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Abstract
We present a systematic derivation of the extended Jeffery’s orbit for rigid ellipsoidal and
V-shaped polymer molecules in linear incompressible viscous flows using a Lagrange
multiplier’s method based on a constraining force argument [3]. It reproduces the well-
known Jeffery’s orbit for rotating ellipsoids [10]. The method is simple and applicable to
any rigid body immersed in a linear flow field so long as a discrete set of representative
points on the rigid body can be identified that possess the same rotational degrees of
freedom as the rigid body itself. The kinematics of a single V-shaped rigid polymer
driven by a linear flow field are discussed, where steady states exist along with time-
periodic states in limited varieties. Finally, we show how the kinematics of the rigid V-
shaped polymer can be used in the derivation a kinetic theory for the solution of rigid
biaxial liquid crystal polymers, where Brownian motion, excluded volume interaction
and flow driven kinematics are included. 
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1. INTRODUCTION
The configurational space kinetic theory for rigid polymers or solid suspensions in another fluid is built
upon two basic ingredients, the mean field interaction potential to each point in the configurational
phase space and the kinematics of the point under imposed flow fields, where each point in the
configurational space represents the full configuration of a polymer or the suspension particle [1, 3].
The Brownian motion of the particle is coarse-grained to a mean field entropic potential in this
approach. When the host fluid matrix is viscous and incompressible, the kinematics of the phase point
in the configurational space is often derived with respect to an imposed linear flow field which is an
exact solution of the Stokes equation. Jeffery studied the kinematics of an ellipsoid immersed in a
viscous fluid (Stokes fluid) and derived the well-known Jeffery’s orbit for the rotating ellipsoid about
its own center of mass [10]. This was later used in many theory development and applications [2, 11,
9, 17]. Eshelby [7] and recently Wetzel and Tucker [18] examined the kinematics of an ellipsoidal
inclusion in elastic and viscous media. They derived the explicit formula for the kinematics of the three
major axes of an ellipsoidal inclusion using the Eshelby tensor. More recently, a number of theories for
polymer blends have been developed based on deformable ellipsoidal droplets, whose constitutive
equation also relies on the kinematics of the deformable ellipsoids in imposed linear flow fields [5, 4].

With the surging interest in modeling dynamics of suspensions and/or rigid polymer molecules of
biaxial symmetry using kinetic theories, there is the need to provide an on-the-fly method to derive the
kinematics of the representative axes of a rotating rigid molecule or particle in imposed linear flows
while conveniently neglecting the hydrodynamic interaction. The Lagrange multiplier method
discussed in the book by Doi and Edwards outlines a general and an efficient way for devising such a
method [3, 6, 8]. The idea is to identify a set of representative points on the rigid body so that the
kinematics of the positional vectors of the representative points can fully describe the kinematics of the
rigid body while the rigid constraints are taken into account.
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In the following, we will detail the approach using two examples: we present the method by deriving
the kinematics of a rigid ellipsoid and a biaxial V-shaped rigid liquid crystal polymer, respectively. We
will then discuss the kinematics of a V-shaped rigid molecule in plane shear and elongational flows.
Finally, we develop a kinetic theory for solutions of V-shaped liquid crystal polymers using the derived
kinematics for V-shaped rigid polymers.

2. REVISIT OF THE KINEMATICS OF AN ELLIPSOID IN LINEAR FLOW FIELDS
We consider the rotational motion of an ellipsoidal suspension in linear incompressible viscous flows
about its center of mass. The ellipsoid is described by three major axes (m, n, k) and three
corresponding semi-axes (c, b, a) with respect to its center of mass. Since the rotation is about the
center of mass, we set up the Cartesian coordinate with its origin coincident with the center of mass in
the derivation. We identify three representative points on the ellipsoid, shown in Figure 1, 

(1)

We assign an equal amount of mass to each point. By ignoring the hydrodynamic interaction, the
rotation of the ellipsoid can be fully described by the rotation of the three points subject to the six rigid
body constraints:

(2)

