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This paper presents path planning algorithms using Rapidly-exploring Random Trees
(RRTs) to generate paths for unmanned air vehicles (UAVs) in real time, given a starting
location and a goal location in the presence of both static and pop-up obstacles.
Generating near optimal paths in obstacle rich environments within a given short time
window is a challenging task. Hence we first generate a path quickly using RRT by
taking the kinematic constraints of the UAV into account. Then we develop an anytime
algorithm that yields paths whose quality improves as computation time increases. When
the UAV detects a pop-up obstacle the path planner re-generates a new path from its
current location. In order to track a generated path, an effective guidance law with a
switching mechanism based on pursuit and line of sight guidance laws is developed.
Simulation studies are carried out to demonstrate the performance of the proposed
algorithm.
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1. INTRODUCTION
Recently, unmanned aerial vehicles (UAVs) have been deployed for various search and surveillance
missions. One of the main objectives of a mission is to generate a path that a UAV can follow. A path
is usually described in terms of a set of waypoints that the UAV has to visit sequentially. The path
planning problem is to generate a path in terms of waypoints taking various environmental and physical
constraints of the UAV into account. Designing a path planner in an obstacle rich environment that
contains static and pop-up obstacles is difficult. The difficulty further increases when a near optimal
solution is sought in real time while accounting for kinematic constraints of the UAV.

For UAV applications, where the UAV has to fly in obstacle rich environments, the computational
complexity of the path planning algorithm is an important issue that needs to be addressed. Since, the
UAV is in motion at high velocity, the path planner has to find a path quickly. When unknown obstacles
are detected, a new path needs to be generated in real time from its current location to avoid the
obstacles. If the path planner fails to generate a feasible solution within a given time window, the UAV
may collide with the obstacles leading to mission failure.

The path planning problem is an important area of interest in the field of UAVs and robotics with
requirements on optimality, completeness and computational complexity. A number of path planning
algorithms have been developed in these fields such as road map, cell decomposition, potential field,
etc [1]–[2]. However, few of these try to solve the planning problem in its full generality [1]. Depending
on the nature of the problem, some techniques work better than others. An extensive introduction to the
path planning problem and existing solutions may be found in [1]–[3]. The computational time of
deterministic and complete algorithms grows exponentially with the dimension of the configuration
space. Therefore these algorithms cannot be employed for real time UAV path planning problems,
specially those problems that contain rich static and pop-up obstacles.

Recently, sampling based motion planning has gained much interest as an alternative to complete
motion planning algorithms [4]–[5]. For example, Rapidly-exploring Random Trees (RRTs) have
been shown to be effective in UAV applications [6]–[7]. The standard RRT algorithm produces 
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a time parameterized set of control inputs to move from a starting position to a goal configuration.
The performance of the path planner is dependent on the accuracy of the state model being used.
Moreover, sensor inaccuracies, wind disturbance and unmodeled dynamics affect the performance
of the path planner. Hence, open loop path planners cannot provide the desired performance [7]. To
address this issue, RRTs are extended in the output space, where the search is carried out to
determine waypoints [7]. Then, a robust controller is employed to track the generated path of
waypoints. It is assumed that the controller keeps the UAV on the waypoints’ path (waypath) 
while rejecting disturbances. Although RRT is an effective and computationally efficient tool for
complex online motion planning, the solution is far from optimal due to its random exploration of
the search space.

In this paper, we incorporate actual trajectory characteristics in the algorithm based on the
kinematic model of the UAV, to avoid possible collisions. Then a suboptimal approach combining
actual trajectory information characteristics with an anytime approach [8] is developed to deal with
static and pop-up obstacles in real time. Moreover, this approach renders a suboptimal solution by
continuously improving the quality of the solution. In order to track the generated path precisely, a
robust guidance law with a switching mechanism based on pursuit and line of sight guidance laws is
developed.

The rest of paper is organized as follows. Section II describes the path planning problem and
scenario. In Section III, a suboptimal algorithm for path planing is developed. In Section IV, in order
to track a generated path, an elegant guidance law is developed. In Section V, the performance of the
path planner and guidance law are shown by simulation results. Finally, in Section VI, concluding
remarks are presented.

