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ABSTRACT
The work is in two parts: Part 1 deals with kinetic treatment of the slip flow and Part 2
deals with numerical modeling of the rarefied and rotating slip flow. The present paper
containing Part 1 gives an overview of kinetic theory and its application to fluid flow,
Bhatnagar–Gross–Krook (BGK) model and construction of Chapman-Enskog
distribution. The paper describes the Kinetic Flux Vector Splitting (KFVS) scheme which
performs upwinding in the Boltzmann level for viscous flows for three dimensional and
axi-symmetric geometries.  The paper also describes novel Variation Reduction Kinetic
Flux Vector Splitting (VRKFVS) and kinetic treatment of the slip and far field boundary.
Viscous split fluxes based on kinetic flux vector splitting satisfy the Onsager reciprocity
relations and are treated in upwind manner for effective capture of slip phenomenon. Slip
velocity not only depends on the velocity gradient in the normal direction but also on the
fluid dynamic gradients in the tangential flow direction. Treatment of slip boundary using
kinetic upwind fluxes based on diffuse reflection model considers these variations in the
tangential flow direction.

Key words: kinetic, BGK model, Chapman-Enskog distribution, Boltzmann equation,
BGK-Burnett, KFVS, VRKFVS, viscous, slip flow, Onsager reciprocity

Nomenclature
f (N) =  particle distribution function in 6N dimensional phase space

f (x
→

, v
→

, I,t) =  molecular distribution function

f �, f �a = distribution functions of the molecules before collision and after collision

f0 =  Maxwellian distribution function

f1, f2 =  first and second order Chapman-Enskog distribution function

f
–
i , f

–
i
M = i th Chapman-Enskog expansion term for Maxwellian f0 and fM

∆f, ∆f1 = difference in Maxwellian and difference in Chapman-Enskog term 

∆f
∧

1 = difference between first order Chapman-Enskog and Maxwellian distribution

∆f
–
1 = difference in 1st Chapman-Enskog expansion term for  Maxwellian f0 and fM

f ∞0, f1
in , f0

wc = farfield, incident and distribution at wall condition.

f Σ1 = total distribution at the boundary

f0
wc = Maxwellian distribution function based on wall conditions

x
→

=  position vector

v
→

=  molecular velocity vector

I, I0 =  internal energy variable and average internal energy parameter

b = thermal speed, (2RT )-1

Df = the degree of freedom

t = time

T =  temperature
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u
→

=  macroscopic velocity vector

c
→ =  peculiar velocity

ui, vi, ci = x, y and z components of macroscopic, molecular and peculiar velocity

si = spatial coordinate x, y and z

p = pressure

t = shear stress tensor

r = density

R = specific gas constant

E = total energy, 

J(f, f ) = binary collision term

K(f, f, f ) = ternary collision term

L(f, f, f, f ) = quaternary collision term

Jm(f, f) = binary collision model

Ψ, yi = moment  and its element

ts, tf = slow timescale and fast timescale in the evolution of the distribution function

Π = molecular cross section

g = magnitude of the relative velocity of the particles before collision

e, Θ = scattering angles

d = Dirac delta function

Ξ = linear subspace used in Levermore hierarchy

z = element of linear subspace used in Levermore hierarchy

Kn, KnGL = Knudsen number and gradient length Knudsen number 

BNS = breakdown matrix due to moment realizability

NSB = breakdown parameter for Navier-Stokes equation

V = macroscopic parameter 

sP = entropy production 

H , kB =  Boltzmann entropy function and dimensional Boltzmann constant (kB ≈ 6.10-23 J/K)

j, X = flux and thermodynamic force associated with Onsager reciprocity principle

Λ = Onsager’s kinetic coefficients

m, k = viscosity and thermal conductivity

tR = relaxation time

tR,1 , tR,2 = relaxation time for momentum transport and energy transport

do = exponent of the viscosity law of the gas

q
→

= heat flux vector

Pr, Re = Prandtl number and Reynolds number

M = Mach number

l, L = mean free path and length scale

x1,t , x
~

t = Chapman-Enskog polynomials associated with the shear stress 

x1,q , x
~

q = Chapman-Enskog polynomials associated with the heat flux vector

Jt,1, Jt,2, Jt,3 = moment closure coefficients associated with the shear stress

Jq,1, Jq,2, Jq,3 = moment closure coefficients associated with the heat flux vector

j = dissipation control function 

w = angular velocity 

r, z, q = radius, axial  and azimuthal variable

U =  state update vector or vector of conserved variable = 

UM = vector of conserved variable for Maxwellian fM
GX, GY, GZ = flux components in x, y, z-direction

GX±
I , GY±

I, GZ±
I = inviscid flux components in x, y, z-direction

[ , , ]ρ ρ ρ�
u E T

RT
u uT

γ −
+ ( )

1

1

2

� �
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GX±
v , GY±

v, GZ±
v = viscous flux components in x, y, z-direction

GR = radial component of flux vector

S = source terms

vz, vr, vq = axial velocity, radial velocity, azimuthal velocity

mnum = numerical viscosity

s = diffuse reflection or accommodation coefficient

vs
z, v

d
z = specularly reflected and the diffuse reflected z-component of the velocity 

1. INTRODUCTION TO KINETIC FLUX VECTOR SPLITTING
Gudunov and Boltzmann schemes are broadly two approaches to solve hyperbolic system of
conservation laws.  Godunov scheme uses sound waves and streamlines to propagate information while
Boltzmann scheme uses trajectories of individual particles and its distribution [1]. Godunov scheme
relies on solving a Riemann’s initial value problem with characteristics of the Euler equation. In this
approach interaction amongst the neighboring cells is through discrete, finite amplitude waves. The
numerical technique using this incoming and the outgoing waves is called the flux differencing splitting
scheme. Examples are the methods of Roe [2] and Osher [3]. Whereas, in Boltzmann based approach
interaction amongst the neighboring cells is through movement of the particles or its velocity
distribution. The numerical technique based on this movement of incoming and outgoing particles is
called flux-vector splitting scheme.  One of the earliest examples is the Beam scheme of Sanders and
Prendergast [4] and Steger and Warming [5]. 

