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ABSTRACT
This paper focuses on the closed-loop control of an incompressible flow past an open
cavity. We propose a delayed feedback controller to suppress the self-sustained oscillations
of the shear layer. The control law shows robustness to changes in flow conditions. An
extension of the Eigensystem Realization Algorithm (ERA) to closed-loop identification,
the so-called OCID technique, is used to extract the unstable linear dynamics of the cavity
flow. The model-based analysis actually captures the modes against which the steady flow
becomes unstable. The identified model is used to design an optimal controller, which
shows both efficiency and robustness to stabilize the cavity flow.

1. INTRODUCTION
In numerous applications, self-sustained oscillations are the source of energetic accoustic noise. This is
for instance the primary source of noise in high-speed trains, and they also contribute to noise pollution
around airports caused by aircraft during landing and takeoff. The flow past an open cavity is well
known to give rise to self-sustained oscillations and provides a benchmark configuration for the study
of noise reduction strategies.

To fulfill the objectives of control, several strategies have been proposed in open-loop and closed-loop
plant designs, over the past twenty years, with actuators that disrupts the flow, either placed at the bottom
of the cavity [1], or at the upstream edge where the flow is the most sensitive to velocity changes [2].

This paper focuses on the closed-loop control of an open cavity flow in the incompressible regime.
The great challenge is to design a controller able to suppress the self-sustained oscillations of the shear-
layer and stabilize the steady base flow. In principle, the flow should be described by a high-
dimensional system because it results from the numerical resolution of the Navier-Stokes equations.
Unfortunately, these equations are inappropriate for a controller synthesis aimed at working in real-time
applications. It is instead required to approximate the system dynamics by a finite-dimensional model.
We want to find a technique appropriate for fluid mechanics that produces an accurate reduced-order
model able to capture the arising dynamics of the cavity flow, while remaining easy to implement
experimentally and achieving real-time performances.

The most widely used method to obtain reduced-order models is POD (Proper Orthogonal
Decomposition), combined with Galerkin projection [3]. The resulting POD modes are considered to be
the most controllable modes, but their observability is not considered in the construction of a reduced
order model, because POD maximizes the average energy of the data in the projection subspace.

In the problem of model reduction to a desired size, controllability and observability are equivalently
important because the quality of a reduced model to reproduce the behavior of the original system
strongly depends on them. To take into account these two concepts, [4] proposed the so-called balanced
POD (BPOD) method, which is an extension of balanced truncation for large systems.

In the case of a fluid flow past an open cavity beyond a critical Reynolds number, the steady base
flow becomes globally unstable and the dynamics eventually saturate to a limit cycle, due to non-
linearities. The study in [5] splits the complete dynamics into two subspaces, one catching the unstable
dynamics, spanned by the global modes with positive growth-rate, the other subspace describing the



stable dynamics, whose dimension is eventually large. The reduction of the stable subspace dimension
is crucial when dealing with the controller synthesis. Authors in [5] showed that models based on
BPOD Petrov-Galerkin projection outperform models based on POD for capturing the input-output
behavior. Unfortunately, BPOD cannot be applied to experiments since it requires the adjoint state to
be determined, which can only be done from numerical simulations [6].

Recently, [7] established an equivalence between BPOD and ERA. ERA is a parametric
identification technique first introduced by Juang [8]. ERA produces a significant reduction in
computation cost and memory resources. This method was first used in fluid mechanics in [9] and [10]
for system identification purposes, whereas [11] used it to find an exploitable reduced order model for
the synthesis of an efficient controller for noise reduction in a cavity flow.

Applying ERA on unstable systems generally requires prior knowledge of a controller which
maintains the system in the vicinity of the unstable equilibrium point. Then, ERA is used in closed-loop
configuration to extract the unstable dynamics [12, 13]. [11] used this method to identify the model of
a compressible flow past a cavity, after the unstable equilibrium point be stabilized by using a dynamic
phasor model, as in [14].