2. PROBLEM STATEMENT
A mission is considered where a UAV needs to travel from a starting location to goal location
through an environment consisting of static and pop-up obstacles. We assume full knowledge of the
terrain map, however, pop-up obstacles may encounter during the flight. The problem becomes
difficult because the motion constraints of UAVs (e.g. turn radius) are comparable with the
environment. This necessitates that UAV constraints must be taken into account while finding a path
so that unexpected collisions can be avoided. The objective here is to determine a path which is near
optimal in real time while avoiding any known a priori and pop-up obstacles and while satisfying
physical constraints. It is assumed that the UAV has constant velocity and limited sensor range.
Since the UAV has limited sensor range, it can detect the pop-up obstacles when they are in the
sensing range. If the obstacles are on the flight path, the UAV has to re-plan its path from its current
position. Determining a solution which satisfies physical constraints while avoiding pop-up
obstacles in the environment is difficult and computationally intensive. Hence, incorporation of
actual trajectory characteristics strategy with anytime approach is employed to generate a time
dependent improvised path.

3. A SUBOPTIMAL ALGORITHM
In this section, we shall first discuss the standard RRT algorithm and its variants. Then, we present a
greedy strategy which not only enhances the computational capability but also reduces unnecessary
path segments. Finally, combining the greedy strategy with an anytime approach, an intelligent path
planner is developed which avoids static and pop-up obstacles effectively and provides a solution
which is near optimal.

3.1. Standard RRT Algorithm
The objective of the path planner is to find a path from a starting position (xstart) to a goal position (xgoal)
through a configuration space. Since the early development of mission planning algorithms, a large
number of algorithms have been developed for such a problem. To name a few, one can find, road map,
cell decomposition, potential field, visibility line [1],[9],[10]–[12]. However, solving the path planning
problem while accounting for geometric and differential constraints is really challenging. LaValle [6]
developed Rapidly-exploring Random Tree (RRT) as a potential solution for such problems. The
standard RRT algorithm is given in Algorithm 1. This structure is the basis of the RRT algorithm, but
there are several variations in the literature [6]–[7].
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Algorithm 1 Standard RRT Algorithm 

1: Choose an initial node xinit and add to the tree t
2: Pick a random state xrand in the configuration space C 
3: Using a metric r, determine the node xnear in the tree that is nearest to xrand 
4: Apply a feasible control input u to move the branch towards xrand at a pre-chosen incremental

distance 
5: If there is no collision along this branch, add this new node xextend to the tree t
6: Repeat steps 2 to 5 until xgoal is included in the tree t
7: Find the complete path from xinit to xgoal

3.2. Modified RRT Algorithm
The standard RRT algorithm provides a time-parameterized (open loop) set of controls to move xstart to
xgoal. The accuracy of the resultant path depends on the validity of the state space model being used. In
reality, apart from modelling uncertainties, there exist sensor inaccuracies, wind disturbances and other
unmodeled factors. In [6], RRT is extended to generate paths in the output space. The modified RRT
algorithm is as shown below.

The tracking of the generated waypoints depends on the feedback control policy. Because of
inherited characteristics (incremental growth), the path generated by the above algorithm usually
includes several extraneous waypoints, which is undesirable in the sense of the cost of travel along the
path.

3.3. Incorporation of Actual Trajectory Characteristics
The true UAV trajectory deviates from the waypoint path [13], specially near the edges. These
deviations can be predicted for the given kinematic model, and hence, collisions with obstacles can be
determined. With this information, the path planning algorithm must ensure that the actual trajectory is
also free from collisions. In [14], the RRTs are grown

Algorithm 2 Modified RRT Algorithm

1: Choose an initial node winit and add to the tree t
2: Pick a random waypoint wrand in the space C, with small probability, set wrand = wgoal to pull the

graph towards the goal
3: Using a metric r, determine the node wnear in the tree that is nearest wrand
4: Extend the branch toward wrand by an incremental distance while taking care of the turn angle

constraint
5: If there is no collision along this branch, add this new node wextend to the tree
6: Repeat steps 2 to 5 until wgoal is included in the tree t
7: Find the complete path from winit to wgoal

assuming that the UAV can follow ± 45 degree change. This assumption leads to less oscillation near
the edges but one has to assure that these oscillations do not collide with obstacles. This indirect way
of incorporating the turn radius constraint into the algorithm affect the speed of algorithm severely. 

To overcome this problem, we have developed a mechanism which enables the UAV to transit
smoothly. If the UAV traverses to the waypoint k as shown in the Figure 1 before switching to waypoint
k + 1, it will overshoot and may collide with obstacles, which is undesirable. It can be observed from
the figure that these oscillations are significant for the sharp turn, which result in further danger 
to the mission. For the success of the mission, one has to predict the overshoots and check for
collisions. The actual trajectory of the UAV can be parameterized in terms of straight lines and circular
arcs. Since the next waypoint (randomly selected node) is known, we use this information to
parameterize the actual trajectory of the UAV in the terms of straight lines and the arcs which satisfy
the minimum turn radius constraint. The deviation due to the kinematic constraint now stays within the
isosceles triangle ∆p1kp2, and the path planner has to assure that there should be no obstacles in it. If
there are obstacles, the randomly selected node is not incorporated in the tree. In this way, we have
successfully converted differential constraint into geometric constraint with an additional obstacle for
each new node. Moreover, this parameterizations gives a way to switch to the next waypoint smoothly.
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The UAV starts taking the turn at the point p1 and continues to the turn until it arrives at point p2 as
shown in Figure 1. With good path following technique, the UAV should be able to track the trajectory
as long as the radius of arc is greater than the minimum turn radius Rmin. We have developed a guidance
law to track waypaths combining a pursuit guidance law with an LOS guidance law, which will be
presented in the next section. The steps of the proposed approach incorporating actual trajectory
characteristics are given in Algorithm 3.