Figure 1. Upwinding using split velocity distribution in KFVS

A few years later to the Beam scheme [4], Harten et al. [1] developed an approach to construct a scheme
for general hyperbolic systems of conservation laws. Equilibrium flux method (EFM) of Pullin [6]
initiated the development of kinetic schemes for compressible Euler system based on Maxwellian
distribution. Just after development of EFM Reitz [7] developed a kinetic scheme using Boltzmann
equation. Deshpande [8] proposed Kinetic Flux Vector Splitting (KFVS) scheme which was further
developed by Mandal and Deshpande [9] for solving Euler problems. At the same time Perthame [10]
developed kinetic scheme and Prendergast and Xu [11] proposed a scheme based on BGK
simplification of the Boltzmann equation. Xu [12] and May et al. [13] modified and further developed
this scheme. The gas kinetic scheme of Xu [12] differs from the KFVS scheme mainly in the inclusion
of particle collisions in the gas evolution stage. Numerical fluxes are calculated in the gas evolution
stage as time dependent gas distribution function is computed at the cell interface by making use of
local integral solution of the BGK model. Raghurama and Deshpande [14] proposed a scheme based
on peculiar velocity based upwind method which splits the flux vector into acoustic and the transport
part. 

KFVS is based on moment-method strategy which operates in two levels: i) the Boltzmann level
where upwind implementation is done, ii) the macroscopic (Euler or Navier-Stokes)  level at which the
state update operates. KFVS scheme for the viscous flows was proposed by Chou and Baganoff [15].
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KFVS for viscous flows applies Courant splitting at the Boltzmann level followed by moment-method
strategy using Chapman-Enskog distribution to obtain split Navier-Stokes fluxes based on the signs of
the molecular velocity. Fig.1. shows upwinding in the Boltzmann level using the split velocity
distribution based on the sign of the molecular velocity. Mahendra[16] and Mahendra et al. [17] used
KFVS for simulating compressible, viscous flows. KFVS has also been applied to quantum gas
dynamics for Bose-Einstein and Fermi-Dirac gases [18]. When it comes to resolving boundary layers
and calculating adiabatic wall temperature the flux difference splitting is less dissipative compared to
flux vector splitting [19]. KFVS is entropy consistent and do not suffer from the many pathological
behavior of other flux differencing / splitting schemes. The dissipation in the KFVS can be controlled
by incorporating the modified Courant splitting based on dissipation control parameter. Anil et al. [20]
developed a modified KFVS with molecular velocity dependent dissipation control parameter. The
paper also describes a novel scheme Variation Reduction Kinetic Flux Vector Splitting scheme
(VRKFVS) which solves for the deviations over the chosen Maxwellian. Using this method the solver
can capture very weak secondary flow features embedded in strong flow field. The paper also describes
axi-symmetric formulation of KFVS. 

Validity of the Navier-Stokes equation as well as diffusion equation requires sufficient collision of
particles and relaxation of the distribution to weak spatial gradients and slow temporal variations. Flow
can be classified as slip flow based on the Knudsen number defined by the extent of non-equilibrium
effects and rarefaction. The most common approach to simulate slip flow is to couple the continuum
solver with the slip boundary condition or slip models. Most of the slip models in the literature are for
simple micro-channel flows. In such a scenario we require a more fundamental approach. The Part 1 of
the paper also describes diffuse reflection model which uses kinetic upwind fluxes for slip boundary
treatment. Kinetic flux vector splitting at the boundary generates the viscous split fluxes which satisfy
the Onsager reciprocity relationship. The slip boundary is flux based and upwind treatment of such
viscous split fluxes leads to effective capture of slip phenomenon. 

2. KINETIC THEORY AND FLUID FLOW
The detailed description of the classical gas system consisting of N particles in  three dimensions is the
Hamiltonian  representation with 3N coordinates and 3N momenta. The alternative representation uses
the Gibbs ensemble described by Liouville equation forming the basic statistical equation for
conservation of N particle distribution function, f (N) in 6N dimensional phase space. BBGKY1

hierarchy of equations are obtained after successive integration of  the Liouville equation. There are
kinetic theories which are not based on the BBGKY hierarchy like Prigogine-Balescu’s method [21]
and Markov’s method of random flight [22].  Each chain in the BBGKY hierarchy involves reduced
distribution function f (H) and higher order distribution function f (H+1). Boltzmann’s molecular chaos
(“Stosszahlansatz”) assumption gives a closed equation for f (1) by introducing time irreversibility
while asserting the absence of correlations between molecules entering a binary collision. In this case
the gas system is described by the single particle distribution function governed by Boltzmann
equation; it is this aspect of the Boltzmann equation that leads to entropy production. 

