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ABSTRACT
This paper presents and tests a novel wind-energy generator that is driven by active flow
control. To achieve this, flow-control-induced oscillations were forced by dynamic
boundary layer separation and attachment using plasma actuators. Proof-of-concept wind
tunnel experiments, at a subcritical Reynolds number of 80,000, were performed on a
one-degree-of-freedom pivoted cylindrical body where pulsed dielectric barrier
discharge plasma actuators were used to control separation. A nonlinear load, typical of
a positive displacement fluid pump, was attached to the system and calibrated. Using
phase-locked actuation, simultaneous pressure and angular displacement measurements
were performed to determine the integrated mean system power. A system model,
including non-linear load effects, aerodynamic effects and friction was developed. Peak
measured power coefficients were relatively small, less than 1%; nevertheless the power
required to drive the actuators was one order of magnitude lower than the measured
system power. The system model was solved using a fourth-order Runge-Kutta method
and the integrated power predictions were excellent. Friction was found to play a
significant role in reducing the power output of the generator. Despite these modest
results, the system may be amenable to up-scaling because lateral force coefficients can
be increased and the power coefficient increases with the square-root of the system
dimensions.

1. INTRODUCTION
Horizontal axis wind turbines (HAWTs) are a major source of renewable energy with worldwide total
installed capacity growing exponentially [1]. As designers attempt to increase the physical size of the
turbines to reduce the cost of energy, mechanical loads – and in particular fatigue loads – become
increasingly difficult to manage [2]. Moreover, with the present trend towards deep-water offshore
wind energy, the HAWT paradigm with a heavy nacelle and blades poses significant stability
problems.

The purpose of this paper is to present a new paradigm for wind energy generation that is based on
active flow control; in particular, active boundary layer separation control is exploited to generate
reciprocating motion which can be harnessed as energy. For example, reciprocating motion can be
converted to rotary motion or used directly for energy generation via linear generators, or for drilling,
pumping or compressing air as a means of energy storage. The concept described here facilitates a
simple design that eliminates rotating blades and brings the center of gravity close to the water or
ground level. Possibly the first attempt to extract wind energy based on reciprocating motion was
reported by Bade [3], who developed a wing with passive-pitch articulation, mounted on the end of a
pivoted boom. Around the same time, Jeffery [4] developed a vertical swinging-wing that was pivoted
and made to “flap” in the wind. McKinney and DeLauriert [5] considered a wing that oscillates
simultaneously in both angle-of-attack and vertical translation, termed a “wingmill”. They conducted
both an analytical and an experimental investigation, where phasing between the angle-of-attack and
vertical translation was prescribed. An important result of their work was that the measured efficiencies
were comparable to rotary designs.

The present investigation aims to take this concept a step further by using active separation control – 
or, in principle, any form of active flow control – instead of changing the wing or body angle-of-
attack. This is realized here by exploiting dynamic attachment and separation of the boundary layer to
produce reciprocating motion. It should also be evident that this means of energy generation is



therefore fundamentally different from methods that exploit flow-induced or vortex induced
vibrations [6]. This is because the forcing frequency is arbitrarily selected and, therefore, not related
to the vortex shedding frequency in any way. In the present application, the forces produced by
attaching and separating the flow periodically drive the body at, or near, resonance where the
maximum power is produced. Greenblatt et al. [7] examined this concept on an unloaded one-degree-
of-freedom pivoted cylindrical body using a single pulsed dielectric barrier discharge plasma actuator.
The merits of using a cylindrical body are debatable, but the setup facilitated convenient separation
control for a range of subcritical Reynolds numbers, corresponding to wind tunnel speeds between
4m/s and 10m/s. Periodic loading of the cylinder was achieved by periodic modulation of the actuator
and large amplitude oscillations were observed when the modulation frequency was close to the
system natural frequency.

This paper represents a natural follow-on study where we conduct experiments with two DBD
plasma actuators at Re = 80,000. We develop a simple analytical model and a numerical model that
includes both the damping due to a useful load as well as frictional losses (section 2). A proof-of-
concept experiment, simulating a fluid pump, is then setup (section 3) where representative static load
and flowfield data are presented (section 4). This is followed by the system calibration (section 5) after
which the net power is measured (section 6) and the models are validated (section 7). Finally, aspects
relating to up-scaling the generator to a kilo or megawatt utility-type machine are discussed (section 8)
and followed by conclusions (section 9).

2. CONCEPT AND ANALYTICAL MODEL
2.1. System Modeling
Figure 1 shows the basic design of the Reciprocating-motion Wind-energy Generator (RWG). It
consists of a large lightweight cylinder attached to a sting and mounted on a pivot that has a
counterweight below. The center of gravity (CG) of the system is below the pivot to ensure stability. In
general, the sting is mounted so that the device can oscillate on two axes: lateral (left-right motion;
shown in the figure) and longitudinal (forward-backward motion, not shown). Active flow control
devices are deployed on the cylinder so as to produce unsteady separation and attachment of the
boundary layer. This results in large asymmetric aerodynamic loads that are used to drive the system in
an oscillatory manner. A load, for example a linear generator (Cθ ), can be attached to the pivot (as
shown) or attached to the lower end of sting in the vicinity of the counter-weight. Similarly, gears
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Figure 1. Basic concept of the 1-DOF RWG model considered in this study. The force F(t )
acts only in the x–z plane-of-motion; gravity acts in the –z direction.



mounted on the shafts can be used to drive high-speed generators. The system can be designed to
produce oscillatory forces in the lateral and longitudinal directions, in two degrees-of-freedom (2-
DOF). Hence a total of four generators (two lateral; two longitudinal) can be employed.