The extraneous nodes are important in growing the tree can be eliminated because they do not
provide any additional information. This process is carried out by smoothing the path (since we are
interested in a path not in the whole tree), but this process does not reduce the path cost significantly.
As already mentioned, because of random incremental growth of the RRT, the resultant path may not
be straight even in the long corridors. To overcome this problem, a greedy strategy is proposed,
exploiting the basic incremental growth characteristic while preserving random features. In this
strategy, the incremental growth is continued until an obstacle is encountered, which is different from
the modified RRT algorithm. This strategy will curb the tendency of growing too many path segments
in the long corridors and will speed up the algorithm.

Algorithm 3 RRT Algorithm with incorporation of actual trajectory characteristics 

1: Choose an initial node winit and add to the tree t
2: Pick a random waypoint wrand with little bias (set wrand = wgoal for the bias) in the search

space S 
3: Using a metric r, determine the node wnear in the tree that is nearest wrand 
4: Extend the branch toward wrand by an incremental distance, resulting in node wextend 
5: If there is no collision along this branch 
6: if check the collision with actual trajectory then
7: add node wextend to the tree t
8: else
9: go to step 2 

10: end if
11: Keep extending the branch by an incremental distance and keep adding new nodes wnew to

the tree t until an obstacle is encountered 
12: Repeat steps 2 to 11 until wgoal is included in the tree t
13: Find the complete path from winit to wgoal 
14: Eliminate extraneous nodes from this path while checking the turn radius constraint for

actual trajectory
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Although the greedy strategy curb the tendency of growing too many path segments, it can not be
guaranteed that path cost will reduce significantly since the algorithm terminates when the target is first
found. If enough computational time is available, more queries can be carried out to find a lower cost
path; otherwise one has to accept the path found. The high cost of the path may outweigh the real time
feature of the algorithm.

3.4. Towards a Suboptimal Solution
Since RRT is a general purpose technique, substantial effort is required to develop a suitable planner to
satisfy mission requirements. In this section, we have attempted to develop an intelligent approach to
generate suboptimal paths while preserving its real time applicability by combining actual trajectory
characteristics with an anytime approach [8]. The anytime approach provides solutions for any given
computational time and the solutions get better as the computation time increases. The idea is to
generate a path using Algorithm 3 for a given scenario. When the UAV flies from one waypoint to
another waypoint, the processor stays idle when the path is being tracked. The anytime algorithm
exploits this idle position state and uses the available computation power to find a new less costly path.
This strategy is followed until the UAV reaches the target point. The steps of the proposed intelligent
approach are shown below in Algorithm 4.

Algorithm 4 RRT Algorithm for Suboptimal Solution

1: Find a path for given space using Algorithm 3 
2: while Until UAV reaches to the target point do
3: Search for low cost paths using Algorithm 3 from next waypoint while tracking a line

connected from waypoints 
4: if An obstacle is encountered in waypoints path based on sensor range then
5: Search for a path from vicinity of UAV position
6: else
7: Keep tracking until UAV reached intended waypoint 
8: end if
9: Select new waypoint based on low cost path 

10: end while

It is clear that the proposed algorithm offers a useful approach for avoiding pop-up obstacles. The
onboard sensor will keep checking whether obstacles exist on the flight path or not. If obstacles are
detected, the UAV has to change its path to avoid a collision. Depending on the velocity of the UAV,
the time to collide (Tc) is predicted and a new path must be found before Tc. Because of the quick
exploration, the algorithm will find a path quickly, and hence, pop-up obstacles can be avoided. Note
that the anytime approach will be implemented as soon as collisions are avoided. Moreover, the
algorithm has the capability to deal with disturbances as well. If the UAV deviates significantly from
its original path so that returning to the path may endanger the mission, a new search is carried out from
the vicinity of the UAV flying area to find a new path.