The usual description of the mechanism for cavity oscillations involves self-sustained oscillations,
caused by the familiar Rossiter mechanism as described in [15]. The model consists of separate blocks
of transfer functions. Each block represents a physical phenomenon. Their identification could be
achieved in a closed-loop configuration from spectral analysis [16]. However, in the presence of noise,
the spectral analysis promotes a biased model, due to the ignored correlation between the system input
and the noise measurement [17, 18]. Therfore, we rule out this procedure of identification.

We here plan to apply the same procedure as [11] in order to identify a model that describes the
linear instability of the steady base flow of an open cavity flow, in the incompressible regime. The
instability eventually saturates into a limit cycle, which corresponds to the strong self-sustained
oscillations experimented by the shear-layer. As reported in [14], the key point here is to be able to first
suppress the limit cycle with a suitable non-linear controller. We do so by using an original time-
delayed feedback controller, which eventually reveal to be robust against variations of the Reynolds
number and geometry configuration.

The outline of the paper is as follows. In section 2 we introduce the technique ERA for closed-loop
identification. In section 3 we detail the cavity flow configuration and the way the actuator is
numerically implemented. The time-delayed feedback control used to stabilise the unstable equilibrium
point is described in section 4. In section 5 we present the H2-synthesis. Finally, in section 6, some
numerical results are presented to illustrate the pertinence of ERA to identify an appropriate linear
model for an optimal controller synthesis.

2. EIGENSYSTEM REALIZATION ALGORITHM FOR CLOSED-LOOP IDENTIFICATION
ERA was introduced in [8] to compute a state-space model from input and output data of stable
systems. This technique is based on impulse response histories that are known as Markov parameters.
It is generally not possible to directly identify an unstable system from an open-loop configuration. For
unstable systems, the identification is only possible in closed-loop configuration, namely an unstable
system made stable by dynamic feedback control. Then, an input excitation with large band-width is
added in closed-loop operation such that it does not affect the overall system stability. Authors in [12]
extends the ERA identification method to closed-loop system identification, in the so-called
Observer/Controller Identification (OCID). This technique assumes the controller dynamics to be
unknown and the controller be a full-state feedback, based on an observer, as shown in Figure 1. For
closed-loop system identification with a known dynamics controller, see [13].

Consider a discrete linear system described by the state space model:

                                                                                                                   (1)

where x � Rn, u � Rj, and y � Rq. A, B, C and D are respectively state, input, output and feedthrough
matrices. The input u (k) of the system is the sum of the estimated vector state x̂(k) weighted by L and
the broadband excitation e(k):

                                                                                                       (2)
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Estimation of the discrete state vector is provided by an observer with gain K:

                                                                                         (3)

which yields the system input-ouput relation in the form of the observer/controller system given as:

                                                                                                            

(4)

where

                                                                                                          

                                                                                                                      
The relationship between the input-ouput of the observer/controller system can be written in terms of
a finite number of Markov parameters Y

–
(i), provided that the observer:

                                                                                                     (5)

is stable. Indeed, (5), with:

                                                          
,
                                                          

                                                                                                        
where l is large enough so that the observer converge. Convergence means that the estimated variables tend
to the exact values. Indeed in that case the error between x(t) and x̂(t) tends to zero when the number l is large.
Thus the estimated output ŷ(k) and the estimated state x̂(k) can be replaced by y(k) and x(k) into equation (4),
respectively beyond l time steps. Consequently, equation (5) can be expressed in matrix form as:
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Figure 1. Schematic description of the identification of system when operating in closed-loop.



The additive excitation e must be taken sufficiently rich such that V be full rank in order to identify
the Markov parameters of the observer/controller system from equation (6), as:

                                                                                                                                             (7)

where V+ denotes the pseudo-inverse of matrix V.
Now, we show how to separately compute the Markov parameters of the observer, system and controller

gain, which are necessary to construct the Hankel Matrix. From the Markov parameters, we identify the
constituent matrices of the state space representation of the unstable system. Sarting from equation (7), the
Markov parameters of the observer/controller system can be identified at each time steps as:

                                                                         
(8)

From these identified Markov parameters, we easily deduce the individual Markov parameters of the
observer, the system and the controller gain, which are put in the form:

                                                              (9)

