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Abstract
A two degree-of-freedom controller structure is proposed in this paper for robust tracking
of desired trajectories. The inputs required for these trajectories, estimated by an
augmented state-space model approach, constitutes the feed-forward part that ensures
output tracking for the nominal plant model, and a feedback part, via a multiple model
approach, makes the overall system robust. This method is then applied to helicopter
hover control.
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1. INTRODUCTION
Precision output tracking, a fundamental problem for control engineers, poses increasingly stringent
performance requirements to be satisfied in a variety of applications, notably in the robotics and
aerospace industries. Whilst perfect tracking is relatively easy to achieve in minimum phase systems,
it remains a challenging problem in non-minimum phase systems due to fundamental limitations on
the transient tracking performance characterised by the number and location of non-minimum phase
zeros [1]. Such zeros arise, for instance, as a result of sampling of systems with relative degree
greater than two [2]. In addition, the desired output trajectory in several applications is obtained
through a real-life data acquisition run, and hence corrupted by measurement and/or sensor noise.
For example, the reproduction of time records of accelerations and displacements obtained during
test drives with prototype cars. This reproduction is made on hydraulic test-rigs that enable full car
endurance tests, driving comfort assessment, etc. for prolonged periods of time thereby saving
precious resources.

Several techniques have been proposed that determine the input necessary for a desired output
[3]–[6]. However, these papers refrain from considering desired trajectories corrupted by noise.
Asymptotic tracking of any member in a given family of signals generated by an exosystem is
considered in [3,4]. By considering a dichotomic split of the system equations of a non-minimum phase
plant, the use of exosystems was avoided in [5,6]. Here, pre-actuation mitigates poor transient
performance in the case of non-minimum phase systems. Modification of the system dynamics is
required before applying this technique to systems with zeros on the imaginary axis [7]. An attempt was
made in [8] to incorporate noise by using the unknown-input decoupled observer approach of [9,10].
However, it turns out this approach is valid only for a class of minimum phase systems [8]. A different
approach based on designing a Kalman filter for an associated augmented system was first outlined in
[8], detailed with numerically efficient algorithms in [11], compared with other techniques in [12], and
extended to nonlinear systems in [13]. This technique has also been used in [14] to help identify, from
input-output measurements, the state space model of a certain class of nonlinear systems. We discuss
this technique in Section 2.

The aforementioned technique to estimate the input for a given desired trajectory is based on a
design, or nominal, model. As is well-known, modelling invariably involves a trade-off between
simplicity and mathematical tractability of a model, and its accuracy in matching the behaviour of
the plant. Whilst some models can emulate the plant with greater fidelity than others, no particular
model can do so perfectly. Since the nominal model is one of the many possible ones, there is no
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guarantee that the input estimated for a desired trajectory works as well for the plant. To
simultaneously satisfy conflicting objectives of output tracking and robustness we use the following
controller structure: A feed-forward component, comprising the input-estimation procedure
mentioned earlier, and a feedback component, dealing only with the uncertainty. This is indeed a two
degree-of-freedom (DOF) structure. Such a technique was first introduced in [15]. It is well-known
that a two DOF structure is necessary to meet these conflicting objectives [16]. This structure is
discussed in Section 3.

However, in several applications, notably within the aerospace industry, the plant is expected to
track desired trajectories despite operating in diverse conditions. Obtaining a single controller that
is valid globally for all possible scenarios is a rather tedious task. On the contrary, it is easier to
design controllers that are effective in local neighbourhoods. One possible way to combine these
controllers is via gain scheduling. In this paper, we consider the use of multiple models to achieve
this goal.