2.1 Boltzmann equation
The Boltzmann transport equation describes the transient molecular distribution function f (x

→
, v

→
, I,t) :

RN × RN × R+ × R+ → R+. Additional internal energy variable I ∈ R+ is added as polyatomic gas consists
of particles with additional degree of freedom. For a gas in absence of external force and without
internal degrees of freedom, the Boltzmann equation with Bogoliubov’s generalization is as follows 

(1)

In above, x
→

, the position vector and v
→

, velocity vector of molecules are given in RN, where J(f, f) is
binary or two particle collision, K(f, f, f) being the ternary or three particle collision and L(f, f, f, f) is
quaternary or four particle collision. The binary collision integral J(f, f) can be described as

∂
∂

+ ∇ = + + +f

t
vf J f f K f f f L f f f fx

�
�

�.( ) ( , ) ( , , ) ( , , , )
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(2)

where f = f (x
→

, v
→

, I,t) and f = f �(x
→

, v
→′, I,t) are the distribution functions of the molecules before collision

and f a = f (x
→

, v
→

a, I,t) and f ′a = f (x
→

, v
→′

a, I,t) are the distribution functions of the molecules after collision.
Also, g = v→ – v

→′is the magnitude of the relative velocity of the particles before collision and Π is the
molecular collision cross section. Integration with respect to e goes from 0 to 2p , while angle Θ varies
from 0 ( head-on collisions) to p /2 (grazing collisions). For hard sphere Π = d2/4, where d is diameter
of the hard sphere. HS model predict transport coefficients which are proportional to square root of
temperature i.e. T0.5 while real gases vary as T0.7. With better collision model like Variable Hard Sphere
(VHS) model in which Π ∝ g–a for a constant a > 0 more realistic prediction of transport properties
can be made. This binary collision integral vanishes in the Euler limit when the distribution becomes a
Maxwellian, f0. 

The Boltzmann transport equation describes the transient molecular distribution. The moment of a
function, Ψ = Ψ(v

→
, I,t) : RN × R+ × R+ → R+ is defined as the inner product

. (3)

The five moments function defined as give the macroscopic mass, momentum, and
energy densities. When we take moments of the Boltzmann equation we get the hyperbolic
conservation equation. For example with f = f0 we get Euler equations that are set of inviscid
compressible coupled hyperbolic conservation equations written as 

(4)

where is the vector of conserved variable and (GX, GY,

GZ) are the Cartesian components of the flux vector defined as

, (5)

and (6)

. (7)

In the above equations r is the density, u
→ = (ux, uy, uz) is the fluid velocity, p is the pressure and

. For an ideal law we have p = rRT where R is the gas constant and T is the absolute

temperature.

E
RT

u uT=
−

+ ( )γ 1

1

2

� �
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2.2 Moments and extended thermodynamics
Levermore[23] proposed a procedure that generates hierarchy of closed systems of moment equations.
The Levermore closure procedure ensures every member of the hierarchy is symmetric hyperbolic with
an entropy, and formally recovers to Euler limit. Consider finite dimensional linear subspace Ξ of
functions of v

→  
satisfying the following conditions :

. (8)

Examples of such admissible subspace with maximal degree two and four are

. (9)

Thus there can be 5, 10, 14, 21, 26 and 35 equations with entropy based closures using Levermore
procedure [24,25]. Closure based on Maxwellian (equilibrium solution) distribution will give us 13 and
20 moment equations. From the continuum mechanics perspective the flux in an equation becomes the
density in the next one, as there can be infinite moments. Thus, there is a problem of the closure when
we cut this hierarchy at the density with tensor of rank n as its flux and production term will require its
balance as they become density in the next hierarchical step. According to the idea of rational extended
thermodynamics Müller and Ruggeri[26] have treated this truncated system as a phenomenological
system of continuum mechanics governed by universal principle of entropy, objectivity, causality and
stability ( convexity of entropy). The differential system is hyperbolic and classical constitutive
equations are approximation of balance laws when relaxation times are negligible. (This avoids the heat
paradox2 observed in the classical theory.) The diffusion equation and the Navier-Stokes equation are
valid only when particles have suffered many collisions and their distribution has relaxed to have weak
spatial gradients and slow temporal variations. However, there are physical situations where gradients
are large on the scale of a collisional mean free path or temporal changes are rapid relative to the mean
collision time. Examples include radiation hydrodynamics in optically thin media (Levermore and
Pomraning [27]), viscous angular momentum transport in boundary layers of accretion disks (Popham
and Narayan [28]) and electron heat transport in laser produced plasma (Max [29]). It should be noted
that Navier-Stokes equations do not have equations for evolution of shear stress and heat flux vectors
as compared to 13-moments Grad system [30]. When relaxation time for evolution of shear stress and
heat flux are negligible then 13-moments Grad system reduces to classical Navier-Stokes as illustrated
by extended thermodynamics. Table 1 shows various hierarchies of equations due to Kundsen number
expansion and number of moments compiled from Struchtrup [31].

Ξ
Ξ

=
= ⊗ }span v v v

span v v v

T{ , , }
{ , , }
1
1

� � �
� � �     

  
maxiimal degree 2=

= ⊗Ξ span v v v v v v vT T{ , , , ( ), (1
� � � � � � � �

vv v v
span v v v v v v

T)( )}
{ , , , , (

� �
� � � � � �         

Ξ = ⊗ ⊗ ⊗1
�� � � �

� � � � � � �v v v v
span v v v v v v

T T)( )}
{ , , , ,

    
Ξ = ⊗ ⊗ ⊗1 vv v v v

span v v v v v v v

T( ) }
{ , , , ,

� � �
� � � � � � � ⊗

= ⊗ ⊗ ⊗
     

Ξ 1 ⊗⊗ ⊗ ⊗









=
� � �
v v v}

maximal degree 4

(I)                   
(II) 

Ψ Ξ≡ ⊂span v v vT{ , , }1
� � �

         follows Gallilean invariance
(III)    

Ξ
  Ξ Ξc z z v≡ ∈ < +∞





{ : exp( ( )) }
�

26 Viscous Compressible Slip Flows. 
Part 1: Kinetic Flux Vector Splitting and its Variance Reduction form

International Journal of Emerging Multidisciplinary Fluid Sciences

2 The parabolic nature of heat equation in classical theory implies an infinite speed of propagation of disturbance in temperature. This paradox is

similar to paradox of diffusion and shear waves. 



Table 1. Hierarchy of equations due to Knudsen number expansion and number of
moments for Maxwell molecule.