The Markov parameters of the system and the observer, Y (1, 1)(k) and Y (1, 2)(k), are obtained from 
Y (1, 1)(k) and Y (1, 2)(k), respectively, by solving the following equation system [12]:

                                                                         (10)

We can put these recursive equations in matrix form as:
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(12)

To reach a sufficiently long and rich excitation, it is necessary to choose l very large. Since most
physical systems have noise and nonlinearity, l very large ensures the accuracy and uniqueness of the
Markov parameters Y (1,1) and Y (1,2). l is chosen such that the product lq be greater than the state number
n of system, where q is the dimension of y. The remaining Markov parameters Y

–2, 1(k) and Y
–2,2(k) are

recovered from the following equations, as described in [12]:

                                                                     (13)

The open-loop system is then obtained by applying a classical ERA for the open-loop identification
upon the set of Markov parameters identified from equations (11)–(13). This is performed by primarily
forming the Hankel matrix of Y(k) as:

                                                          (14)

where g and b are intergers satistying gj � n and bq � n. Then, we must perform a singular value
decomposition of the Hankel Matrix H(0) and keep the s most significant singular values:

                                                                                                                  (15)

where s represents the reduced order of the system. For more details on how to extract the realisation
of the open-loop system, see [8]. The identification of system matrices A, B, C, state feedback gain
matrix L and observer gain K, is done as:

                                                                            (16)

where matrix E is constructed as follows:

                                                                                        (17)

where m is the dimension of u.

  






Y

Y Y

Y i Y i Y

Y

Y

Y

Y i

Y

Y

Y

Y i

(1,2)
(1)

(1,2)
(2)

(1,2)
(1)

(1,2)
( 1)

(1,2)
( )

(1,2)
(1)

(1,2)
(1)

(1,2)
(2)

(1,2)
(3)

(1,2)
( )

(1,2)
(1)

(1,2)
(2)

(1,2)
(3)

(1,2)
( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

I

I

I

I– – 2

. ,

.

i

i

= − −
=
∑

= − −
=

=
∑

Y k Y k Y Y k i
i

k

Y k Y k Y Y k i
i

k

(2,1)( ) (2,1)( ) (2,2)( ) (1,1)( ),
1

(2,2)( ) (2,2)( ) (2,2)( ) (1,2)( ).
1

1




   


γ

γ

β β β γ

− =

+ + −

+ + +

+ − + + + −

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

H k

Y k Y k Y k

Y k Y k Y k

Y k Y k Y k

( 1)

( ) ( 1) ( 1)

( 1) ( 2) ( )

( 1) ( ) ( 2)

,

= Σ ≅ ΣH R Q R Q(0) ,T
S S S

T

= ∑ ∑ =∑ ∑

=∑

⎡

⎣
⎢

⎤

⎦
⎥ = ∑

−H R A Q A R H Q

B K Q E

C

L
R R

(1) , (1) ,

[ ] ,

,

S S S S
T

S S
T

S

S S
T

T
S S

1/2 1/2 1/2 1/2

1/2

1/2

= ⎡⎣
⎤
⎦ = +E Ih Oh Oh h j q, ,T

Mohamed-Yazid Rizi, Luc Pastur, Mohamed Abbas-turki, 
Yann Fraigneau and Hisham Abou-kandil 175

Volume 6 · Number 4 · 2014



3. CONFIGURATION AND BASIC FLOW PROPERTIES
3.1. Cavity Flow
Cavity flows are primarily characterized by their impinging shear-layer, which is known to be unstable
against Kelvin-Helmholtz modes. The vortices generated by this instability are eventually advected
downstream of the shear-layer, until they reach the cavity trailing edge, causing a pressure perturbation
which is instantaneously fed back to the cavity leading edge, in the incompressible regime. The
feedback reinforce the shear-layer instability, until a limit cycle is reached in which the shear-layer
oscillations are self-sustained and strongly energetic at very well-defined frequencies in the spectrum.
Additionally, a second loop take place through the inside cavity flow recirculation. This mechanism is
sketched in Figure 2.