The multiple model, switching and tuning (MMST) methodology was originally introduced in
[17] to cope with the problem of oscillatory response with unacceptably large amplitudes during the
transient phase, particularly when there are larger errors in the initial parameter estimates. This is
despite the globally stable algorithms developed for the so-called “ideal” case that result in zero
steady-state tracking error [18]. MMST methodology was found necessary in several applications;
for example, [19]–[22]. The stability of the overall system, and the improvement in performance
has been demonstrated for both deterministic and stochastic linear time-invariant systems in
[23]–[26], time-varying systems in [27], and later extended to a class of nonlinear systems in [28].
In Section 3 we use multiple models in our context, and apply this to helicopter hover control in
Section 4.

2. OUTPUT TRACKING WITH NOMINAL MODELS
Let Σ be the plant whose output is expected to track a desired trajectory yd. Suppose that the state-space
representation of a nominal model Σnom of the plant is as follows:

(1)

where u, the controllable input, is to be chosen such that the output y of the nominal model Σnom
tracks a desired trajectory yd. As mentioned earlier, the desired output signal may have been observed
through measurements.
We, therefore, consider the following state-space representation:

(2)

where wk and vk are respectively the system and measurement noise.
Thus,

where we =
∆

is the vector of disturbance signals, TJ 2 J 1
denotes the transfer function matrix

from J 1 to J 2, and XT denotes the transpose of a matrix X. We assume that yk ∈ Rp and uk ∈ Rm. 

Our objective is to obtain an estimate of the input u given possibly corrupted measurements y of

a desired output signal. We achieve this by designing a suitable filter F(z) that represents the ‘inverse’

system Σinv as illustrated in Fig. 1. The filter F(z) also yields the estimate y in a natural way. Thus,
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given the model Σnom represented by (2), we choose a filter F that satisfies the following performance

criterion:

(3)

Here, F represents the class of admissible filters, and d is a parameter introduced to account for the
delay in the estimation of the input u. The norm p depends on the nature of the signals we and u. Thus
if we and u are assumed to be unknown but with bounded energy, an appropriate choice is p = ∞. On
the contrary, if both we and u are assumed to be zero mean white noise process with unit variance, then
p = 2, which is the standard Wiener-Hopf or Kalman filter.

In a deterministic scenario with we = 0 (i.e. model (1)), we can show the following [12]:

1. The filter that achieves (3) with d = 0 is precisely , provided the transfer matrix Tyu is
invertible in IRH∞.

2. An arbitrary sequence in IRp is output trackable if, and only if, J ∈ Im H(N), the range

space of the matrix H(N). Here, H(N) is the truncated Toeplitz matrix of the Markov parameters, and

ϑ =
∆

. For such an output sequence, the necessary input is precisely u = H†(N)J,

where u =
∆

and the Moore-Penrose inverse of a matrix X denoted by X†.

3. Given an arbitrary sequence in IRp there exist unique sequences such that

where is the largest (in the sense of the 2-norm) output trackable sequence in .

Moreover, = =
∆

for j = a and b.

4. For a square plant (p = m) with a well-defined relative degree r =
∆

(r1 r2
. . . r2)

T, an arbitrary

sequence in IRp is output trackable if, and only if, Jj,i = 0, 0 ≤ i ≤ rj – 1, 1 ≤ j ≤ p, where

.

Comments: (i) Arbitrary sequences are not necessarily output trackable by a given system. (ii) For
desired signals with a finite support, the input can be computed directly. This technique subordinates
relevant issues such as the presence of non-minimum phase zeros, or the inverse of the transfer function
not being causal. (iii) The delay δ in (3) is precisely r, the relative degree. In particular, for an invertible
plant r = 0, and any arbitrary sequence is output trackable.

For the more general setting, consider the nominal model represented by (2), where we assume,
without loss of generality, wk and vk are white noise processes with covariances Qw and Rv respectively,
uncorrelated with each other, and with the initial condition x0. In the augmented state space model
approach, the state space representation of the nominal plant model is augmented with a model for the
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input uk+1 = uk + hk, where hk is white noise with covariance Qh, and uncorrelated with wk, vk and the
initial condition x0. Thus,

(4)

where                                                 

The augmented system is observable for almost all points in the complex plane, provided the original
system is observable:

Lemma 1 ([12]). Suppose the pair (C, A) is observable. The pair (Ca, Aa) is observable if, and only
if, z = 1 is not a zero of the system (A, B,C, D).

