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Abstract 

In order to establish a good measure of mixing rate, jet mixing is examined using the
DNS (direct numerical simulation) data of controlled jets. In the computation, spatial
discretization is performed using a hybrid scheme that adopts a sixth-order compact
scheme in the streamwise direction and a Fourier series in the lateral directions. The
Reynolds number is 1500. Two measures such as statistical entropy and a mixedness
parameter are investigated using a passive scalar concentration. Compared with simple
measures, i.e., jet width, centerline velocity, and turbulent kinetic energy, it is found that
the statistical entropy is a good measure for representing the mixing state in different
controlled jets, and it is possible to use the fluctuating entropy to detect a highly mixed
region and determine the correlation of the mixed regions with the vortical structure. In
addition to statistical entropy, the mixedness parameter is also found to have useful
properties for the estimation of mixing efficiency. These findings suggest that these
measures are expected to contribute to the optimization of jet mixing. 
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1. INTRODUCTION 

In order to enhance mixing or diffusion in many industrial applications, jet mixing control has been
examined. The control methods used for jet mixing are categorized into either passive or active
methods. Irrespective of the method, understanding the mixing state is indispensable for realizing an
effective jet control. The results of liner stability analyses reveal that there are two types of dominant
modes characterizing the large-scale flow structures near field of a jet, namely, varicose and helical
modes, and diffusion or mixing is effectively controlled through these modes. Further, it is well known
that a complex jet is made of a combination of these modes (Reynolds [1]). For example, a flapping
mode comprises a pair of helical modes with the same frequency and the same amplitude. Further, it is
experimentally confirmed that when the axial mode is added to them, a bifurcating jet or a blooming
jet is formed (Reynolds [1]). Such an active control was also investigated using DNS (direct numerical
simulation) (Hilgers [2], Silva [3]), and induced the generation of strong diffusion. Although the
effectiveness of these active control methods has already been demonstrated thus far, using simple
estimations involving the jet width, mean streamwise velocity, turbulence intensity, and so on, it is not
well enough to estimate the mixing efficiency using the reliable procedure. On the other hand, we
investigated compound jets (Tsujimoto [4]) and found that their mixing efficiency could not be
determined using the simple measure developed for an axisymmetric jet. Therefore, it is important to
determine an appropriate measure for quantifying the mixing efficiency. 

In the present study, we compared the validity and usefulness of the new measures, i.e., statistical
entropy (Everson [5], Chikahisa [6]) and the mixedness parameter (Cetegen et al. [7], Tseng [8]), with
those of the conventional measures. 

2.NUMERICAL METHOD 

2.1 Governing equation and discretization 

Under the assumption of incompressible and isothermal flow, the dimensionless governing equations
are as follows: 
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(1) 

(2)

(3)

The nonlinear terms are expressed in the rotational form ωω × u to conserve the total energy;
therefore, p represents the total pressure. For the characteristic length and velocity, the nozzle diameter
D and the streamwise velocity V0 = V1 – (V1,V2 refer to Eq. (6)) were chosen for nondimensionalization,
respectively. The Reynolds number is defined as Re V0 = D/ν (ν: kinematic viscosity). A Cartesian
coordinate system is employed in which y is the streamwise direction and x and z are the lateral
directions. 

Spatial discretization is performed using a hybrid scheme that adopts a sixth-order compact scheme
(Lele [9]) in the streamwise direction and a Fourier series in the lateral directions. In order to remove
the numerical instability due to the nonlinear terms, the 2/3-rule is applied to the lateral directions, and
implicit filtering is carried out for the streamwise direction using the sixth-order compact scheme. A
third-order Adams-Bashforth method is used for time advancement. The well-known MAC scheme
[10] is employed for pressure-velocity coupling, which generates a Poisson equation for the pressure.
After the Poisson equation is Fourier transformed in the x and z directions, independent differential
equations are obtained for each wave number and then discretized using the sixth-order compact
scheme. Finally, a pentadiagonal matrix is deduced for each wave number. In the present simulation
code, the matrix is solved using the LU decomposition method. The outerflow boundary condition is
introduced for both the momentum and the energy equations by solving the following simplified
convective equations: 

(4) 

(5)

In the present simulations, the convective velocity is set to uc = 0.5V0.
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Figure 1. Coordinate system and computational domain. 