The frequencies of the self-sustained oscillations can be discriminated by performing a simple
spectral analysis of the velocity or the pressure at the downstream impinging corner of the cavity.
Moreover, they can be predicted using the empirical Rossiter formula [19]:

                                                                                               

(18)

at Mach number Ma → 0, with k = cp/u∞, where cp is the mean phase speed. In (18), fm is the
frequency at a given mode number m. The corrective coefficient a is used to model the phase shift
in the loop.

The study is carried out in direct numerical simulations of a two-dimensional incompressible flow
over a rectangular cavity. We are dealing with a shallow cavity of aspect ratio L /D = 2, where 
L = 0.1m and D are the cavity length and depth, respectively. A cartesian coordinate system (x, y),
for streamwise and crosswise directions, respectively, is set midspan at the top of the upstream cavity
wall. The total domain is meshed on 296 � 128 nodes, among which 96 � 64 are devoted to the
cavity. The mesh is particularly refined close to the walls and at the cavity-top in order to enhance
the spatial resolution of boundary layers and shear-layer. Usual non-sliding conditions are applied at
the walls. The inlet flow is determined by Dirichlet boundary conditions. In order to limit the
numerical domain size, and therefore CPU time-consumption, the upstream vein length has been
reduced. The inlet velocity profile is preliminary calculated by means of a 2D simulation of a laminar
channel flow in spatial development, representative of the experimental upstream vein. The profile
is then extracted out of the appropriate cross-section of the channel-flow and extruded in the
spanwise direction. The laminar boundary layer at the cavity entrance is then developed from a
leading edge set at a distance Ll = 0.25 m upstream of the cavity. The Reynolds number Re = u∞L /v
is based on the cavity length L and the uniform flow rate velocity u∞ = 1.2 m/s. The kinematic air
viscosity n =16 � 10–6 m2/s. The momentum thickness of the laminar boundary layer upstream of
the cavity is q = 12.1 � 10–4 m. In this configuration, the cavity oscillates at a single dominant
frequency f2 = 13.0 Hz, and harmonics, corresponding to the Strouhal number St = f2L /u∞ � 1
(cavity mode m = 2 in equation (18)).
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The incompressible and isothermal flow dynamics is governed by the non-dimensional Navier-
Stokes equations:

                                                                                                       (19)

where U is the velocity field and P the pressure field. Numerical simulations are performed with
the OLORIN code developed at LIMSI, which is based on an incremental prediction projection
method, see [20, 21] for more details. Momentum equations are discretised with a finite volume
approach on a staggered structured grid. The spatial discretisation of fluxes is carried out with a
second-order centred scheme in a conservative form and time derivation is approximated by a
second-order backward differentiation formula. Viscous terms are implicitly evaluated whereas
convective fluxes are explicitly estimated at time t +1 by means of a linear Adams-Bashford
extrapolation. The discretised form of the Navier-Stokes equations yields a Helmholtz-type
problem of the form:

                                                                                  

where superscript ς tags time tς, Dt is the time step and S ς’ς-1 is the source term gathering all explicit
quantities, evaluated at times tς and tς–1. For each time-step, the numerical procedure is splitted in two
parts, a prediction step and a projection step. The former consists in resolving the Helmholtz equation
by considering the explicit pressure field P ς in place of the implicit one. The integration is performed
with an ADI (Alternating Direction Implicit) method [22]. As a result, we obtain an estimated velocity
field U* that is not yet divergence-free. The incompressibility property is imposed by using an
incremental projection method [23]. The projection step requires to resolve a Poisson-type equation,
using a relaxed Gauss-Seidel method coupled to a multigrid method, in order to accelerate
convergence, where the source term relies on non-zero divergence of the predicted velocity field:

                                                                                                                      

Solution j corresponds to the pressure time-increment, gradient ∇j is the correction term such that
the velocity field is divergence free at time t ς+1. The Poisson equation is commonly solved with
Neumann-type boundary conditions, where the normal derivative on the domain limits is zero. By
doing so, the boundary condition, on the corresponding normal velocity component, is not affected
by the correction term.

3.2. Actuation Implementation
In order to manipulate the cavity flow, we introduce a bulk force f

→
in the Navier-Stokes equations: 

                                                                                                   (20)

which models the actuator. It is designed as an horizontal force in a small square area at the upstream
edge of the cavity. This force is interpreted as an acceleration given to the fluid particles in this area.
This way to model the actuator enables to inject a zero-net-mass flux but it brings a momentum
(synthetic jet effect).