2.3 Quasi Gas Dynamics (QGD) and hydrodynamic theory of Brenner
Quasi-gas-dynamics (QGD) of Elizarova[32] and Quasi-hydrodynamic of Sheretov[33] approach uses
the time-spatial averaging procedure for the definition of the main gas dynamic quantities: density,
velocity, and temperature as compared to spatial averaging used in conventional Navier-Stokes theory.
Galileo transformation does not hold for the gas-dynamic equations based on spatial-time averages.
For example consider continuity equation

. (10)

For spatial-time averages, the mass flux density may not be same as momentum of the volume unit [32]
as

. (11)

For spatial-time averages, the mass flux density may not be same as momentum of the volume unit as
even for small time ∆t, the instant value of density and momentum change.

For example in QGD an additional dissipative summands is introduced in the equations such that
time-spatial averages are invariant under Galilieo transform. Due to this additional averaging
(smoothing) in time the determination of the gas-dynamic parameters QGD formally differ from the
Navier–Stokes system. This is similar to modification in hydrodynamic theory proposed by Brenner
[34] by introducing a new mass diffusion contribution to the continuity equation. The equations were
formalized by Ottinger [35] by providing thermodynamical basis. Greenshields and Reese [36]
investigated monatomic gas shocks and found that results with Brenner’s modifications are
significantly better than those of the standard Navier–Stokes equations. Guo and Xu [37] studied
gaseous micro flows using Brenner’s hydrodynamic model and found that Brenner’s model failed to
give qualitative correct temperature profile. 

2.4 BGK model 
Boltzmann equation being a nonlinear integro-differential equation becomes difficult to handle. This
requires some alternative simpler model to replace the collision term. Such models which replace the
Boltzmann collision integral are called a kinetic model. These models should preserve the basic properties
and characteristics of the Boltzmann equation.  Kinetic model should satisfy the following properties :

a) Locality and Galilean invariance
Since the Boltzmann equation is invariant under Galilean transformation hence the collision
term Jm(f, f) should depend only on peculiar velocity c

→ 
= v

→
– u

→
.

ρ ρs s

t

t t

s

t

t t

sx t u x t dt x t dt u( , ) ( , ) ( , ) (′ ′ ′ ≠ ′ ′ ⋅
+ +

∫ ∫
∆ ∆

xx t dt
t

t t

, )′ ′
+

∫
∆

∂
∂

+ ∂
∂

=ρ ρ
t

u

x
0

∞Kn     

    

4Kn    Grad26 

3Kn  Super-Burnett R13  

2Kn  Burnett Grad 13  

1Kn  Navier-Stokes   

0Kn  Euler Equations   

 5 moments 13 moments 26 moments 

Higher moments 

Knudsen 
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b) Additive invariants of the collision
This property ensures conservation of mass, momentum and energy and is represented as 

. (12)

c) Uniqueness of equilibrium
The zero point of kinetic model Jm(f, f) = 0 representing collision term implies uniqueness of
equilibrium. 

d) Local entropy production inequality
This property represents non-negative entropy production by the kinetic model representing
collision term. 

(13)

where kB is the dimensional Boltzmann constant (kB ≈ 6.10–23 J/K) and Boltzmann H-function is given
by 

. (14)

e) Entropy production close to equilibrium satisfies the Onsager-Casimir reciprocal relations [38].
The moments of the distribution generate fluxes ja which couples with its associated
thermodynamic force Xj as follows 

(15)

where Λaj are the kinetic coefficients such that entropy production sP satisfies the Onsager-Casimir
reciprocity relations  

. (16)

f) Positive distribution
The H-function of the kinetic model should decay monotonically such that Boltzmann
equation gives positive distribution leading towards the unique equilibrium solution. 

g) Correct transport coefficients in the hydrodynamic limit 
In the hydrodynamic limit the kinetic model should generate correct transport coefficients
such as viscosity, m and thermal conductivity, k and Prandtl number, Pr = (5R/2)(m/k). The
Prandtl number should be is close to 2/3. 

One of the simplest kinetic model is the Bhatnager-Gross-Krook (BGK) [39] model and there are
various other models like Shakhov’s model [40], the ellipsoidal statistical BGK ( ES-BGK) model
[41,42], Liu model [43], the BGK model with velocity dependent collision frequency ν(C)–BGK model
of Mieussens and Struchtrup [44] which yield the proper Prandtl number. The Shakhov’s model [40] or
S-model is a generalization of the BGK model equation with correct relaxation of both the heat flux
and stresses, leading thus to the correct continuum limit in the case of small Knudsen numbers. Model
proposed by Shakhov  provides reliable result for non-isothermal flows. Zheng and Struchtrup[45] have
carried out detailed study on kinetic models. The Bhatnagar–Gross–Krook model (BGK) is preferred
because of the low computational cost even though it yields an incorrect value of Prandtl number. This
model assumes that

σ
α

α α
α ϕ

αϕ α ϕP j X X X= =
,

∑ ∑Λ

j Xα
ϕ

αϕ ϕ= ∑Λ

H flnf dv dI
RRN
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+
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(17)

where tR is the relaxation time for distribution f to reach the equilibrium Maxwellian distribution f0.