2.2 Calculation conditions 

As an inflow condition, the inflow mean velocity distribution is determined by referring to the literature
(Silva [3]). 

(6)

where V1 is the jet centerline velocity, and V2 is a co-flow velocity. R(= D/2) is the jet radius, and θ0 is
the momentum thickness of the initial shear layer. r denotes the radial distance from the jet centerline.
In the present simulations, the jet velocities and initial momentum thickness are set to V1 = 1.075V0, V2
= 0.075V0, and R/θ0 = 20, respectively. The inflow temperature is prescribed by the same inlet velocity
distribution, Vb. The size of the computational domain is set to Hx × Hy × Hz = 7D×15D×7D, except for
the flapping excitation case (Hx = Hy = 10D for the flapping case). The grid Nx × Ny × Nz is 256 × 200
× 256. The Reynolds number Re is equal to 1500, and the Prandtl number Pr is equal to 0.707. For low-
speed flow, there is a small quantity of experimental data, enabling a comparison of the present results.
As shown in a previous paper [4], we confirmed that the data for a free jet is in good agreement with
the experimental data for the centerline velocity and turbulent kinetic energy. 

2.3 Excitation types

In order to enhance mixing using active control, three types of excitations are considered: axial (Va),
helical (Vh), and flapping (Vf) excitations. In each type of excitation, a random perturbation with 1% of
the strength of V0, Vrand (x, z, t), along with the following perturbation velocity are superposed on the
inflow mean velocity Vb. The inflow velocity Vin is expressed as follows for each excitation: 

(7) 

where 
Va = εa sin(2π Sta t*)Vb,
Vh = εh sin(θ – 2π Sth t*)Vb, and 
Vf = εf[sin(θ – 2π Sth t*) – sin(θ + 2π Stf t*)]Vb,

t* represents a nondimensionalized time, t* = tV0/D, and εa,h,f, is the strength of the excitation. θ is the
azimuthal angle shown in Fig. 1. The Strouhal number Sta,h,f is defined as St = fD/V0 (where f is the
frequency). It is well known that a peculiar instability mode is induced in the near field of a jet,
according to the excitation. In the case of axial excitation, a column of vortex rings is formed upstream,
and in the case of helical excitation, helical-like vortical structures appear. In the case of flapping
excitation, the flow structures are distorted in one radial direction, and strong anisotropic mixing occurs
downstream. 

The frequency of the instability mode associated with the generation of large-scale structures
induced by column instability near the end of the potential core of the jet is the so-called “preferred
mode.” 

Since the preferred mode is influenced by the shape of the nozzle or the boundary layer thickness
near the nozzle exit, the preferred mode Stp becomes 0.25 < Stp < 0.5 (Hussain et al.[11]). In the present
simulation, the excitation frequency is set to Sta = Sth = Stf = 0.4 , and the strength of the excitation is
set to εa = εh = εf = 0.05 .

2.4 Mixing measures based on the passive scalar concentration 

2.4.1 Statistical entropy 
In order to quantify the mixing state, Everson et al. [5] investigated the statistical entropy based on the
passive scalar concentration, and they demonstrated the characteristics of this measure by examining
the experimental data. 

In the following, we provide a simple explanation of this measure. 
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Boltzmann proposed the statistical entropy, which is defined as the logarithm of combination, W. 

(8) 

where k is the Boltzmann constant. W is the combination of the number of molecules in the i-th coarse-
grained cell, Ni. 

(9) 

where N is the total number of molecules. If N is sufficiently large, Stirling’ s approximation, ln L! ≈ L
ln L – L, can be applied to Eq. (8) as follows: 

(10) 

If the space is divided to M cells, and all the molecules exist in a single cell, S = 0. However, if the
molecules are uniformly distributed to each cell, i.e., Ni = N/M, the maximum entropy S = kN ln M.
Since incompressible flow is assumed in the present study, the temperature can be related to the
concentration of the passive scalar, i.e., φ = (T – T2) /(T1 – T2).