The pressure sensor located near the downstream edge is used in the feedback control configuration.
Since the cavity has an unstable equilibrium point, it has first to be stabilized. This goal was achieved
with a time-delayed feedback controller. The ERA technique described in section 2 with an unknown
dynamics controller is then used for the identification of the system operating in close-loop (Figure 3).
To successfully carry out the identification of a stabilized nonlinear system around an operating point,
it is necessary to satisfy the superposition principle for an additive excitation. It guarantees that the
system responds linearly at the operating point [16].
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4. DELAYED FEEDBACK CONTROL
The control strategy in phase opposition appears as a natural way to control an oscillatory system.
Pressure fields are in phase (modulo 2p) at the upstream and downstream edges. However, a
disturbance at the upstream edge needs time to travel down to the trailing edge. We propose to design
the control law based on the delayed pressure measurement at the trailing edge, weighted by a gain a.
Since there is no direct meaning of the phase response for nonlinear system, the delay and the gain are
found by trial until the oscillations be killed. The control law is given as:

                                                                                                                    (21)

where fx and fy are the x and y force components in the (xy) plane, respectively. The gain a > 0
determines the intensity of the applied force, and must be carefully chosen for not bringing the cavity
into another undesired flow regime. Pressure p is measured at the downstream edge, and t is the time
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Figure 3. Identification of a reduced order model of the flow cavity.

Figure 4. Closed-loop control with fx = a p(t − t) at Re = 7 500 with q = 12.1 × 10−4 m. 
The pressure at the impingement point (top) with the control input (bottom).



delay estimated from the dominant frequency f2 = 1/T2 of the oscillation of the shear layer. The optimal
trial value of t that kills the limit cycle is t = T2/6, with a gain a = 10. Figure 4 illustrates the
effectiveness of the control law. Control is switched on at t = 20s, when the cavity is in its established
regime (limit cycle). However, when the parameters of the control law are not optimal (in gain a or
delay t), the cavity switches to an other instability mode.

We next kept a and t fixed and changed the Reynolds number from 7500 to 7000 and 8000. We
observe that the command is robust to such changes in Re, although the frequency of oscillations
slightly changes from 13 Hz to 12 and 14 Hz, respectively, as can be seen in Figure 5. In all three
spectrograms, the sensor signal exhibits no more energy at the shear-layer frequency once the control
has been turned on (t = 20 s). Unfortunately, we note that the control force applied to maintain the base
flow stable is not vanishing, as shown in Figure 4. Henceforth, we slightly modified the control law in
order to remove the asymptotic pressure. This is done by removing at any time the (slowly varying)
mean pressure pavg(t), as:

                                                                fx = a (p(t – t) – pavg).                                                          (22)

The mean pressure pavg is calculated by a moving average filter with a window length Tmean. To get
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Figure 5. Performance of the closed-loop control with fx = a p(t − t)  for various cavity
configurations. Spectrogram of pressure at the impingement point of the cavity 
at Re = 7000 with q = 12.5 × 10−4 m (a), (b) Re = 8000 with q = 11.7 × 10−4 m 

and (c) Re = 7500 with q = 11.9 × 10−4 m.



a satisfactory estimation of the mean pressure, we choose Tmean = T2. There again, the oscillations are
killed, but the command is now vanishing after a transient, as shown in Figure 6.

It is worth noticing that a time-delayed command is easy to implement experimentally. However, it
does not provide any knowledge about the instability of flow. To fulfill this goal, we perform a
parametric OCID identification that allows to shed light on the dynamics close to the vicinity of the
unstable steady state. Even though the cavity dynamics experiment delays due to the convection of
perturbations, OCID is able to approximate delays by the addition of poles and zeros in the model. This
observation was made in [16] who emphasized that two additional states in the model were most
probably due to the hydrodynamical delays in the cavity.