For purposes of simplicity, we consider the RWG as an inverted pendulum that only oscillates in the
plane perpendicular to the wind direction (1-DOF model) as depicted in the figure. It is forced by flow
control devices on the cylinder and balanced by the mass below the 1-DOF pivot.

2.2. Analytic Linear Model
In this section we consider the idealized energy that can be extracted from the system. A simple model
of the 1-DOF system (fig. 1) can be written as

                                                                                                                   (1)

where J0 is overall moment of inertia with respect to the pivot, Cθ is the angular damping coefficient,
kt is the “dynamic stiffness”, expressed as m g lCG and M(t) = R·F(t) is the driving moment. For
simplicity, we assume a harmonic driving moment

                                                                    M(t) = M0 cos ω t                                                                (2)

where M0 = R·F0 and R is the distance from the pivot to the position of the resultant aerodynamic force,
assumed to act at the center of the cylinder:

                                                                                                                                     (3)

where Ri and Ro as the distances from the pivot to the lower (inner) and upper (outer) edges of the
cylinder respectively. This result is valid as long as we assume that . Combining equations
1 and 2 and assuming small angles, results in:

                                                                                                                 (4)

This equation has the well-known solution:

                                                                                                                           (5)

The pendulum will oscillate at the same frequency of the applied torque but with a phase shift φ. The
terms on the right hand side of equation 5 are:

                                                                                                               (6)

and

                                                                                                                         

(7)

To obtain similarity equations, we define the dimensionless parameters:

                                                                                                                                             (8)

                                                                         Cc = 2J0ωn                                                                     (9)

                                                                                                                                               (10)

and

                                                                                                                                          

(11)

where ωn is the system natural frequency, and z is the damping ratio. The deflection angle produced by
the static moment M0, (measured in radians) and the frequency ratio are defined, respectively, as:

                                                                                                                                            (12)

                                                                                                                                               

(13)
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After substituting we get:

                                                                                                                     (14)

                                                                                                                              
(15)

The average power produced over one cycle is obtained via the integration:

                                                                                           (16)

Let us now assume aerodynamic force amplitude of:

                                                                                                                               (17)

where CL is the maximum lateral aerodynamic force coefficient, and h is the cylinder span; this is valid
as a result of the assumption . For wind turbines, the power coefficient is defined as:

                                                                (18)

where As is the swept area of the turbine.1 For the present geometry, the swept area depends upon the
cylinder dimensions as well as the peak oscillation amplitudes. Therefore, after substitution, the power
coefficient can be written as

                                                                                                               (19)

or alternatively

                                                                                                  (20)

As noted by Greenblatt et al. [7], the peak power coefficient expressed in equation 20 is only limited
by the lateral force coefficient and reduced velocity ωnd/U∞, providing that the linear assumptions are
not violated. It should be appreciated that the present analysis is fundamentally different to
conservation laws applied to the flow through an idealized actuator disk. The latter analysis results in
a maximum power coefficient, the so-called Betz limit, of 16/27. The present analysis also includes
idealized limiting assumptions, in particular the small angle assumption and ; therefore
direct comparisons to the Betz limit should be avoided.

2.3. Energy Loss Mechanisms
The expression for CP in equation 20 represents the ideal system power coefficient with zero
aerodynamic or frictional losses. It assumes that the power imparted to the cylinder is delivered without
loss to the load. In practice, losses must be accounted for and these can be considered as aerodynamic
and frictional losses. A physically representative form of equation 1 can be written as:

                                                                                     (21)

where cl represents the useful load (damping coefficient), cd is the damping coefficient due to
aerodynamic drag (see [7]) and Mf is the torque loss due to friction in the damper or so-called
Coulomb damping. Equation 21 can be solved numerically and then the useful power generated can
be calculated according to:

                                                                                                                               (22)

where cl can be non-dimensionalized as follows: zl = cl /2J0 ωn.

θ
θ

ζ
=

− +r r(1 ) (2 )

st
0 2 2 2

φ
ζ

=
−

⎛

⎝
⎜

⎞

⎠
⎟− r

r
tan

2

1
1

2

∫ θ θ ω φ= ⋅ = ⋅ ⋅ ⋅P
T

M t dt M
1

( )
1

2
sin

T

0 0
0



≅ ⋅ ⋅ ⋅∞F C q h dL0

θ
.

<< ∞R Umax

=
∞ ∞

C
P

q U AP

s

θ ω

θ
φ=

+∞ ∞

C
M

q U R d h

1
2

(2 )
sinP

0 0

0

ω
θ

φ=
+

⋅ ⋅
∞

C
C d

U d R
r

4

1

1 / (2 )
sinP

L n

0

θ
.