Considering the small volume surrounding a grid point i, ∆V (= ∆x∆y∆z), the number of molecules
is denoted by Ni = φi∆V; therefore, 

(11)

where Φ = ∑φi. 

2.4.2 Mixedness parameter 
Cetegen and Mohamad [7] proposed the use of mixedness Mp as a mixing measure. Tseng et al. [8]
estimated the mixing of coastal flow using this parameter. 

The mixedness parameter is defined as follows: 

(12) 

where V is the total volume of the considered domain. 
If bimolecular mixing is considered, φ represents the concentration of one type of molecule, and 

1 – φ represents that of another type of molecule. Therefore, for a completely unmixed state (φ = 0 and
= 1), Mp = 0 , and for a fully mixed state (φ = 0.5), Mp = 0.25 . Compared to statistical entropy, it can
be seen that Mp is intuitively derived. 

3. RESULTS 

3.1 Structure of controlled jets 

In order to visualize the vortical structure, the iso-surfaces of the second invariance of velocity gradient
tensor at Q (=–∂ui/∂xj · ∂uj/∂xi) = 0.2 are shown in Fig. 2. In each figure, the image on the left is the
side view, while that on the right is the view looking directly at the nozzle. 

In Fig. 2(a), due to a Kelvin-Helmholtz instability occurring upstream, quasi-periodically vortex-
ring-like structures are generated. As the vortex rings breakdown downstream, tube-like vortical
structures are formed. In the case of axial excitation (Fig. 2(b)), depending on the excitation frequency,
strong vortical structures are regularly formed and retained for a while from upstream to downstream.
As shown in this figure, the vortex rings do not successively interact with each other. However, when
a vortex ring rapidly breaks down, the formation of quasi-streamwise vortices is observed downstream.
In the case of helical excitation (Fig. 2(c)), helical-like structures are continuously formed from
upstream to downstream. The breakdown in this case occurs earlier than in the abovementioned cases
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Figure 2. Instantaneous vortex structure visualized at Q = 0.2 

(a) Normal 

(b) Axial excitation 

(c) Helical excitation 

(d) Flapping excitation 



because the streamwise vorticity component is included at an earlier stage of evolution. In the case of
flapping excitation (Fig. 2(d)), the jet markedly diffuses for one direction. This is because after issuing
from the nozzle, strong hair-pin-like structures are alternately formed upstream. The visualized flow
structures of all these cases are in agreement with the previous DNS (Silva [3], Urban [12]). Therefore,
the present results are confirmed to be correct under the giving excitation conditions. 

3.2 Simple measure for jet mixing 

As a measure of mixing rate, various flow properties such as the centerline velocity, jet width, and
turbulence intensity have been considered. 

Figure 3 shows the distribution of the centerline velocity v–c = v–(0, y, 0). Corresponding to the
visualized coherent structures, the breakdown position of the potential core in the flapping case, 
y/D ≈ 5 , is located more upstream than in the other cases. Except for the flapping case, the breakdown
position is shifted downstream in the order of the helical, normal, and axial excitations. In particular,
contrary to our intuition, the decay of the centerline velocity in the axial excitation case is shifted
downstream as compared to the normal case. As might be expected, the starting position of the velocity
decay is largely delayed as compared to the visualized structure. 

The jet half width b0.5 is shown in Fig. 4. In the normal and axial excitation cases, the jet expands
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Figure 3. Distribution of mean centerline velocity 

Figure 4. Distribution of half jet width. 



at the same rate from the downstream position (y/D = 10) at which the ring-like vortex structures begin
to break down. While in the helical excitation case, although the half width behaves singularly near 
y/d = 5, at which vortex breakdown occurs, roughly speaking, the jet expands widely compared to both
the normal and axial cases. In the flapping case, the jet markedly expands in one direction (z), and
shrinks in another direction (x), demonstrating an anisotropic distribution. Although it is not shown
here, the shrinkage of the jet width in the x direction was confirmed from the iso-contour of the mean
streamwise velocity. Compared to the centerline velocity distribution, the jet width makes it possible to
capture the diffusion rate. However, if the anisotropic pattern of jet diffusion occurs, or if jets are
combined, it is difficult to uniquely define the jet width, suggesting that estimation using the jet width
is limited to a simple jet. 

