to the unity exponent originally
hypothesized.  In the case of an exponent slightly larger than one, the concomitant constant of
proportionality K increases by 3.6%.

6. CONCLUSIONS
In this work, a first-principles model was used to predict the rate of convective mass transfer of air from
superhydrophobic surfaces subjected to laminar flow. Blasius-like solution was used to solve the
hydrodynamic problem with slip boundary condition.  The mass transfer problem was solved using the
integral method, and a mass-transfer correlation was developed. The estimated rate of mass transfer
reflects how long the surface can keep its hydrophobicity, i.e., longevity. This work could be extended
to solve two-dimensional and axi-symmetric turbulent boundary layers without reverting to the
computer-intensive direct numerical simulations.
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*Note that if the plate is strictly solid, in contrast to porous, the convection described in Equation (18) can only occur via such processes as

evaporation or sublimation.
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