<< ∞R Umax

θ θ θ θ θ+ + + + =   
  

J c c M k M tsgn( ) sin ( )l d f t0

total damping

∫ θ θ=  P
T

c dt
1

( )l

T

0

108 Wind-Energy Generation by Active Flow Control

International Journal of Flow Control

1 Note that the definition of swept area used here includes the dimensions of the cylinder and is therefore larger than that defined by [7].



2.4. Non-linear Load
In this study, a non-linear damper typical of a fluid pump was attached to the system at a variable
distance l′ from the pivot. The essential features of the fluid pump were a circular cylinder, piston and
exit nozzle (see fig. 2). The application of a force Fp to the piston produced an air jet vj. In practice, the
load was variable by means of a valve at the nozzle exit, and this is described in section 3.

From simple conservation of mass, considering an incompressible flow:

                                                                                                                                           (23)

Furthermore, applying Bernoulli’s equation on a streamline within the damper and rearranging:

                                                                                                         (24)

where patm is the local atmospheric pressure and k is a variable nozzle pressure-loss coefficient. Letting
Fp = ( pp–patm)Ap, assuming that and combining equations 23 and 24 we can express the pump
moment as:

                                                                                                                                       (25)

where

                                                                                                       

(26)

To account for the non-linear load in the form of quadratic damping attached to the system, equation
21 above is modified as follows:

                                                                             (27)

Consideration of the frictional losses, expressed as Mf, will be considered in section 5.

3. EXPERIMENTAL SET-UP
Experiments were conducted in a low-speed wind tunnel with test section dimensions 100 cm × 61 cm × 
200 cm (height, width and length). The maximum wind speed and turbulence level were 55m/s and 0.1%
of U∞, respectively. The model, shown in figs. 3a and 3b, consisted of a Plexiglas pendulum of mass
1.022 kg (d = 150 mm, h = 204 mm); a pivot-mounted rigid Plexiglas connecting rod and a damper
mounted above the tunnel (see fig. 3a). The pivot rotated on a low-friction ball bearing, but could also
be locked to prevent motion; this was used to facilitate flowfield measurements (see section 4). The
angular position on the cylinder, measured from the vertical plane parallel to U∞, was designated α (see
[7] for more details). The cylinder was equipped with two surface-mounted DBD plasma actuators,
mounted at α = ± 80° that extended along the entire height h (see schematic in fig. 3b). Electrical cables
used to drive the actuators were taped to the connecting rod and routed to a high voltage ac source above
the wind tunnel (see below). The connecting rod was extended above the wind tunnel and connected to
a load, in the form of a non-linear damper, characterized in section 2.4. A detailed description of the
physical damper and associated pressure measurements made within its cylinder are described below.
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Figure 2. Schematic of the damper representing a non-linear “fluid pump” employed here.



Both DBD actuators used were based on the asymmetric wall-mounted configuration as described
by Corke et al. [8]. The upper (exposed) and lower (encapsulated) electrodes (both 70 μm thick) were
separated by three layers of 50 μm thick Kapton® tape, identical to that described in [7]. The high
voltages were generated using two Minipuls-2 high voltage inverters (GBS Electronik); one for each
actuator. The wave form was generated by means of an input signal and a low voltage (Vin < 30 V dc)
source, while the dc current drawn by each actuator (Iin) was measured using Fluke 115C multimeters).
This simplified the estimation of gross power (including all losses) dissipated in the actuators, namely
Pin = Vin Iin. Ionization of the air, within the electric field, produced the pulsed body forces that were
exploited here for controlling flow separation. Greenblatt et al. [7] conducted a detailed parametric
study for a wide range of wind tunnel speeds, pulsation frequencies and plasma angles. On the basis of
the parametric study, all present experiments were conducted at U∞ = 8 m/s, while both actuators were
driven at 8kVpp with fion = 10kHz and pulsations at fp = 114Hz corresponding to F+ ≡ fpd/U∞ = 2.1. It
was ascertained in [7] that placement of the actuators at α = ± 80° produced the largest lateral force
coefficients. The duty cycle, defined as the percentage (or fraction) of the period that the actuator is
operational, was varied in the range 0.1% ≤ DC ≤ 50%. A typical ionization frequency, pulsed plasma
frequency and duty cycle are shown in fig. 4a.

In a similar manner to [7], the location of the cylinder lower surface at any instant, and hence the
determination of the deflection angle θ, was achieved optically. This involved filming the base of the
cylinder, painted matt-black, using a Casio EX-F1 high-speed video camera with a resolution of 6
megapixels and a maximum of 1,200 frames per second (fps). A pattern recognition technique was used
to determine the centroid within each frame. Several free-release experiments in still air were
performed and these indicated a natural frequency fn (virtually un-damped) of 0.790 Hz that compared
favorably with the theoretical value of 0.794 Hz.

In Greenblatt [7], the pulsed plasma actuator was modulated at the excitation frequency fex in an
open loop manner. In this investigation, two optical sensors (see fig. 5), one for each actuator were used
to initiate the plasma signals in a phase-locked, or closed-loop, manner at F+ = 2.1. An excitation period
is illustrated in fig. 4b, where fex < fp; in this example the Tact/Tex = 30% per actuator. The actuation time
(or time to termination) Tact was determined by specifying the number of plasma pulses.