Figure 5 shows the distribution of the turbulent kinetic energy (TKE), k(= 0.5u'2i,rms). Figure 5(a)
shows the centerline distribution of TKE, kc = k(0, y, 0). In all the excitation cases, turbulence near 
y/D ≈ 5 is strongly generated by the coherent structure induced by the excitation. Corresponding to the
visualized structures, in the normal, axial, and helical excitation cases, turbulence generation is rapidly
promoted downstream as the breakdown of the vortical structures proceeds. However, in the flapping
case, since the vortex breakdown considerably proceeds as compared to the other cases, the secondary
peak downstream does not appear. 

Figure 5(b) shows the distribution of the integrated turbulent kinetic energy defined by Eq. (13). 

Tsujimoto, K. Kariya, S., Shakouchi, T. and Ando, T. 219

Volume 1 · Number 3 · 2009

(a) 

(b) 

Figure 5. Distribution of turbulence kinetic energy, (a) centerline value and (b) integrated value from Eq. (13). 



(13) 

Considering the mixing state, the flapping case should be the most enhanced. However, the amounts
of turbulent kinetic energy in the helical and flapping cases are obviously less than in the normal and
axial cases. In general, the generation of turbulent kinetic energy is determined by the product of the
mean shear and the Reynolds stresses. 

Since the mean shear is weakened more if the breakdown is more promoted, the amount of
turbulence does not always increase. 

These findings suggest that the turbulence intensity provides information about the position where
the mixing is enhanced, but cannot be used as a qualitative measure for the mixing rate. 

3.3 Evaluating the mixing measure based on the passive scalar concentration 

We next evaluate the abovementioned measures, i.e., the statistical entropy and the mixedness
parameter. 

In order to investigate the streamwise variation of the statistical entropy, S is summed over the plane
perpendicular to the streamwise direction, and S

–
is defined as S normalized with the inflow quantity,

S0. M represents the number of grids on the x-z plane; M = 65,536 (= 256 × 256). 
As shown in Fig. 6(a), the statistical entropy increases downstream in the order of the axial, helical,

and flapping cases. This is reflected in the increase of randomness downstream and the mixing
enhancement due to the excitations. In particular, in the axial excitation, the entropy increases until 
y/D = 2, and then becomes nearly constant until y/D = 10. This is because the vortical structures move
downstream without the breakdown, which suggests that the aggressive formation of a vortex ring does
not always contribute to the promotion of jet mixing. 

Here it should be noted that the first term on the r.h.s in Eq. (10) expresses the total number of
molecules, N, and is two orders of magnitude larger than the second term on the r.h.s. When a larger
total number of molecules exists, the statistical entropy is greater. In other words, this measure reflects
the physical property corresponding to the jet expansion. However, if the same number of molecules is
distributed between different jets, the first terms of Eq. (10) does not represent the difference
concerning the mixing property; thus it seems that the second term of Eq. (10) includes the substantial
properties for mixing, despite the fact that the magnitude of this term is smaller than that of the first
one. The second term is defined as fluctuating entropy, S': 

(14)

As shown in Fig. 6(a), S
–
' is defined as the quantity S' normalized with the inlet value. As shown in

Fig. 6, S
–
' and S

–
are not quantitatively, but qualitatively, similar. 

Figure 7 shows the distribution of the mixedness parameter, which is defined by integrating the
component, φ(1–φ) on the cross sectional x-z plane. Although there is a quantitative difference between
the two measures, it is found that the trend of the mixedness parameter behaves in a manner similar to
that of the statistical entropy. Despite the fact that the derivations of the two measures are distinct, both
parameters make it possible to quantify the efficiency of the jet mixing. 