Under this condition we can set up a Kalman filter [29] to estimate the input signal:

where and satisfies the Riccati equation

We can then show the following:

Theorem 2 ([12]). The Kalman filter when applied to the augmented dynamic model (4) yields an

input sequence and a state sequence such that and

are minimised.

We can easily see that , and hence the transfer matrix from the measurements 

yk to the estimate of the input ûk|k–1 (i.e., the inverse system) is as follows:

(5)
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eigenvalues of the system matrix Aa. In addition, we can show the following:
Lemma 3 ([12]). Every eigenvalue of the system matrix A is a zero of the inverse system (5).

Comments: (i) Clearly, K is a stabilising matrix, and the resulting inverse system is an admissible
filter. (ii) For nominal plants with no zeros at z = 1, the aforementioned method can handle systems
with non-minimum phase zeros, and as well account for process and/or measurement noise by a
suitable design of the Kalman filter. This technique, is therefore, more general than all the methods
developed earlier [12]: extension of method of dichotomies, and the decoupled observer approach. (iii)
Quite often, discretisation of continuous time systems using, for example, a sample and hold, lead to
zeros at unity. These zeros are first dislocated numerically before designing the Kalman filter for the
augmented system comprising the modified system and the input model. Although, in principle, the
only offending point is z = 1, in practice, however, for numerical efficiency, it is recommended that any
zeros located within a circle of radius ∈ centred at unity be dislocated. Two methods for dislocating the
zeros in this region and grouping them together as one function is outlined in [11]. The first method
extracts an all-zero factor and assumes an a priori knowledge of the zeros. The other method is based
on the numerically efficient method of dislocating zeros discussed in [30], and avoids the explicit
computation of the zeros. This is advantageous especially when there is a cluster of zeros in this region.

3. ROBUST OUTPUT TRACKING
As outlined in Section 2, the required input for a desired output trajectory is estimated using a nominal
plant model. Since there is no guarantee that this input signal yields the desired response from the actual
plant Σ, we use the two DOF controller structure shown in Fig. 2. (It is well-known that with a two
DOF controller, the conflicting objectives of output tracking and robustness can simultaneously be
achieved [16].) The input to the plant is the sum of two signals: The first signal uff is the output of the
feed-forward controller ΣFF; this block represents the procedure (presented in Section 2) that estimates
the input signal required for tracking a desired signal yd given the nominal plant model Σnom. The
second signal ufb is the output of the feedback controller ΣFB that is to be designed for robust output
tracking.

One possible structure for the feedback controller is depicted in Fig. 3. Here, yd is the desired output,
uff is the feed-forward signal estimated using the nominal plant model Σnom, and H is the controller that
is to be designed for robust output tracking. From Fig. 3, the control signal to be applied to the plant Σ
is given by

(6)

The feedback signal ufb may be designed in a number of ways. Let P(z) and Pnom(z) respectively be
the transfer functions of the given plant Σ and the nominal plant model Σnom. From Fig. 3, observe that

(7)

where P(z) = Pnom(z) + ∆P(z), assuming additive uncertainty. By a suitable design of the Kalman filter
as per the procedure given in Section 2, Yd(z) – Pnom(z)Uff(z) is minimised in the 2-norm sense, and

E z I P z H z Y z P z U z I P zd( ) ( ( ) ( )) ( ( ) ( ) ( )) ( (= − − − −−1
nom ff )) ( )) ( ) ( ),H z P z U z−1 ∆ ff
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hence the first term in the above equation is minimised. The second term is a function of the
perturbation ∆P(z). To deal with this perturbation, the controller H(z) can be designed by a variety of
techniques; for instance, simple static and dynamic output feedback controllers were designed in [12].
Thus, the scenario depicted in Fig. 3 is adequate for robust output tracking as long as the uncertainty
in the plant model is sufficiently small; i.e., the feedback controller H(z) can provide robust stability
and performance. However, the ever-increasing demand for expanding the operating regions
characterised by significantly larger levels of uncertainty places increased performance requirements
on the design of control systems, notably in the aerospace industries. To deal with such situations, we
propose a multiple model architecture.