2.5 Method of Reduced description : Chapman-Enskog expansion
Boltzmann’s molecular chaos assumption gives a closed equation for f(1). The method of reduced
description is required to find the closed set of equations. At each level of reduction the insignificant
features are discarded for simplicity while retaining the essential physics. The closure problem becomes
difficult because of the presence of higher order moments in the equation of lower order moment.
Various methods have been developed to give a reduced description in terms of distribution
function[46]. Some of the salient methods are: the Chapman-Enskog method [47], the Grad’s method
[48,49], the quasi-equilibrium method, and the method of the invariant manifold [50]. In the Grad’s
method [49] Boltzmann equation is projected onto Hermite basis i.e. we seek solution of mass,
momentum and energy conservation equation by expanding the distribution function f (x

→
, v

→
, I,t) in

Hermite or Gram-Charlier polynomials. The unique feature of Hermite orthonormal polynomials
forming the expansion basis is that its expansion coefficients correspond to the velocity moments. Thus,
Nth order distribution function can be approximated by its projection onto a Hilbert subspace spanned
by the first  Hermite polynomials. Instead of searching for a perturbative solution of the Boltzmann
equation in the neighbourhood of equilibrium. The Chapman-Enskog method makes use of the time
scales present in the equation of motion and expands it in terms of slow and fast components. As the
evolution of distribution function in Boltzmann’s equation happens on slower timescale ts due to slow
process of spatial gradients and at faster timescale tf due to the process of collisions. The five moments
corresponding to mass, momentum and energy densities evolve slowly through spatial gradients as they
are unaffected by collisions, whereas all the higher moments which include momentum and energy
fluxes evolve on the faster timescale of collisions. In van Kampen’s procedure [51] the slow variables
are kept unexpanded while the fast variables are expanded in power of tf / ts. The combination of any
slow and fast variables will give rise different, but asymptotically equivalent evolution equations for
the slow variables at each stage in procedure laid out by van Kampen [52].In this paper we have
followed Chapman-Enskog approach developed independently by Chapman and Enskog [47].

As described earlier the Boltzmann equation with the BGK model is 

(18)

where f0 is the Maxwellian, this can be written in the non-dimensional form [47] as 

(19)
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= t vrms /L and Kn = l/L is the local Knudsen number
defined as a ratio of mean free path, l and length scale, L and vrms is the root mean square velocity.
The distribution function f can be written as the Chapman-Enskog perturbative expansion in terms of
with Knudsen number as follows 

(20)
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where thermal speed, , Df is the degree of freedom, I is the internal energy parameter and I0 is

the average internal energy parameter given as follows: 

. (22)

It should be noted that the perturbation terms satisfies the moment closure property, expressed as 

. (23)

In Chapman-Enskog expansion, the first term represents the Maxwellian equilibrium distribution
function corresponding to the Euler equations. The first two terms in Chapman Enskog expansion, i.e.,
(f0 + Knf

–

1)  give a distribution function corresponding to the Navier–Stokes equations, which represent
a first-order departure from equilibrium. Higher order expansion gives Burnett equations [53,54,55],
and super-Burnett equations [56]. Boltzmann equation with higher order Chapman-Enskog distribution
will express higher order constitutive relationship for shear and heat transfer terms. The higher order
terms are proportional to the corresponding power of Knudsen number, Kn hence higher order terms
become important in the Knudsen number dominated regime. Woods[53] has shown that both
Chapman-Enskog theory and the physical models are based on an inppropriate definition of peculiar
velocity. Woods [53] has suggested correction such that material frame-indifference holds. Using the
non-dimensionless Boltzmann equation and Chapman-Enskog perturbation expansion, higher order
distribution is generated by virtue of iterative refinement as follows:

(24)

where Kn is the Knudsen number with f
–

0 = f0 . In terms of substantative derivative for
inertial frame  it can be written as 

(25)

where ci = vi – ui and i = x, y, z with ui and vi being the fluid and molecular velocities, s1, s2 and s3 are
spatial coordinates x, y, z. After substitution of Euler equations  
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The first-order Chapman-Enskog term can be written as 

(27)

where x1,t and x1,q are Chapman-Enskog polynomials associated with the shear stress tensor and heat
flux vector. For 3D geometry it can be written as follows: 

(28)
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where Navier Stokes stress txx, txy and tyy and heat flux qx, qy and qz are given as follows
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. (38)

From the expression of shear stress it can also be deduced that Stokes hypothesis is only valid for
monatomic gases.  Macroscopic dynamic viscosity is directly related to molecular collision process by
virtue of collision time. Chapman–Enskog expansion gives a viscosity coefficient of

(39)

and thermal conductivity as

. (40)

The relaxation time of the BGK model is defined by

(41)

where mref is the viscosity of the gas at the reference temperature, Tref, do is the exponent of the viscosity
law of the gas, which depends on the molecular interaction potential and on the type of the gas. The
single relaxation time in the BGK model used for the collision operator leads to incorrect values of the
transport coefficients at the hydrodynamic limit. This approach gives Prandtl number as unity. This is
a major drawback of this model but solution of Navier-Stokes are not affected by this variation [57].
Some drawbacks of this model, such as the incorrect value of the Prandtl number, can be corrected by
modified models. Woods [53] suggested a method which appears to be ad hoc in which two distinct
collision interval tR,1 for momentum transport and tR,2 for energy transport are adopted. These collision
intervals are related as

. (42)

Chae et al. [59] and Xu [12] have suggested following modification of energy flux for accurate heat
transfer prediction

(43)

where q
→

is the heat flux vector. May et al.[13] have proposed  Prandtl number correction methodology
which operates at the level of the partial differential equations and is also significantly cheaper in terms
of computation requirement. It is important to understand that there are very few models which respect
each constraint of positivity, conservation of moments, and dissipation of entropy, while being
computationally inexpensive. With an assumption that the departure from equilibrium is small, the
Chapman-Enskog distribution function can be derived by implementing  the method of Prandtl number
correction suggested by Woods [53]. The corrected Chapman-Enskog polynomial x1,t and x1,q
associated with the shear stress tensor and heat flux vector can be written as
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(45)

where and ci = vi – ui where i = x, y, z with ui and vi being the fluid and molecular

velocity. Appendix  gives the one dimensional second order Chapman Enskog derivation for BGK-
Burnett equation. It should be noted that Chapman-Enskog theory and the physical models are based
on an inappropriate definition of the peculiar velocity leading to frame dependence of the Burnett
equations [53]. 