We now calculate the velocity at the three discrete points xi, i = 1,2,3, respectively, subject to the
constraints (eqn (2)). The velocity at xi is affected by two factors. One is the affine motion of the point,
free of the constraints, due to the imposed linear flow K · xi, where K = ∇ν is the velocity gradient
tensor of the linear flow field ν, a constant trace-free matrix; and the other is the constraining force
exerted by the constraints (2), given by 

(3)

where λp, p = 1, …, 6 are Lagrange multipliers to be determined later and Cp, p = 1, …, 6 are the
constraints given in eqn (2). We denote Hij as the mobility matrix for free point xi moving in the linear
flow driven by an external force Fj at xj on the rigid body. The combination of the velocities due to the
affine motion and the constraining forces due to the rigid constraints yields the total velocity at xi
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Figure 1. The portrait of an ellipsoid with semiaxes (c, a, b).



Since the representative points are constrained by eqn (2), we differentiate the constraints to obtain

(5)

Solving these equations, we obtain the Lagrange multiplier λp: 

(6)

where 

(7)

As the viscous fluids considered here are isotropic, we assume , where ζ is the friction
coefficient and I is the identity matrix.

We denote , as the two aspect ratios of the ellipsoid. Substituting eqn (1) into eqn (4), 

we arrive at the generalized Jeffrey’s orbit for ellipsoids [10].

(8)

The angular velocity of the rotational motion can be identified as 

(9)

With this, eqn (8) is rewritten into 

(10)

In the case of a spheroid, where ra = rb = r, we use the fact that nn + kk = I – mm. Then, eqn (1)
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is a geometric parameter, and K:mk = k·K·m = tr(K·mk). This is the well-known Jefferys’

orbit describing the kinematics of the axis of symmetry of a spheroid [10, 17].
This method can be extended in principle to any rigid bodies so long as (i). the hydrodynamic

interaction is negligible, (ii). we can identify a set of representative points on the body that share the
same rotational degree of freedom as the rigid body itself when constrained by the rigid body, and (iii).
mass is evenly distributed on the rigid body. We next derive the Jefferys’ orbit for a V-shaped (bent-
core, banana-like, or boomerang) polymer molecule.

3. KINEMATICS OF V-SHAPED POLYMER MOLDECULES IN LINEAR FLOW FIELDS
We coarse-grain the bent-core, banana or boomerang polymer molecule by a rigid V-shaped rigid body
consisting of three beads and two rigid connectors shown in Figure 2. We denote the orientation of the
two rigid connectors by am and bn, where ||m|| = ||n|| = 1. We let xi, i = 1,2,3 be the positional vectors
of the bead locations which form the skeleton of the V-shaped molecule along with the connectors.

The two connecting vectors are defined by 

(12)

We assume that the two beads at x1,3 have the identical mass while the third one at x2 may have
different mass. We also set the origin of the coordinate system at the center of the mass, which requires 

(13)

where c is the ratio of the mass of the bead at x2 to that at x1,3. If all three beads share the same amount
of mass, c = 1. We next use the Lagrange multiplier’s method to derive the time evolution equation of
the positional vectors relative to the center of mass under an imposed linear flow field v = K·x, where
x is the positional vector with the origin set at the center of mass of the V-shaped rigid body.

The V-shaped rigid body is subject to the following constraints: 

(14)
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Figure 2. V-shaped rigid body or molecule.



We adopt a mobility matrix Hij for each bead with friction coefficient ζi, given by 

(16)

where ζ1 = ζ3. We set ζ = ζ2/ζ1 and without loss of generality ζ1 = ζ3 =1 in the following
We now calculate the velocity at the three discrete points xi, i = 1,2,3, respectively, subject to the

constraints in eqn (15). The steps are identical to the ones alluded to in the previous section. For V-
shaped molecules, however, the matrix h is given by 

(17)

where 
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(20)

The kinematic equations for the positional vectors are given by: 

(21)

(22)

(23)

We next limit to the special case: and define 

(24)

We normalize the two vectors r1, r2 to unit vectors n1, n2, respectively, 

(25)

We call n1 the arrow and n2 the bow vector, respectively. The kinematic equations for the unit
vectors are given by 
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It follows from (28) that the angular velocity of the rotating rigid body is given by 

(30)

We remark that when the mass of the three beads are identical (c = 1) and the friction coefficients
are identical (ζ = 1), the angular velocity reduces to

(31)

With this, the kinematic equations can be rewritten into 

(32)

where n3 = n1 × n2. Since this case is the most relevant to the kinetic theory for V-shaped biaxial liquid
crystals, we will focus on this configuration from here on.