As shown in Fig. 4, the chosen multiple model architecture, adopted from [17], consists of a finite
number of models of the plant, denoted , operating in parallel. Observe that the input signal
to each of the models Mi is same as that of the given plant. The error between the outputs of a model
Mi and the plant is denoted by ei=

∆
yi–y. Associated with each model Mi is a controller Ci. The control

strategy is to determine that model with the least error ei , and switch to the corresponding controller;
i.e., at any instant k, one of the models, say Mj, and the corresponding controller Cj, is chosen such that

with a minimum interval Tmin > 0 between switches; here, IN =
∆

and the performance
criterion given by

with α1, α 2 ≥ 0, and ∆T, the sampling interval.

Let P(z) be the transfer function of the given non-adaptive plant Σ, and Pnom(z) be the transfer function

of the chosen nominal design model Σnom. If yd is the desired output trajectory, let the feed-forward signal

uff be estimated using the nominal model Pnom. Let Mi, 1 ≤ i ≤ N, be a set of nominal models associated

the plant, and the number of such models be chosen such that the behaviour of the plant in different

possible scenarios are represented. Specifically, let the models be defined as 

1 ≤ i ≤ N, for some appropriately chosen additive uncertainties ∆ i(z), 1 ≤ i ≤ N. Corresponding to each

such model Mi, let Ci be an admissible feedback controller designed such that the effect of its

uncertainty ∆i is minimised; i.e., the second term in eqn. (7) is minimised. We then have the following

result:

Proposition 4. Given the plant Σ, let the chosen nominal models be Mi(z) and the corresponding

designed controllers be Ci(z). Suppose that in Fig. 4, at any instant k, one of the models, say Mj, and

the corresponding controller Cj, is chosen such that with a minimum interval Tmin > 0

between switches, and Then, the tracking error ec = yd – y in Fig. 4 is bounded.

Without loss of generality, let the model Mp be chosen at time k = 0. There are two possible
situations: (a) The plant P = Mi for some i. If i = p, the output of the plant y is same as the output yp of
the model Mp, leading to the minimum identification error. Therefore, no switching takes place. Since
uff is estimated via an admissible filter, and the feedback part is based on an admissible controller Ci,
all the signals are bounded, and so is the the tracking error ec.

Suppose that i ≠ p. Observe that the controller output up is the input to the plant and all the models;
in particular, it is the input to Mi. Since P = Mi the corresponding identification error ei = yi – y is the
least, and hence the model Mi is chosen after the interval Tmin. Subsequently, the output of Mi matches
that of P, and no switching takes place. Again, since uff is bounded, and Ci is admissible, the tracking
error ec is bounded.

(b) The plant P ≠ Mi for all i. By our assumption on the choice and number of models, P is close to
Mi for some i. By an argument similar to the above, the output yi of the model Mi is closer to that of the
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plant. Hence, the instantaneous error ei is the least. Accordingly, the model Mi is chosen at the next
switching instant. Subsequently, the output Mi is closest to P, and the tracking error remains
bounded.

Comments: (i) The multiple model architecture in Fig. 4 is such that the controller Ci is designed only
for the uncertain part of the plant to minimise the second term in eqn. (7). In this sense, the proposed
scheme in this paper is different from other possible solutions to the problem of robust tracking. (ii) In
a deterministic setting, with ∆P(z) ≡ 0, and yd an output trackable sequence, the error in (7) is zero if
the plant is invertible in IRH∞ (iii) The stability of the overall system is an important issue; indeed,
one cannot guarantee stability for arbitrary switching of models. However, in this paper, we do not
consider such switching of models, and the purpose of the paper is to demonstrate the use of such an
architecture for robust output tracking.