The external load used for these experiments was an Airpot® model 2KS444 damper (see figs. 5
and 6) with characteristics typical of a positive displacement pump. It was constructed from a quartz
glass cylinder with an internal low-friction sliding piston made from graphite. The outer part of the
damper was covered with a rubber sheath to prevent damage. A circular cross-section rod was
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connected to the piston, via a ball-joint. The free end of the rod was also equipped with a ball joint and
threaded section (see fig. 6). The opposite end of the damper was equipped with an aluminum plate
containing a nozzle and adjustable valve that allowed variation of the damping coefficient from a fully
sealed state to a fully open state (see table 2 for the nominal damper specifications).

The damper was located in position by means of a vertical frame that was bolted to a horizontal
base plate. The frame was composed of two vertical columns with 4 mm holes and 12 mm spacing
between the holes to allow variation of its height. The base plate was bolted to the frame above the
wind tunnel ceiling. A rectangular section aluminum rod with corresponding 4 mm holes and 12 mm
spacing was mounted on the upper part of the system above the pendulum. The threaded part of the
circular damper rod was inserted into the required hole of the rectangular section rod and fastened
with a nut. With this setup, the degree of damping could be varied with a high degree of accuracy
using the corresponding holes on the frame and rod. The base plate was also equipped with holes 
10 mm apart to facilitate horizontal displacement of the damper.

Power measurement required the instantaneous measurements or estimation of the piston force Fp(t)
and its speed x

.
(t). Fp(t) was estimated by measuring the damper pressure pd (t) with the conventional

assumption that pp (t) = pd (t) with Fp (t) = pp (t)Ap. The speed was x
.
(t) estimated by numerically

differentiating the instantaneous θ (t) data using central differences, combined with the system
geometry. To measure the pressure, four symmetric pressure ports were installed in the rear aluminum
plate. The ports were constructed from stainless steel tubes (1.6 mm OD and 0.8 mm ID) that were
attached to the rear plate of the damper using epoxy adhesive (see fig. 7). The ports were connected to
individual ports of a 10”WC Electronic Pressure Scanner (ESP modules) (Pressure Systems) using 
30 mm lengths of vinyl tubing. The scanner is equipped with 32 pressure ports (4 were used
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Figure 6. The Airpot® damper used in the present experiments.

Figure 7. Photograph of the damper from the rear showing the four pressure ports.



corresponding to the 4 pressure ports) and measures differential pressure by means of an array of silicon
piezoresistive pressure sensors, one for each pressure port. All differential pressure measurements were
made relative to the ambient atmospheric conditions. Calibration and temperature compensation of the
scanners was performed by a so-called Digital Temperature Compensation (DTC) Intium, which is a
data acquisition system combined with digital temperature compensation to maintain optimal accuracy.
The system was supplied with a manufacturer accuracy of ± 0.05%FS with a maximum of 600 Hz per
Channel throughput capability.

4. STATIC LOADS & FLOWFIELD MEASUREMENTS
4.1. Mean Lateral Forces
Static lateral-force coefficients were determined as a function of the plasma control parameters at wind
tunnel speeds U∞ between 4 m/s and 10 m/s as described in Greenblatt et al. [7]. Briefly, experiments
were performed without load by initiating the plasma and then recording the deflection angle after
oscillations had decayed to negligible amplitude. This process was repeated for a wide variety of
different parameters. The mean deflection angle relative to the un-deflected zero-angle was recorded
and the lateral-force F0 acting on the cylinder was calculated according to a simple static moment
balance. The largest forces were recorded when the perturbations were introduced close to the
separation angle (see fig. 8) which was measured, by means of tufts, to be between 70° and 80°. It has
been shown previously that amplification of the perturbations is rooted in the shear layer instability
[10]; here maximum lateral forces observed for the range 1 ≤ F+ ≤ 2 consistent with [11] and [12].
Important for a power balance, very little difference in lateral-force coefficient was measured for the
range 0.1% to 50% duty cycle range [10].

4.2. Flowfield Measurements
Flowfield measurements were conducted using two-dimensional particle image velocimetry (PIV) where
the pivot was locked at θ = 0°; full details are provided in [7]. The absolute velocity c = (u2 + v2 )1/2 together
with velocity vectors and the nondimensional vorticity ωz are shown for the baseline case (figs. 9a and
9b) and the pulsed plasma corresponding to the F+ = 2.1 case at αf ≈ 80° (figs. 10a and 10b). Based on
these data, the baseline separation point was estimated to be α ≈ 80°, which was consistent with tuft-
based flow visualization and comparable to the observations of Jukes and Choi, 2009. With plasma
pulsations the separation location moved aft to α ≈ 120° and similar results were observed at F+ = 1
consistent with the similar lateral-force measurements (fig. 8) with minor changes to wake on the
opposite side of the cylinder.