4. KINEMATICS OF A V-SHAPED RIGID POLYMER MOLECULE IN SHEAR AND
ELONGATIONAL FLOWS
The rotational motion of an ellipsoid has been studied in [10]. Here, we focus on the driven dynamics
of a single V-shaped polymer molecule of equal arms in two special cases of linear flows: plane shear
and elongation, respectively.

4.1 Kinematics in plane shear flows
We examine the kinematics of the V-shaped rigid body under the imposed shear flow 
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In the case of ellipsoid, it was shown that the Jeffery’s orbit of a sheared ellipsoid is a time-periodic
orbit in [10]. For the V-shaped rigid body suspended in the viscous fluid under simple shear, however,
the kinematics are more diversified. In addition to the periodic orbits, there could be steady states. This
is witnessed by the fact that 
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x2 is arbitrary. Thus, the steady states are neutrally stable. Besides, the neutrally stable steady states,
there are other sustainable time-dependent solutions. The time evolution of the pair of vectors n1,2 are
governed by the generalized Jeffery’s orbit. If n1 and n2 are on the shearing plane, the (x,y) plane, the
angular velocity is fixed in the vorticity direction: 

(36)

We parametrize the unit vectors by an angle φ: 

(37)

The angular velocity is given by 

(38)

Clearly, there is no steady state solutions when θ ≠ 0, π, indicating the existence of the tumbling
solution for the V-shaped rigid body. The angular velocity equation yields 
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The solution of φ is given by 
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where φ(0) = φ0. The period of the rotation can be calculated as 
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.

So the period is the smallest when the V-shaped forms an angle of degree π/2 and largest as it folds
or stretches into a rod. In summary, the steady states are in the (x, z) plane while the time periodic
solution can exist in the (x,y) plane.

4.2 Elongational flows
We next consider the imposed elongational flow field with elongational rate ν

(42)

Since the elongational flow is symmetric about the z-axis, the orientation of n2 is arbitrary. There is
no time-periodic solutions in elongational flows since it is a much strong flow than the simple shear.
The steady states are given by three families of solutions in terms of the Euler angle below. 
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• β = 0 and α and γ are arbitrary, n1 = (0, 0, 1), n2 = (cos α, sin α, 0) The arrow n1 is fixed in the
direction of the flow while the bow is arbitrary in the plane transverse to the flow.

• n1 = (cos α, sin α, 0), n2 = (0, 0, –1). The bow is in the flow direction while the arrow points to
the transverse direction to the flow.

• n3 = (0, 0, 1), n1 = (cos α, sin α, 0), n2 = (–sin α, cos α, 0). The arrow and the bow vector are
both in the (x,y) plane transverse to the flow direction.

The linear stability analysis shows that the first and the second family of steady states are stable
while the third one is not. With the Jefferys’ orbit available now for the V-shaped rigid body immersed
in viscous solvent, we next develop a kinetic theory for solutions of homogeneous biaxial liquid crystal
polymers of V-shaped molecules generalizing the work of Doi-Hess [3] and demonstrating how the
kinematics of the V-shaped rigid polymer can be used in the derivation.