4. APPLICATION: HELICOPTER HOVER CONTROL
In this section we apply our technique to the hover control of a Bell 205 helicopter for robust output
tracking. The example considered here is a case wherein the dynamics was trimmed at a nominal 5
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degrees pitch attitude with a mid-range weight and a mid-position centre of gravity, and operating at
near sea level [7]. The linearised state space model is an eighth order system with four inputs and four
outputs. The states are forward, vertical and lateral velocities, roll, pitch and yaw rates, and, roll and
pitch attitudes. The inputs to the system are collective, longitudinal and lateral cyclic, and tail rotor
collective. The outputs of the system are forward, vertical and lateral velocities, and the yaw rate. The
objective is to control these outputs forcing them to track certain a priori specified profiles: The forward
velocity and the yaw rate are to be maintained at zero, and the desired profiles of vertical and lateral
velocities are shown in Fig. 5 as solid lines.

The continuous-time model given in [7] is discretised with a sampling rate of 200 Hz and a zero
order hold. As a result of the discretisation process, the zeros of the discretised model are positioned at
0.9997 ± 0.0114i and 1.0000 ± 0.0215i, which are clearly very close to z = 1. These zeros are different
from unity perhaps because of the numerical computations. In order to apply our procedure these zeros
are dislocated; amongst these, the non-minimum phase zeros result in a small period of pre-actuation.

The application of the feed-forward control input uff estimated via the augmented state-space
procedure outlined earlier to the nominal plant model is also shown in Fig. 5, with the input signals in
Fig. 6. The desired signals in Fig. 5 are shown as solid lines and the actual trajectories with dotted lines.
We observe satisfactory tracking for both vertical and lateral velocities. Albeit small errors are observed
for both forward velocity and yaw rates, we note that these are smaller than the errors obtained in [7].
In addition, the pre-actuation that is required using our technique is only 25ms. This pre-actuation is
induced by the non-minimum phase zeros in a small region around unity that have been dislocated;
such zeros are the result of a numerical discretisation process. Finally, we recall that our procedure
attempts to approximate the overall transfer matrix from u to (refer Fig. 1) by a pure delay. For thisû
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Figure 5. Feed-forward signal applied to nominal continuous time plant; -- output of 
system; — desired signal
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example, we observe a delay of 10 samples. In practical implementations, perfect tracking is obtained
by applying the input after this delay, ignoring the first few samples. (We note that the method of
dichotomies cannot directly be applied due to non-hyperbolic unstable internal dynamics. Also, since
the relative degree is one, this method requires the knowledge of the derivatives of desired outputs.
Numerically determining the derivatives of practically obtained desired trajectories is typically
erroneous, especially in the presence of noise.)

As mentioned in Section 1, it is rather difficult to design a single controller that is valid globally for
all operating conditions. We achieve robust output tracking via designing controllers that are effective
locally, and using a multiple model architecture to implement these different controllers. In the
helicopter example, we illustrate this overall procedure assuming that the uncertainty in the nominal
model takes the form of structured additive uncertainty in the continuous-time state-space model:

We further assume, in this paper, that the system matrix A and the input matrix B can vary rather
widely, say up to 80%. For purposes of illustration, we assume that the overall uncertainty can be
covered by eight different models, denoted M1, M2, ..., M8, with increasing levels of uncertainty. Thus,
M1 corresponds to the 10% changes in A and B, and M8 corresponds to 80% changes in these matrices,
with the models M2 through M7 covering the intermediate levels of uncertainty. Corresponding to these
eight different models, we design controllers C1, C2, ..., C8. We use the following techniques: (a) state-
feedback controllers (i.e., ufb = K(xd – x) where xd is the desired state also available from our technique
described in Section 2), and (b) dynamic output feedback controllers (i.e., ufb = H(z)(yd – y)). However,
for brevity, we present in Figures 8–10 the simulation results for only dynamic output feedback

x t A x t B u tA B( ) ( ) ( ) ( ) ( )= + + +∆ ∆
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Figure 6. Estimated input signals
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Figure 7. Model switching when the plant is exactly one of the models