3.4 Relationship between the mixing measure and the flow structure 

In order to determine the location of the highly mixed region, the mixing measures are observed.
Figures 8(a)–(d) show the iso-contours of the component of fluctuating entropy, –φ ln φ, on the y–z
plane through the jet centerline. Figure 8(e) shows the iso-contour of the mixedness parameter. In all
cases, it is found that the component of fluctuating entropy becomes strong in the region where the
strong shear near the inlet exists and where the vortical structures are generated, and further
downstream mixing measure distributes according to the jet expansion. In addition, Figure 8(e) also
confirms that the mixedness parameter has a trend that is similar to statistical entropy. 

It is clarified that except for the flapping case, the mixed region does not extend near the jet axis.
Although it is found that the turbulence near the jet axis becomes strong at an early stage of flow
development from Fig.5, however, the mixed region occurs only in the region where the entrainment
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(a)

(b)

Figure 7. Distribution of mixedness parameter. 

Figure 6. Distributions of (a) total entropy and (b) fluctuating entropy 
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(a) Normal 

(b) Axial excitation 

(c) Helical excitation 

(d) Flapping excitation 

(e) Flapping excitation 

Figure 8. Contour of component of mixing measure on x-y plane, (a)–(d) for the statistical entropy, (e) for
the mixedness parameter. 



of the surroundings is active. Due to entrainment, further downstream the mixed region extends even
near the jet axis, and the flow becomes more chaotic. 

Since these measures are convected to downstream, mixed region is affected by the upstream history
and the upstream effect is accumulated downstream. Therefore, in order to investigate where the
greatest mixing process occurs, we can consider the production rate of a mixing measure based on its
transport equations. Converting the temperature to the scalar concentration, the transport equations of
mixing measure are derived as follows: 

For statistical entropy: 

(15)

Similarly, for the mixedness parameter: 

(16)

In both the equations, the first term on the r.h.s. expresses the diffusion and does not contribute to a
substantial change in the mixing measure. The second terms in both the equations always have positive
values, they represent the substantial production term of the mixing measure. 

Note that the second terms express scalar dissipation, and the generation of mixing is related to the
region where the gradient of the scalar becomes strong. 

Figures 9(a)–(d) show the iso-contours of the second terms on the r.h.s. of Eq. (15), 2(∇φ)2/(Re Pr φ).
Figure 9(e) shows that of the mixedness parameter. The upstream high value of this term distributes in
relation to the high shear around the vortical structures, in particular, the higher value seems to be
related to the region where the stretching between vortical structures is enhanced. Further downstream,
the distribution seems to be chaotic, similar to Fig. 8. The enhanced production region is located locally
near the beginning of the vortex breakdown. Moreover, that of the mixedness parameter behaves in a
manner similar to that of statistical entropy. 

Since the gradient of the scalar should become strong to enhance the molecular diffusion, Figures 9
show that the stretching should be enhanced in order to activate mixing. 

These measures are in accordance with the well-known physical properties of jet mixing. At the
same time, it is expected that the local mixing state is comprehended, allowing the establishment of a
control method. 

CONCLUSIONS 

We investigated a measure for jet mixing based on the passive scalar concentration using the DNS
database of controlled jets. This led to the following conclusions: 

1. A simple measure for the mixing state, such as the centerline velocity, jet width, or turbulence
intensity, can be used as a rough index. In addition, since these measures are constructed based on an
axisymmetric jet, they are not useful for comparing the mixing efficiency of a complex jet such as a
flapping case. 

2. In order to determine mixing measures based on the passive scalar concentration, the statistical
entropy and the mixedness parameter were investigated. From the results of this investigation, it was
shown that these measures have similar abilities to correctly evaluate the mixing efficiencies of
different jets. 

3. From instantaneous views of the components of these mixing measures, these quantities and the
production terms of their transport equations were also found to be strongly correlated to the vortical
structures, suggesting that the components of these new measures enable the detection of the local
mixed state. 
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(a) Normal 

(b) Axial excitation 

(c) Helical excitation 

(d) Flapping excitation 

(e) Flapping excitation 

Figure 9. Contour of production term of the mixing measure on the x-y plane,(a)–(d) for the statistical
entropy, (e) for the mixedness parameter. 
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