5. CONTROLLER DESIGN
In this section, we describe the H2-synthesis of a controller from the reduced-order model of the flow
cavity identified by using OCID. OCID provides a discrete-time model for the system, but for
numerical convenience and better synthesis as we will see in the following we must convert the
discrete-time model into a continuous-time model. We used the d2c command in Matlab (bilinear
approximation of the derivative) for our continuous H2-synthesis.

Let us consider the open-loop generalized plant G given in state-space representation as:

                                                                                                                     (23)

with an exogenous input w representing external disturbances that modelizes as a unitary white-noise
with a Gaussian distribution, an exogenous output z for performances specification, a control input u
and a measurement ouput y.
The performance objective of the H2-synthesis is to find a proper controller K given as:

                                                                                                                                 (24)
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Figure 6. Closed-loop control with fx = a[p(t − t) − pavg] of cavity at Re = 7500 
with q = 12.1 × 10−4m. The pressure at the impingement point (top) 

with the control input (bottom).



which stabilizes G internally and minimize the H2-norm of the transfer Tzw from w to z [24].
To find this proper controller and obtain a finite H2-norm for the transfer function, the direct

feedthrough from w to z is assumed to be zero (D11 = 0) and we deal with systems having zero gain at
infinite frequency (D22 = 0). Additional assumptions are made for the ouput feedback H2-problem:

•    (A, B2, C2) must be stabilizable and detectable.
•    D12 must have full column rank and D21 must have full row rank.

Under these assumptions, the H2-problem admits an H2 optimal controller with Ac, Bc and Cc given as:

                                                                                                               (25)

where the stabilizing matrices P1 and Q1 are solutions of the following algebraic Riccati equations:

                                                                                                 (26)

The above assumptions can be relaxed by using an optimization problem under Linear Matrix
Inequalities (LMI).

We conducted this synthesis on the reduced-order models obtained with OCID for various cavity
configuration. The resulting models have a direct feedthrough matrix D (Figure 7) which requires to
undertake some arrangements in order to make the H2-synthesis possible [24]. Figure 7 shows the
controller design which stabilizes the cavity base flow, where w1 and w2 represent the state and
measurement noise, respectively. In this case, the performance signal z contains the control signal fx and
the pressure measurement p at the impingement point, without measurement noise w2. The exogenous
input w contains w1 and w2. The open-loop generalized plant G thus becomes:

                                                                                        

(27)

We note that D11 ≠ 0 and D22 ≠ 0, hence the H2 optimal controller can not be obtained. To find such an
H2 optimal controller, we first consider D22 = 0 and resolve the H2 control problem with direct
disturbance feedforward [24].

The first step is to find a compensator K
^

with a standard H2 synthesis (see above) from a model of
transition Ĝ given in matrix form as:

                                                                                 (28)

with

                                                                                                                                      

where B1, C1, D11, D12 and D21 are those of equation (27) times ponderation matrices to take into
account the noise power model. Then the corrector KGD for G with D22 = 0 is given by:

                                                                                                                                    (29)

In the second step, D22 = 0, the controller is deduced from equation (29) as:

                                                                                                                  (30)

This linear controller aims to validate the model that captures the linear dynamics of the cavity,
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identified by OCID. This approach, where a linear controller developed from the linearized dynamics
of a nonlinear system stabilizes the complete system, was already seen in [25] and [11] for the
stabilization of combustion oscillations as well as, the cavity oscillations of a compressible flow [16],
where a LQG compensator was synthesized.

6. SIMULATION RESULTS
We carried out the identification by OCID on various cavity configurations, changing both the
Reynolds number and the momentum thickness q. The models are validated by comparing the
error between the impulse response of the reduced model and that provided by the Markov
parameters. Figure 8 shows the frequency response of the linearized model for a 23-dimensional
state in the flow cavity at Re = 7500 and momentum thickness q = 12.1 � 10–4 m. The synthesized
controllers (see section 5) suppress the oscillations of the cavity flow. Thus, the validity of the
identified model is confirmed, as illustrated in Figure 9, where the optimal control is switched on
at t = 20 s. Because not all unstable dynamics are captured, we point out that performing a
balanced truncation of smaller dimension does not allow to find any stabilizing corrector for this
cavity configuration.