2.6 Breakdown of Navier-Stokes and flow regimes
Predicting fluid transport for rarefied flows or in micron-sized devices becomes difficult due to
breakdown of continuum flow assumption embedded in conventional fluid dynamics. Validity of the
Navier-Stokes equation as well as diffusion equation requires sufficient collision of particles and
relaxation of the distribution to weak spatial gradients and slow temporal variations. Continuum also
breaks down when gradients are substantial on the scale of mean free path or temporal changes are
relatively rapid compared to mean collision time encountered in astrophysics. For rarefied flow the
Navier-Stokes description for simple fluids breaks down when the characteristic length scale associated
with flow approaches the molecular mean free path.  For Navier–Stokes equations to remain valid it
has also to operate within the framework of Newtonian mechanics following continuum approximation
and satisfying constitutive relationships due to collision dominated transport models of stress tensor
and heat flux vector. Levermore et al. [25] have applied the idea of moment realizability to derive
criteria for the validity of the Navier-Stokes equation. These criteria is given in terms of the eigenvalues
of the nondimensional 3×3 matrix given as follows

. (46)

Significant deviations of the eigenvalues of this breakdown matrix from unity indicate large gradients
and significant departure from the equilibrium state. The determination of non-equilibrium and
continuum regions is generally carried out using a local continuum breakdown parameter called the
gradient-length Knudsen number [60] defined as

(47)

where V is the parameter of interest, such as density (r), bulk velocity magnitude ( ),
or temperature (T). l is the mean free path given as
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Schwartzentruber and Boyd [60] have recommended values of KnGL > 0.05 to signify continuum
breakdown for representative hypersonic flows. In order to prevent a non-positive distribution function
when the Navier Stokes solution is coupled with the Boltzmann solution Kolobov et. al. [61] have used
switching criterion which is function of density gradient as well as velocity magnitude defined as
follows:

. (50)

Most of the breakdown criteria which are valid for micro flows are not suitable for hypersonic flows.
Breakdown criteria can also be formulated based on departure of flow from its equilibrium state.
Lockerby et. al [62] have suggested breakdown criteria based on fractional relative departure from
Navier-Stokes non-equilibrium given by Chapman-Enskog first order distribution. A local Knudsen
number based on the degree of departure from the non-equilibrium flow state is expressed as

(51)

where moment variable or any other admissible and f is a
higher order distribution function and f1 is the Chapman-Enskog distribution function corresponding to
Navier-Stokes equation.  The Knudsen number can also be expressed in terms of Reynolds number (Re)
and Mach number (M) as

. (52)

Different (M,Re) combination will give rise to different types of flow regimes [63]. Based on extent of
non-equilibrium effects and rarefaction the flow regime can be broadly classified [64] as

1. No-slip continuum regime : This regime is valid for Kn < 0.001, since continuum and
thermodynamic equilibrium prevails hence conventional no-slip is used along with Navier-
Stokes equations.

2. Slip-Flow regime: This regime is valid in the range 0.001<Kn<0.1. The non-equilibrium
effects occur in the close proximity of the wall, Navier-Stokes coupled with slip boundary
conditions can effectively model velocity slip and temperature jump.

3. Transition regime: In the range 0.1 <Kn<10 the gas is very rarefied and Navier-Stokes is no
longer valid. Flow modelling approach may require molecular or hybrid solvers.

4. Free-molecular flow: The regime is valid beyond Kn>10, in this regime collision frequency is
very low as the flow is characterised by large mean free path compared to characteristic length
scale. This regime can be modelled by collision less form of Boltzmann equation.

3. KINETIC FLUX VECTOR SPLITTING (KFVS)
In the Kinetic Flux Vector Splitting (KFVS) for Navier-Stokes upwinding is implemented using
Courant split Boltzmann equation [9,16] as follows : 

. (53)
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. (54)

Inviscid fluxes are based on Maxwellian, f0 and viscous fluxes are based on perturbation Knf
–

1

.
and

(55)

This leads to split flux Navier-Stokes equations.

(56)

where U is the state vector and, GX±
I , GX±

V, GY±
I, GY±

V, GZ±
I and GZ±

V represents the split inviscid and
viscous fluxes. Expressions of these fluxes are given in Mahendra[16]. Viscous fluxes are upwinded
and treated similar to inviscid fluxes. For example for two-dimensional case the x-component of the
mass split fluxes due to viscous contribution can be derived as

.
(57)

Split fluxes should satisfy the Onsager reciprocity principles. For example viscous part of the mass flux
contains terms of shear stress tensor as well as heat flux vector because the Chapman-Enskog
polynomials x1,t and x1,q associated with the shear stress tensor and heat flux satisfy the Onsager
reciprocal relation [38]. The upwind treatment of the viscous term is required for effective capture of
cross phenomena of thermal transpiration or thermal creep and the mechanocalorific effect [17].  In the
vicinity of  equilibrium Chapman-Enskog polynomial, x1,t associated with shear stress and heat flux
x1,q will give rise to thermodynamic forces which couples with its conjugate split fluxes satisfying the
Onsager reciprocal relationship. 

3.2 Modified KFVS 
In modified KFVS [20] Boltzmann equation with Courant splitting [9,16] is expressed as

.
(58)

Numerical schemes introduce artificial dissipation which will leads to loss of accuracy in the solution.
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Modified partial differential equation (MPDE) analysis for one dimensional Boltzmann equation
reveals a numerical kinetic viscosity as

. (59)

With j = 0 the formulation becomes central difference and with j = 1 the formulation is in the KFVS
upwind form. For the case when dissipation control function j = 1 the numerical viscosity is maximum
when molecular velocity v is closed to u. In modified KFVS, Anil et al.[20] introduces dissipation
control function in order to resolve the discontinuity more sharply with less dissipation. The order of
accuracy can be improved with the proper choice of dissipation control function j such that 0 < j < 1.
Analysis by Anil et al.[20] also revealed that particles with large peculiar velocity contribute little to
the dissipation hence Anil et al.[20] considered  dissipation control function, j to be function of
molecular velocity. 