Following these experiments, phase-resolved PIV data were acquired during the attachment and
separation transients, following the initiation and termination of pulsed pulsations, at F+ = 2.1 (not
shown, see [7]). Following initiation of the plasma pulsations, the separated shear layer attached to the
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surface over approximately seven pulsations, or over the dimensionless time τatt ≡ TattU∞/d ≈ 7/F +,
namely τatt ≈ 3.3 at F+ = 2.1. On the other hand, following termination, the separation process slower
with τsep ≡ TsepU∞/d > 18/F + or τsep > 8.6. The sum of these time-scales (≈ 12) were well within the
anticipated half-cycle time-scales ¹–

² TexU∞/d ≈ ¹–
² U∞/fmd ≈ 34. The attachment and separation time-

scales Tatt and Tsep were used in the numerical model described in section 7.

5. SYSTEM CALIBRATION
The present experiments were performed with the load attached for the purpose of estimating the
damping coefficients by means of direct calibration. This facilitated subsequent computation of the
average cycle power. Due to uncertainty associated with repeatability of the valve setting, all
calibrations were performed with a fixed valve setting. The different damping coefficients were then
achieved by varying the height of the damper above the pivot, namely by varying the lever length l′ (as
described in section 3). The damper was maintained in a horizontal orientation when the system was at
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Figure 9. PIV flowfield measurements at the cylinder center-span for the baseline case at
Re = 80,000: (a) absolute velocity c = (u 2 + v 2)1/2; (b) spanwise vorticity ωz.

Figure 10. PIV flowfield measurements at the cylinder center-span for the F + = 2.1, 
DC = 10%, C = 0.17% case at Re = 80,000: (a) absolute velocity c = (u 2 + v 2)1/2; (b)

spanwise vorticity ωz.



rest (pendulum at θ = 0 ) by varying both its height on frame as well as the rectangular section rod
mounted on the upper part of the system above the pendulum. All calibrations were performed with
zero wind speed in the tunnel (U∞ = 0). For each calibration experiment, the pendulum was raised to its
maximum angle and released. Data from the four damper pressure ports for a typical calibration are
plotted in fig. 11. It can be seen that the unsteady readings from all ports are virtually identical and
similar observations were made during power measurements discussed below. For all calibration and
power measurements, the data from the four ports was averaged. For each lever length l′ ten repetitions
were performed and the results were averaged to get the final damping coefficient.

Combining the data from figs. 12 and 13, namely, |Fd| versus θ
.
, produced the data that were used to

calibrate the damper. The calibration coefficients were determined by means of least squares curve
fitting. Fig. 14 shows that square relationship expressed theoretically in equation 25 is well represented
in the experiments.
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Figure 11. Data extracted from pressure ports shown in fig. 7.

Figure 12. Pressure calibration data for different damper heights.



When referring the force data to x
.
, as opposed to θ

.
, the damping should theoretically remain

constant namely, independent of the lever length l′. To check this, the experimental data in fig. 14 were
plotted in fig. 15 as |Fd| versus x

.
and clearly show that for all lever lengths, the data points collapse

onto the same line. This representation clearly illustrates the fidelity of the calibration.
Frictional losses in the pivot bearing were negligible but this was not the case for friction in the

damper, where the frictional torque was calcuated according to:

                                                           Mf = l′(μmpg + q∞ CLS sinθ )                                                     (28)

where μ is the friction coefficient (0.2 based on the manufacturers specification), mp is the measured
mass of the pivoted piston.
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Figure 13. Angular velocity calibration data for different damper heights.

Figure 14. The measured damper force as a function of angular velocity.



6. POWER CALCULATION
To produce nominally symmetric forcing the two plasma actuators were located at α = ±80° because
these produced the largest lateral force coefficients for the present setup. The two optical sensors were
located on the base plate above the wind tunnel ceiling and were configured to trigger each of the
actuators independently. The sensors were deployed symmetrically and the angle at which they were
triggered (±θon) could be varied arbitrarily. The system could be configured in several ways. The
plasma could be activated immediately upon receiving the signal from the sensor, or it could be
configured with a delay before activating. The plasma’s actuation time Tact operation time could also
be varied arbitrarily by varying the number of plasma pulses. For each damper height several
combinations of plasma initiation, activation time, and delay after plasma activation were selected. The
camera and the ESP modules were triggered simultaneously. Sufficient time was given to the transient
phenomena to decay. Experiments were repeated until the maximum integrated power was achieved.
For each combination of parameters, experiments were performed initially using 10% duty cycle. Once
the maximum power produced by the system was obtained then the duty cycle was systematically
reduced in order to produce the maximum net system power. In some instances, only a small effect on
the performance was observed for duty cycles as low as 1%.

As mentioned above, pressure and θ
.
were measured simultaneously. Pressure was measured using the

ESP modules and θ
.

was calculated based on the pendulum’s position data captured by the camera. The
force operating on the damper (Fd) was then calculated from the pressure data. Figure 16 shows θ

.
and Fd

on the same axis for a typical experiment and small cycle-to-cycle variations were observed. In order to
obtain a statistically representative average, all power results were based on the average of forty cycles.