5. KINETIC THEORY FOR V-SHAPED BIAXIAL LIQUID CRYSTAL POLYMERS (BLCPS)
We denote the angular momentum operator by 

(43)

where x is the positional vector in Cartesian space R3. We denote the complex conjugate of L by L*, the
two base vectors of the polymer molecule by m = n1, n = n2, and the third one by k = m × n. We assume
the two arm of the V-shaped BLCP molecule have the equal length, i.e., a = b. In the rotating molecular
frame m, n, k, the base vectors are parametrized in the Cartesian coordinate by three Euler angles (α, β, γ): 

(44)

where T denotes the matrix transpose.
Let f(m, n, k, t) be the probability density function for the orientation of the V-shaped rigid

molecules. We adopt the generalized coordinate method to derive the transport equation for f [3]. The
Smoluchowski equation for the time evolution of the pdf f is given by 

(45)

where µ is the normalized chemical potential of the polymer system (normalized by kBT), 

(46)

V is the mean-field potential including the intermolecular potential and the external potential [14].
In the molecular frame (m, n, k). 

(47)
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We note that the angular velocity of the molecule ω = –ig. The intermolecular potential V = V(f, m,
n, t) includes the dipole -dipole, dipole-quadrupole, quadrupole- quadrupole interaction among each
segment on the V-shaped molecule [14]. Dr

0 is a characteristic rotary diffusivity [16].
The extra elastic stress tensor for the BLCP system is calculated by an extended virtual work

principle [3, 17, 16]. Here, we only present the result. Details are referred to [17, 16]. We denote the
flow vector (g) by 

(48)

The elastic stress tensor can then be expressed in terms of the angular momentum (L) as follows: 

(49)

where ν is the number density of the LCP molecule, kB is the Boltzmann constant, T is the absolute
temperature, is a third order tensor and . There is also an
elastic external force 

(50)

If this force can be identified as the spatial gradient of a scalar function, it will be regarded as a part
of the pressure contribution to the body force; otherwise, it stands as a true elastic body force.

The viscous stress for V-shaped BLCPs, τv, follows from a model calculation involving energy
dissipation (W) [3]: 

(51)

In this calculation, we model the V-shaped molecule as a geometric object consisting of two joined
arms, each of which is made up of a finite number of small beads of spherical shapes [3]. The
hydrodynamic interaction due to the presence of multiple beads is neglected. Under the velocity
gradient K = ∇ν, each arm rotates about the center of mass of the V-shaped object with the angular
velocity ω. The velocity of the nth bead (in the kth arm, k = 1,2) relative to the fluid is: 

(52)

where uk is the distance vector of the nth-bead in the kth rod measured from the center-of-mass of the
molecule, which is given by: 

(53)

Hence, 

(54)

where s is the arc length measured from the origin along either arm whose range is [0, a], α3v = –iα3 is 

a real second order tensor. We denote . It follows that 

(55)

(K: αk) is the component of the flow-vector g. We assume that the frictional force acting on each
segment is , where ζ is the friction coefficient. Then, the work done by the frictional force perF Vn
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unit time and unit volume is: 

(56)

The details of the similar calculation is given in [15]. Using eq.(51,56), we obtain the viscous stress
as follows 

(57)

The total stress for the biaxial liquid crystal polymer system is then given by 

(58)

The usual incompressibility condition for incompressible fluids and the momentum balance
equation supply the remaining governing equations for the theory 

(59)

where ρ is the density of the biaxial liquid crystal polymer fluid and Fo is the external force exerted on
the fluid per unit volume other than the elastic force.

6. CONCLUSION
We have demonstrated a systematic derivation of the kinematics for the ellipsoid and V-shaped rigid
body suspended in viscous solvent (a Stokes flow of viscous fluids). The method is simple, general and
adaptable to more complex geometries of the rigid body so long as a set of representative points on the
rigid body can be identified that share the same rotational degree of freedom with the rigid body itself
subject to the rigid body constraint, whose motion represents the motion of the entire rigid body, and
the hydrodynamic interaction is negligible. The kinematics of the V-shaped molecule is investigated in
simple shear and elongational flows. The elongational flow only sustains a family of steady states in
which the arrow aligns in the flow direction while the bow is perpendicular to it. There are both steady
states and time-periodic states in simple shear flows. The kinematics dominates in the dilute and
semidilute regime of nano-suspensions of the V-shaped particles or molecules in liquid crystal or nano-
composite flows [13, 12]. The current study sets the launching point for the challenging study ahead in
structure formation, transport and rheology of the inhomogeneous bent-core liquid crystal polymers
[14, 16]. 
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