Figure 8. Desired and actual outputs when the plant is exactly one of the models. -- 
output of system; — desired signal
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Figure 10. Desired and actual outputs when the plant is different from all of the models. -- 
output of system; — desired signal

Figure 9. Switching between models when the plant is different from all the models

0 2 4 6 8 10

0

1

2

Time (secs)

F
o

rw
a
rd

 v
e
lo

c
it

y
 (

m
/s

e
c
)

Desired

Actual

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

Time (secs)

V
e
rt

ic
a
l 
v
e
lo

c
it

y
 (

m
/s

e
c
)

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

Time (secs)

L
a
te

ra
l 
v
e
lo

c
it

y
 (

m
/s

e
c
)

0 2 4 6 8 10

0

2

4

6

Time (secs)

Y
a
w

 r
a
te

 (
ra

d
/s

e
c
)

-1

-2

-2

-3

-4

-5

x 10-3

x 10-3



controllers.
The following experiments were conducted: (a) The plant is assumed to be precisely one of the 8

models: Here, the model of the plant is assumed to M6, and the controller does not have this knowledge
a priori. Nonetheless, the controller chooses the appropriate control action, as shown in Fig. 7, and the
resulting desired and output trajectories are as shown in Fig. 8. It can be observed from Fig. 7 that the
plant matches the model M6. The overall controller is such that the model M1 has been chosen
arbitrarily for time k = 0. Since Tmin, the time between switches is only a few samples, the switch from
model M1 to M6 in Fig. 7 appears to start at time k = 0. The tracking performance of the overall system
is acceptable and comparable to the tracking performance of the nominal plant model shown in Fig. 5;
the observed small levels of degradation in the performance is acceptable due to the uncertainty in the
plant model.

(b) For the second experiment, we assume that the plant is different from all the eight models, and
arbitrarily assigned the number 9 to emphasise that it is different from the eight models that is part of
the controller architecture. In this experiment, the uncertainty level is chosen such that it is closer to
the model M3 relative to the other models. It can be observed from Fig. 9 that the controller
architecture indeed chooses the model M3, and applies the corresponding control action after an
interval Tmin (not perceptible in Fig. 9). The desired and output trajectories for this simulation exercise
is depicted in Fig. 10. It is observed that the tracking performance is acceptable, and comparable to
that chosen in Fig. 5. It is, however, quite natural to expect a further degradation in the performance.

(c) The uncertainty in the plant is assumed in the third experiment to increase progressively
indicating that the distance between the plant and the nominal model (corresponding to normal
operating condition) is increasing. In order to simplify the experiment, the uncertainty in the plant is
assumed to progressively increase from 10% to 80% in eight steps (as represented by models M1
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Figure 11. Desired and actual outputs when the uncertainty in the plant is increasing. --
output of system; — desired signal
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through M8), with each step lasting 2.5 seconds. The tracking performance of the overall controller
when the plant is changing rather rapidly is as shown in Fig. 11. It can easily be observed that despite
the fact that the uncertainty of the plant model changes widely from 10% to 80%, the overall controller
is such that appropriate control action is taken to keep the tracking errors bounded and reasonable,
thereby demonstrating the efficacy of the technique.

5. CONCLUSIONS
A two degree-of-freedom controller comprising a feedforward controller that estimates the necessary
input for a desired output trajectory, and a feedback controller via a multiple-model approach to ensure
robustness shows promise in output tracking applications wherein the plant dynamics may change
widely.
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