The average power developed over one cycle was calculated according to:

                                                                                                                           
(31)

Substituting Fd (t) = pd (t)Ap and , we can estimate the average power developed over N
cycles as:

                                                                                                                     
(32)

where here N = 40.
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Figure 15. The measured damper force as a function linear velocity.



7. MODEL VALIDATION
Free decay calculations were performed by means of a fourth-order Runge-Kutta method and validated
by comparing the results with experimental data at U∞ = 8 m/s. An example comparison with the
damper connected at l′ = 98.5 mm is shown in fig. 17. The graphs shows a comparison of experimental
data with a linear model employing arbitrarily chosen damping, as well as the measured calibrated
quadratic damping with and without the effect of damper friction. The analytic model shows that an
equivalent overall linear damping coefficient can be selected (or calibrated) that adequately represents
the combined effect of the quadratic load and constant friction. Similarly, a linear load damping can
also be selected where friction is separately taken into account. A comparison of the two quadratic
damping cases clearly shows the impact of friction on the results. Shortly after releasing the cylinder,
where the damper forces are large relative to friction, the differences between the peaks is relatively
small. However, as the amplitude decreases, the frictional and load forces become comparable. 
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Figure 16. Simultaneous representation of the damper force and angular velocity 
for l ′ = 121 mm.

Figure 17. Model prediction of free decay under the influence of an arbitrary linear 
damping and the calibrated quadratic damping with and without the effect of friction 

(Coulomb damping).



This clearly shows that neglecting friction has a significant adverse effect on the predictions. Indeed,
between 10 and 25 seconds the predicted amplitude without friction decreases by only one-half.

Forcing calculations were performed by solving equations 21 (linear damping) and 27 (quadratic
damping) by means of a fourth-order Runge-Kutta method. The driving moment M(t) was generated by
means of a piecewise linear model: ramp-up to constant lift; constant lift maintained; and ramp-down
to zero for each half-cycle. The ramp-up and ramp-down time-scales were Tatt and Tsep as described in
section 4 and the maximum lateral force coefficient estimated by the method shown in fig. 8 (see [7]
for further details). When one actuator was installed on the cylinder, as in [7], a maximum value CL =
0.83 was achieved; however, with both actuators installed the maximum was 0.65. This difference was
traced to the addition of the second actuator that had the presumed effect of partial passive tripping the
boundary layer and thus rendering the plasma pulses on the opposite side less effective. An example of
cylinder displacement as a function of time for l′ = 98.5 mm and a free-stream velocity U∞ = 8 m/s are
shown in fig. 18. Damping coefficients for both the analytic model and the linear damping were chosen
arbitrarily to provide the same displacement angles. In contrast, the effects of Coulomb damping were
included in the quadratic damping calculations of equation (21). Although the quadratic damping
computations slightly under-predict the experimental amplitudes, the overall correspondence is good.
In addition, the expected overshoot exhibited by linear analytic model, as a consequence of the small-
angle assumption, is clearly evident. Similar calculations were performed for l′ = 121 mm and 143.5 mm
and a summary of the results is shown in fig. 19. For the purposes of comparing linear and quadratic
loads, an effective damping coefficient was defined.

Here the correspondence between the experiments and quadratic damping prediction is excellent.
Note that as the damping coefficient tends to zero, the oscillation amplitude increases significantly until
it is only Coulomb damping that is limiting the motion. The unbounded increase in angle predicted by
the analytical model is not valid because the small angle assumption is violated.

Simultaneously measurements of pd(t) and θ
.
(t) were used together with equation (32) to calculate

the average power and power coefficients developed at U∞ = 8 m/s for successively increasing quadratic
damping: l′ = 98.5 mm, 121 mm and 143.5 mm. These were compared with power coefficient
predictions and are shown in fig. 20. For the computations, CL and hence M0 = R⋅F0 were estimated by
means of direct measurement, similar to the data shown in fig. 8. Thus, when we account properly for
the load and friction, the correspondence between the data and computations is excellent, apart from
the largest damping coefficient corresponding to l′ = 143.5 mm that shows a slight under-prediction of
the measurement. Note that lower damping was not considered because it caused the cylinder to collide
with the wind tunnel walls. Here the effect of friction and aerodynamic drag can clearly be seen by

ζ θ ω= c J/2q neff rms 0
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Figure 18. Displacement of the cylinder as a function of time under the effects of 
forcing at l ′=98.5 mm, for U∞ = 8 m/s; nominal Re = 80,000.



comparing the useful power quadratic predictions with the analytical ones. At low damping
coefficients, the relative effect of friction is greater and hence there is a large disparity between the
predictions. With increasing load the disparity becomes smaller. This effect is exacerbated at lower
free-stream velocities. For example, at U∞ = 4m/s where the dynamic pressure and hence forces are
reduced by a factor of four, this disparity becomes even larger (fig. 21). In addition to the relatively
large effects of friction, the theoretical value of CP increases with decreasing U∞ as seen from equation
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Figure 19. Maximum cylinder deflection angle predictions as a function of damping
coefficient with experimental data at l ′ = 98.5 mm, 121 mm and 143.5 mm, 

for U∞ = 8 m/s; nominal Re = 80,000.