3.3 KFVS for axi-symmetric geometries
The velocity discretization of the transport operator is no longer trivial in the cylindrical system as
inertia terms are velocity derivatives of the distribution function. It should be noted that characteristic
curves of this form of Boltzmann equation are curves of R4 and certainly more complex compared to
the Cartesian form [65]. The characteristic curves are defined by

. (60)

Mieussens[65] and  Sugimoto and Sone[66] have used variables z and w to replace (vr, vq) by (z cos w,
z sin w) to obtain completely conservative form of Boltzmann equation as follows 

. (61)

Mieussens [65] used discrete-velocity models for the collision and transport operators, for plane and
axisymmetric geometries satisfying positivity, entropy and conservation. The paper uses Boltzmann
equation in the cylindrical coordinate system [67,68] with the following axi-symmetric form 

.
(62)

The terms in the curly bracket correspond to the source terms. Taking Ψ moments with Chapman-
Enskog distribution leads to split Navier—Stokes equations as 

(63)
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where GZ± and GR± represents axial and radial split fluxes and un-split source term

. For axi-symmetric geometries the dissipation control function, 

j can either be  a function of molecular velocity or any  suitable macroscopic parameter depending on
the type of flow.

4. VARIANCE REDUCTION KINETIC FLUX VECTOR SPLITTING (VRKFVS)
In this variant of kinetic flux vector splitting the Boltzmann equation uses distribution in a Chapman-
Enskog perturbative form. The Boltzmann equation with distribution function written in Chapman-
Enskog  perturbative form with respect to Maxwellian f0 is expressed as

. (64)

Assuming that f in the vicinity of f0 as well as another chosen Maxwellian fM. In such a case the Boltzmann
equation can also be written based on Chapman-Enskog  perturbative form with respect to fM

. (65)

Taking Ψ moment of the difference of these two Boltzmann equations we get

. (66)

The term ∆f = f0 – fM is the difference in the Maxwellians. It should be noted that the terms 

and associated with time derivative vanishes as these perturbation terms satisfy the

moment closure property, expressed as

. (67)

The difference in the perturbation terms for the two Maxwellians can be simplified for first order
Chapman-Enskog as

(68)

where tR0 and tRM are relaxation time for f0 and fM.
Assuming tR = tR0 = tRM as the chosen distribution f0 is in the vicinity of fM. With this the difference in
the perturbation terms can be approximated for the first order expansion as

(69)
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based on first order Chapman-Enskog distribution is expressed as

(70)

where and and as .
This method basically evaluates the “variance-reduced” form of the collision integral as in the variance
reduction technique of Baker and Hadjiconstantinou [69] and Homolle and Hadjiconstantinou [70].
The collision integral can also be expressed as

(71)

where , , and , d is the Dirac delta function and

subscript ‘a’ denotes after collision state. If the distributions and are

perturbations around Maxwellians f0 and fM, then the collision integral in the variance-reduced form can

be expressed as

(72)

Thus the integral can be written as the sum of linear L(∆f) and a quadratic Γ(∆f, ∆f) term.
In Variance Reduction Kinetic Flux Vector Splitting (VRKFVS) for Navier-Stokes upwinding is

implemented in a similar way as in KFVS using Courant split Boltzmann equation as follows : 

. (73)

Taking Ψ moments of the resulting variant of Boltzmann equation leads to Navier-Stokes equation
based on Variance Reduction Kinetic Flux Vector Splitting (VRKFVS) 

(74)

where ∆U = U – UM is the deviation of the state update vector U over UM based on Maxwellian
distribution, fM . The inviscid fluxes are also deviations over the inviscid fluxes based on the chosen
distribution, fM . Thus ∆(GX±

I), = (GX±
I) – (GX±
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I), = (GY±
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I)M are the inviscid split fluxes based on the Maxwellian
distribution, fM associated with the chosen state of equilibrium. The viscous fluxes (GX±

V)∆ ,(GY±
V)∆ and

(GZ±
V)∆ are computed based on relative velocity field over the chosen Maxwellian fM. Thus we solve for

the deviations over a state variable, UM using the fluxes over a relative the flow field based on chosen
Maxwellian, fM. The selection of the state of equilibrium, fM can be based on i) free stream condition,
or ii) wall conditions, or iii) the mean equilibrium based on the neighborhood values, or iv)
combination of all the three in the solution domain. This variant of KFVS based on variance reduction
form of BGK-Boltzmann equation was found extremely useful in capturing weak secondary flow in a
strong flow field environment. Part 2 of the paper describes the numerical implementation of VRKFVS.
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5. KINETIC TREATMENT OF BOUNDARY CONDITIONS
The boundaries conditions should be as physically meaningful as possible. Both in KFVS and
VRKFVS the boundary conditions are implemented by constructing the distribution function. Once the
distribution function is constructed based on the boundary data the second step is to take moments and
obtain the state update equation. The various steps involved in implementing the boundary conditions
are illustrated in the following sub-sections. 

5.1 Treatment of  far field boundary condition.
At the far field the distribution is Maxwellian as equilibrium prevails. This Maxwellian is split into two
parts based on the direction of propagation. Similarly, the Chapman-Enskog distribution is split into
two parts i.e. part escaping out of the flow domain and the part which remains in the flow domain. Thus,
distribution function f Σ1 (vx, vy, vz, I) at the far field boundary is constructed as the union of a Maxwellian
distribution  f ∞

0 (vx, vy, vz, I) corresponding to the incoming particle from the far field domain and
Chapman-Enskog distribution f1(vx, vy, vz, I)  corresponding to outgoing particles from the computing
domain. Thus,

(75)

. (76)

Figure 2. Distribution function constructed from the truncated Maxwellian from the far field
and Chapman-Enskog distribution from the flow domain

The state update based on KFVS implementation at the boundary after taking Ψ moment  and writing
in terms of inner product can be expressed as
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, (79)

(80)

and . (81)

5.2 Treatment of  slip boundary condition using diffuse reflection model.
The determination of non-equilibrium and continuum regions in the rarefied region is carried out using
a local continuum breakdown parameter based on gradient-length Knudsen number. Cercignani and
Lampis[71] introduced a phenomenological  model which was latter on extended by Lords[72]. This
model is called CLL (Cercignani, Lampis, Lord) reflection model  is more physically meaningful and
satisfies the reciprocity principle. 