Models also teach us about the dynamics responsible for the appearance of oscillations in the shear
layer. Figure 10 shows the eigenvalues (poles) of the linear dynamics identified for two flow
configurations, namely q = 12.1 � 10–4 and 11.9 � 10–4 m at Re = 7500. In both cases, the most
unstable mode in the model, at the utmost right of the imaginary axis, corresponds to the dominant
frequency of the shear layer oscillations (St � 1). The least unstable mode, closest to the imaginary
axis in the right-half plane, is associated with a Strouhal number of the order of 1.5. This value is
typical of the shear-layer mode m = 3 in equation (18). It suggests that the linear model can actually
detect Rossiter modes, though the flow usually never spontaneously oscillates at those frequencies.
Yet, this mode is excited when a disturbance is applied in the boundary layer, at the cavity upstream
edge, either in open-loop or closed-loop control, with a controller that does not stabilize this unstable
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Figure 8. Magnitude and phase of frequency response of the 23-dimensional state
linearized model of cavity at Re = 7500 with a momentum thickness q = 12.1 × 10−4m.

Figure 7. Standard feedback configuration for the H2 controller synthesis.



mode. This is, for instance, what happens when the optimal controller synthesized for q = 12.1 � 10–4

m is applied to the cavity flow with momentum thickness q = 11.9 � 10–4 m, where the least unstable
mode is not stabilized. For the cavity configuration q = 11.7 � 10–4 m at Re = 8000, the signature of
the least unstable mode (see Figure 15) becomes noticeable in the cavity flow without control, as
shown in Figure 5 (b). The signature of this mode is however not permanent in time: it suddenly
occurs and is accompanied by other frequencies, which presumably result from nonlinear interactions
between the unstable modes. This behavior is reminiscent of the mode switching phenomenon
experimentally observed in incompressible [26, 27, 28] as well as compressible cavity flows [29].

When the momentum thickness of the laminar boundary layer upstream of the cavity is changed
from q = 12.1 � 10–4 to 11.9 � 10–4 m, at Re = 7500, the shear layer oscillation frequency remains
roughly unchanged, but its amplitude changes. We also note that a 25-dimensional state model is
required to accurately describe the dynamics of the new cavity configuration. The change in momentum
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thickness actually gives rise to an additional stable mode for the dynamics, surrounded by a green box
in Figure 10. We infer that this mode actually approximate the delay introduced by the advection of
disturbances by the shear layer from the upstream to the downstream edges. Indeed, delays are often
approximated by rational functions, whose accuracy increases with the polynomial order (Padé
approximation). The additional mode could therefore be added to the model in order to better
approximate the effect of the delay.

A real eigenvalue close to the imaginary axis was found for all linear models of investigated cavity
configurations (see Figure 10 and 15). This eigenvalue likely models the action of the actuator on the
flow. Indeed, the actuator is a bulk force, proportional to an acceleration, and therefore proportional
to the time-derivative of the local velocity. The transfer function of a derivative plant provides a zero
eigenvalue. Henceforward, it seems rather natural that such an eigenvalue occur in the model.
However, this eigenvalue was found on the real axis. We assume that the shift of this eigenvalue with
respect to the imaginary axis is due to the lack of precision of the linear model identified by balanced
truncation.

The control signal fx resulting from the optimal controllers are not vanishing, as shown in Figure 9.
To get a vanishing command, we must subtract, here also, the mean pressure pavg(t) from p by using
a moving average filter, as described in section 4. As the synthesized optimal controllers provide very
low phase margin, we avoid to use high-pass filters to remove the nonzero mean pressure pavg(t) in
order to not introduce a phase lag, which might destabilize the closed-loop system. As seen in Figure
11, the result is eventually very promising, since the control signal is of low intensity. Most noticeably,
the (linear) optimal controller synthesized for Re = 7500 with q = 11.9 � 10–4 m, also stabilizes the linear
models at Re = 7500, q = 12.1 � 10–4 m and at Re = 7000, q = 12.5 � 10–4 m, inferring a relative
robustness of the controller. However, this controller could not stabilize the linear model at Re = 8
000, q = 11.7 � 10–4 m. The same range of robustness is observed in direct numerical simulations of
the cavity flow, where the linear controller identified for Re = 7500, q = 11.9 � 10–4m, is 
switched on at t = 20 s on the three other configurations (see Figure12). However, when we
synthesize an H2 optimal controller from the reduced order model of the cavity flow at Re = 8 000
(q = 11.7 � 10–4 m) and implement it in direct numerical simulations, this cavity is stabilized 