Figure 20. System power coefficient predictions together with experimental data as a 
function of damping coefficient with at l ′ = 98.5 mm, 121 mm and 143.5 mm, for 

U∞ = 8 m/s; nominal Re = 80,000.



20. This can clearly be seen by comparing figs. 20 and 21. In contrast, increasing the model free-stream
velocity to U∞ = 12 m/s, namely increasing the aerodynamic forces by more than two, reduces the
disparity between the ideal and useful power (see fig. 22).

Systematic reductions to both Ton (or DC) as well as Tact, facilitated a significant reduction in the
gross power supplied to the actuators. For the data presented in figs. 19 and 20, the gross power supplied
to the actuators was 10 and 11 milliwatts respectively. This is because the actuator was driven at DC =
1% with Tact/Tex = 20%. This should be compared with the maximum integrated power measured in the
experiments, namely 210 milliwatts (see fig. 23) that is a factor of 10 larger than the total power input
to the plasma actuators. Thus, although the power coefficient of the present system is low, less than 1%
at 8m/s, the power produced is significantly larger than the power required to drive the actuators.
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Figure 21. System power coefficient predictions as function of damping coefficient 
for U∞ = 4 m/s.

Figure 22. System power coefficient predictions as function of damping coefficient for 
U∞ = 12 m/s; nominal Re = 120,000.



8. VIABILITY FOR WIND ENERGY GENERATION
Given the very low power coefficients produced by this system, it appears unlikely that a system based
on the present design could credibly pose a challenge to conventional wind power generation via
HAWTs. Moreover, the super-critical Reynolds numbers (>300,000) expected with larger dimensions
cause the separation point to move downstream and reduce the control authority. Nevertheless, before
ruling out larger-scale power generation, it is worth considering several methods that could
conceivably be implemented to significantly increase efficiency and thereby render the concept
viable.

Conceptually, a simple approach would be to add additional cylinders. In this way, the power
produced by the system will theoretically be increased by the number of additional cylinders.
Another conceptually simple method would be to increase the lateral force coefficient by actively
changing the aerodynamic shape and/or using a more powerful actuation method. Equation 20
shows that for a 1-DOF system, the power coefficient is directly proportional to the lateral force
coefficient. A survey of techniques [7] for lateral force generation on circular cylinders concluded
that steady slot blowing (Cl ≈ 7.9, with momentum coefficients Cμ ≈ 0.56) or porous suction 
(Cl ≈ 5.65 with CQ ≈ Q / dU∞ = 0.2 where Q is the air volumetric flowrate) could increase the power
coefficient by an order of magnitude; the two techniques could also be used simultaneously.
However, the power required to drive the blowing and suction systems, relative to the power 
gain, may be excessive and is a critical metric for determining their viability. One option available
to reduce the power required is to use so-called fluidic actuators of the type studied by Gokoglu 
et al. [9].

Larger-scale power generation would obviously require up-scaling the system. If we consider a
linear scaling such that the system dimensional ratios remain constant, it can be shown that the power
coefficient increases with R½ [7]. Unfortunately, a simple prediction of power increases cannot easily
be made because increasing the size significantly increases the cylinder velocity normal to the wind
direction. This violates our assumption Rθ

.
max << U∞. In such a case, the aerodynamic efficiency of the

cylinder and the cylinder velocity relative to the wind velocity will be decisive parameters in
determining the system power.

It was also noted in [7] that flow control over a cylinder result in changes to the drag coefficient.
These variations may then be exploited by adding a second degree-of-freedom (2-DOF) to the system,
as mentioned in section 1, by allowing the system to oscillate in the streamwise direction. In this
manner, the controlled periodic drag oscillations could also be exploited to extract power from the
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Figure 23. System power predictions as function of damping coefficient with experimental
data at l ′= 98.5 mm, 121 mm and 143.5 mm, for U∞ = 8m/s; nominal Re = 80,000.



system. The mathematical model of such a system would require the consideration of the fully non-
linear two degree-of-freedom equations. Although the development of such a model is beyond the
scope of this paper, it should be considered as an important component of future research.

9. CONCLUDING REMARKS
To the best knowledge of the authors, this paper presented the first active-flow-control-induced
vibration wind-energy generator. The vibrations were achieved by means of two symmetrically
mounted DBD plasma actuators that were employed to force alternate attachment and separation of the
boundary layer, thereby producing the forces to drive the system close to resonance. A nonlinear load,
typical of a positive displacement fluid pump, was attached to the system and instrumented with
pressure transducers. Under phase-locked actuation, simultaneous pressure and angular displacement
measurements were performed to determine the integrated mean system power.

A system model, including non-linear load effects, aerodynamic effects and friction was developed.
Peak measured power coefficients were relatively small, less than 1% and predictions of were
excellent. Friction was found to play a significant role in reducing the power output of the generator.
Nevertheless, the power input to the actuators required to drive the system, was a factor of 10 lower
that the integrated power produced.