Diffuse reflection model is the most preferred approach for engineering applications, in this model
molecules partially undergo specular reflection and the remainder reflect in diffuse manner. The
boundary conditions at the surface of the solid object define the distribution function of the reflected
particles as a sum of diffuse and specular reflections [73,17]. With a diffuse reflection or
accommodation coefficient s, distribution function can be written as 

(82)
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Chapman-Enskog distribution and f wc
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obtained based on mass conservation as
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The slip velocity expression can be obtained as

. (84)

Similarly expressions of temperature jump can be obtained by equating the energy flux in the limit
∆z → 0. Thus,
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(85)

Figure 3. Distribution function as a sum of specular as well as diffuse reflections

These expressions of slip velocity and temperature jump are similar to Maxwell’s velocity slip
boundary condition [74] and von Smoluchowski’s temperature jump boundary condition [75]. It is
should be noted that these expressions are valid only in slip flow regime when there are insignificant
fluid dynamic variations in the tangential direction. Slip velocity not only depends on the velocity
gradient in the normal direction but also on the pressure gradient in the tangential flow direction [76].
Using the diffuse reflection model and accounting the split fluxes in the tangential direction a more
accurate estimate of slip velocity and temperature jump can be made.  The state update based on KFVS
implementation at the boundary after taking Ψ moment  and writing in terms of inner product can be
expressed as

(86)

where 

, (87)

, (88)

and . (89)
∂
∂







= ∂
∂




−

+−
∫∫∫∫

GZ

z z
v f dv dv dv dI

n

R

z

RRR

x y zΨ Σ
1





n

∂
∂







= ∂
∂

±









±

+−±
∫∫∫∫

GY

y y

v v
f d

n

R

y y

RRR

Ψ Σ

2 1 vv dv dv dIx y z

n












∂
∂







= ∂
∂

±





±

+−±
∫∫∫∫

GX

x x

v v
f dv

n

R

x x

RRR

xΨ Σ

2 1 ddv dv dIy z

n







U U t
GX

x

GY

y

GZ

z
n n

n n

+
± ± −

= − ∂
∂







+ ∂
∂







+ ∂
∂




1 ∆















n

σ
f I

v
v dv dv dv dI

f I
v

wc
z x y z

RRRR

0

2

1

2

2

2

+






+ +

++
∫∫∫∫

























=

+−
∫∫∫∫

=

v dv dv dv dI
I

z x y z

RRRR z 0

++
















+−

∫∫∫∫
=

v
v f dv dv dv dIz x y z

RRRR z

2

12
∆zz

Ajit Kumar Mahendra, G. Gouthaman and R.K.Singh 41

Volume 3 · Number 1 · 2011



6. CONCLUDING REMARKS
Solution of Boltzmann equation because of its complex collision integral becomes a formidable task.
The kinetic model and its corresponding discretization scheme should preserve the basic properties and
characteristics of the Boltzmann equation. One of the important property is the entropy production
close to equilibrium should satisfy the Onsager-Casimir reciprocal relationship. With an assumption of
local equilibrium when spatial gradients and temporal variations are small, Navier-Stokes equation can
be derived from the Boltzmann equation using first order Chapman-Enskog expansion.  It is more
rational to apply discretization in the Boltzmann level rather than the derived quantities i.e.
macroscopic variables. KFVS is one such method which is based on moment-method strategy which
operates in two levels: i) the Boltzmann level where upwind implementation is done, ii) the
macroscopic (Euler or Navier-Stokes)  level at which the state update operates. Modified KFVS based
on dissipation control function adds to the accuracy. Variance reduction based Kinetic Flux Vector
Splitting (VRKFVS) can effectively capture weak secondary flow features invoked due to perturbation
of strong primary flow field. Kinetic boundary condition naturally leads to velocity slip and
temperature jump. Diffuse reflection model based KFVS viscous fluxes satisfy the Onsager-Casimir
reciprocity relations and uses kinetic upwind fluxes for slip boundary treatment.  Slip velocity not only
depends on the velocity gradient in the normal direction but also on the fluid dynamic gradients in the
tangential flow direction. Treatment of slip boundary using kinetic upwind fluxes based on diffuse
reflection model considers these variations in the tangential flow direction. 
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APPENDIX
Second order Chapman-Enskog perturbation expansion can be written as

(A-1)

where Kn is the Knudsen number and x1 and x2 are the first and second order Chapman-Enskog

polynomials. Expressing in terms of substantative derivative and relaxation time tR using
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. (A-3)

This perturbation term has to satisfy the moment closure property, expressed as 

. (A-4)

Evaluation shows that so we require additional moment closure terms thus making the
determination of f2 non-unique [54]. The complete second order can be evaluated in terms of moment
closure coefficients Jt, k and Jq, k as
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Table A-1 Closure coefficients

where closure coefficients Jt, k and Jq, k ∀k = 1,2,3 differ from the closure coefficients given by
Balakrishnan [54]. Table A-1 shows the closure coefficients. It should be noted that Burnett equations
are embedded within Grad’s 13 moment method [48] and can easily be extracted using Chapman-
Enskog theory. Another alternative to extract Burnett equations from moment systems is Maxwellian
iteration of Ikenberry and Truesdell [77]. For more details on second order Chapman-Enskog expansion
and Burnett equation refer Struchtrup[31].
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