184 Closed-Loop Analysis and Control of Cavity
Shear Layer Oscillations

International Journal of Flow Control

14 16 18 20 22 24 26 28 30

−0.1

−0.05

0

0.05

0.1

0.15

14 16 18 20 22 24 26 28 30
−1.5

−1

−0.5

0

0.5

1

1.5

p 
(p

a)
f x

 (N
)

t (s)

t (s)

Figure 11. Closed-loop optimal control of a cavity at Re = 7500 with q = 12.1 × 10−4 m 
by a pressure feedback without its moving average pavg(t ). The pressure at the

impingement point (top) with the control input (bottom).



Mohamed-Yazid Rizi, Luc Pastur, Mohamed Abbas-turki, 
Yann Fraigneau and Hisham Abou-kandil 185

Volume 6 · Number 4 · 2014

15 17 19 21 23 25 27 29

8

7

6

5

4

3

2

1

0

St

Time (s)

(a)

15 17 19 21 23 25 27 29

8

7

6

5

4

3

2

1

0

(b)

Time (s)

St
15 17 19 21 23 25 27 29

8

7

6

5

4

3

2

1

0

(c)
Time (s)

St

15 17 19 21 23 25 27 29

7

6

5

4

3

2

1

0

(d)
Time (s)

St

Figure 12. Performance of closed-loop control for various cavity configuration with the
synthetized H2 optimal controller from the reduced order model for cavity at Re = 7500 

with q = 11.9 × 10−4m, showed from the spectrogram of the impingement pressure of the
concerned cavity (a), (b), (c) and (d) for the flow cavity at Re = 7500 with q = 12.1×10−4m,

Re = 7000 with q = 12.5 × 10−4m, and Re = 8000 with q = 11.7 × 10−4 m, respectively.

15 17 19 21 23 25 27 29

7

6

5

4

3

2

1

0

St

Time (s)

Figure 13. Performance of the synthetized H2 optimal controller for a cavity flow 
at Re = 8000 (q = 11.7 × 10−4m).

(see Figure 13).
Although the delay controller described in Sec. 4 is able to stabilize the cavity steady base-flow in

all the configurations investigated in this paper, it fails to stabilize the linear models. This suggests that
the linear models identified by OCID are not fully accurate and that the delay controller does not
stabilize all the unstable modes of the linear models. As can be seen in Figure 14, the unstable
eigenvalue at low frequency in the closed-loop system, for Re = 7500 and q = 12.1 � 10–4 m, is not
stabilized by the time-delayed feedback control. The reason is probably partly due to the truncation of
equation (15), where the less energetic singular values are neglected. Those neglected singular values
may actually corrupt the static gain identification. In addition, the nonlinear nature of the system may
also contribute to the lack of precision in the identification. Yet, these linear models are useful to
identify the most dominant dynamics in the cavity flow.



CONCLUSION
In this paper, a method of robust nonlinear control to stabilize the cavity oscillations has been proposed. It is
based on a time-delayed feedback control law, based on local pressure measurement. The delayed feedback
controller reveals to be simple and robust to changes in cavity configuration (see Figure 4 and 5). This
controller is also easy to implement experimentally without any prior knowledge of the cavity dynamics, but
it does not allow to analyse the origin of the instability, and its consequences. However, thanks to this control,
a closed-loop identification could be performed that identified a linearized model for the cavity. This
identification method is based on balanced truncation (OCID). The linear dynamics are extracted from the
Markov parameters of the closed-loop system in the form of a state space model. This model is of
reduced-order and preserves both controllability and observability of the captured dynamics. A linear
optimal control was synthesized from the linearized model of the cavity. This linear control shows some
robustness to changes in cavity flow conditions.
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