The power coefficients were very small when compared to conventional wind turbines, namely less
than 1%. Nevertheless, this was merely a demonstration study and several techniques could be used
to increase this, such as changing the shape of the aerodynamic body, increasing the number of
cylinders, utilizing blowing or suction to maximum lateral force coefficients, increasing the system
natural frequency or increasing the cylinder diameter. Priorities for future research should incorporate
a 2-DOF mathematical model, more effective forms of boundary layer control and system dimensional
scaling.

NOMENCLATURE
Ap piston area
Aj jet exit area
cd damping coefficient due to aerodynamic drag
cl linear load damping coefficient
cq quadratic lkoad damping coefficient
Cl two-dimensional lateral-force coefficient
CL maximum cylinder lateral-force coefficient, F0 /½ ρU2

∞dh
CP power coefficient, P/q∞U∞As

Cθ the angular damping coefficient
d cylinder diameter
DC duty cycle
f system oscillation frequency
fex structural excitation frequency, 1/Tex

fion plasma ionization frequency
fn pendulum natural frequency, 1/Tn

fp plasma pulsing frequency, 1/Tp

F0 maximum cylinder lateral-force
F+ dimensionless plasma pulsing frequency, fpd/U∞

Fp force applied to the piston
h cylinder height, R0– Ri.
J0 system moment of inertia with respect to the pivot
kt “dynamic stiffness”, mglCG.

l′ distance from pivot to rigid connecting rod
lCG distance from the pivot to the center of mass
m total mass of the system
M(t) driving moment
M0 moment maximum
patm atmospheric pressure
pp pressure applied to the piston
P gross power produced
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Pp plasma input power
q∞ free-stream dynamic pressure, 1/2ρU2

∞

R distance from the pivot to the center of the cylinder
Ri distance from the pivot to inner edge of the cylinder
Ro distance from the pivot to outer edge of the cylinder
Re nominal Reynolds numbers, U∞d/v
t time
Tact time of pulsed plasma actuation
Tatt time-scale associated with forced flow attachment
Tex structural excitation period
Tsep time-scale associated with forced flow separation
U∞ free-stream velocity
V voltage
Vpp peak-to-peak voltage
x free-stream direction
y cross-stream direction
α cylinder angle from the plane parallel to U∞

φ phase-angle
θ system deflection angle
τ dimensionless time, TU∞/d
ω circular oscillation frequency, 2πf
ωn circular natural frequency, 2πfn
ζ linear damping coefficient, cl/2J0ωn

ζeff effective damping coefficient for a non-linear load, cqθ
.
ms/2J0ωn

REFERENCES
[1] Anon., “World Wind Energy Report 2010,” World Wind Energy Association. February 2011.

ww.wwindea.org/home/images/stories/pdfs/worldwindenergyreport2010_s.pdf. Retrieved 26
September, 2011.

[2] Barlas, T.K. and van Kuik, G.A.M., 2010. Review of state of the art in smart rotor control research
for wind turbines. Progress in Aerospace Sciences 46, 1–27.

[3] Bade, P., 1976. Flapping-vane wind machine. Proceedings of the International Conference of
Appropriate Technologies for Semiarid Areas: Wind and Solar Energy for Water Supply, 83–88.

[4] Jeffery, J.R., 1977. Oscillating aerofoil project. Report from the Pocklington School Design
Centre, West Green, Pocklington, York, England.

[5] McKinney, W., and DeLaurier, J., 1981. The wingmill: An oscillating-wing windmill. AIAA
Journal of Energy 5 (2), 109–115.

[6] Bernitsas, M.M., Raghavan, K., Ben-Simon, Y., and Garcia, E.M.H., 2008. VIVACE (Vortex
induced vibration aquatic clean energy): A new concept in generation of clean and renewable
energy from fluid flow, Journal of Offshore Mechanics and Arctic Engineering 130.

[7] Greenblatt, D., Treizer, A., Eidelman, A. and Mueller-Vahl, H., 2012. Flow-Control-Induced
Vibrations using Pulsed DBD Plasma Actuators. Journal of Fluids & Structures, 34, 170–189.

[8] Corke, T.C., Post, M.L., and Orlov, D.M., 2007. SDBD plasma enhanced aerodynamics:
Concepts, optimization and applications. Progress in Aerospace Sciences 43, 193–217.

[9] Gokoglu, S.A., Kuczmarski, M.A., Culley, D.E. and Raghu, S., “Numerical Studies of a Fluidic
Diverter for Flow Control,” AIAA Paper No. 2009-4012, 39th AIAA Fluid Dynamics Conference,
22–25 June 2009, San Antonio, Texas.

[10] Greenblatt, D. and Wygnanski, I., 2000 “The control of separation by periodic excitation,”
Progress in Aerospace Sciences, Volume 36, Issue 7, pp. 487–545.

[11] Thomas, F.O., Kozlov, A. and Corke, T.C., 2008 “Plasma Actuators for Cylinder Flow Control
and Noise Reduction,” AIAA Journal Vol. 46, No. 8, pp. 1921–1931.

[12] Jukes, T.N. and Choi, K.-S., 2009 “Control of unsteady flow separation over a circular cylinder
using dielectric-barrier-discharge surface plasma,” Physics of Fluids, Vol. 21, 094106.

124 Wind-Energy Generation by Active Flow Control

International Journal of Flow Control