4. UAV KINEMATICS AND GUIDANCE LAW
The UAV has to follow the path generated by the proposed approach. In order to track a given path,
a guidance law is required which allows the UAV to track the path with minimum deviation. For this
purpose, we employ a guidance law that is a combination of a pursuit guidance law and a line of sight
(LOS) guidance law taken from the missile guidance literature [15]. This choice is motivated from
the fact that pursuit allows the UAV to reach the desired waypoint quickly and it is simple to
implement. However, the drawback is that its trajectory may not be along the LOS as desired. Hence,
an LOS guidance law that will steer the UAV towards the LOS is needed to overcome this difficulty.

To design a guidance law, we need a navigation model of the UAV. For this purpose, we consider
the following three state navigation model of a UAV

ẋ = V cos α (1)

ẏ  = V sin α (2)

(3)
�α = a

V
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where V represents velocity, α represents the heading angle and a represents lateral acceleration
(latax) which acts as guidance parameter. The bound on latax is given as follow
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Figure 2. UAV guidance geometry

Consider the engagement geometry of the UAV as shown in Figure 2. Assume that the UAV was
initially located at the xw1,yw1 and it has to follow the path formed by the waypoints Wi and Wi+1 from
its current position x,y. For the UAV to move towards the waypoint Wi+1, it has to change its course so
it aligns itself along the line connecting the waypoints. The required latax to align heading along LOS
is calculated as follows

a = k1 (αd – α) + k2Rm sin (θT – θM) (4)

Here k1 and k2 are design parameters and other terms are defined as

ad =∆

qT =∆

qM =∆

where xw1,yw1 and xw2,yw2 are the x and y coordinates of the waypoints Wi and Wi+1 respectively. The
first term in (4) represents a pursuit policy which guides the UAV towards the way-point whereas the
second term in (4) represents the LOS policy which tries to minimize separation from the LOS.

As mentioned in Section 3.3, in order to traverse smoothly to the next waypath, the UAV has to start
turning before it arrives to the next waypoint. Consider the waypath geometry as shown in Figure 1.
Assume that the UAV is approaching towards waypoint k and it has to move to waypoint k + 1. It has
to start to turn at point p1 and follow the arc until it reaches point p2. The distance d of points p1 and p2
from waypoint k is a function of arc radius and the angle between the waypath as follows

(5)

where 2β is the angle between waypath formed by joining waypoint k – 1 to k and k to k + 1. The
guidance law to follow the arc is different from to follow a straight line, since LOS term is not required

d
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to follow the arc. The distance d in equation (5) provides the measure for switching from pursuit law
to combined pursuit and LOS laws and vice versa. This switching will enable the UAV to traverse
without any overshoots.

Performance of the Guidance Law
A guidance law is required to follow the waypath generated by the path planning algorithm. Towards
this direction, we have developed a guidance law with a switching mechanism which enables the UAV
to follow the waypath smoothly. The switching mechanism uses a measure which is a function of turn
radius and angle between consecutive waypaths. Figure 3 depicts the performance of the guidance law
in which waypaths are right angle to each other. It can be observed from the figure that UAV starts
turning before it reaches the waypoint to traverse the next waypath smoothly. After it completes the
turn, it follows the desired straight line with minimum deviations.

5. SIMULATION RESULTS
In this section, we present simulation studies to demonstrate the performance of the proposed
algorithm. The objective is that a UAV has to travel from a given starting location to a goal location
while avoiding static and pop-up obstacles in an obstacle rich environment. It is assumed that the UAV
is flying at constant altitude.
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As already argued, when the turn radius of the UAV is comparable with a corridor of the
obstacles, through which the UAV has to travel, it is important to consider the turn radius
constraint. Otherwise, the UAV may collide with obstacles in the corridor. RRT has the capability
to handle kinodynamics or nonholnomic constraints while adding a node in the tree. We have taken
advantage of this feature and made sure that the UAV transits smoothly from one waypath to
another waypath. In order to this, we have considered the guidance characteristic in the path
planning algorithm and made sure that actual trajectory of the UAV does not collide with
obstacles. As mentioned in Section III, branches of the tree need to be extended in randomly
chosen directions. The unit by which each branch of the tree increments must assure that the
initiated turn is completed before the new turn starts. With this in mind, the minimum incremental
distance is chosen as three times the turn radius distance.

Now we will demonstrate the effectiveness of the path planning algorithm based on the
following example scenarios. The first example will show the ability of the proposed algorithm to
generate a path, taking the constraints into account in an obstacle rich environment (Section 5.1).
The second example will demonstrate the capability of the algorithm to deal with pop-up obstacles



(Section 5.2). In third example, it shows how solutions improves as the mission progresses (Section
5.3). Finally, the last example presents the computational requirement analysis for various scenarios
(Section 5.4).

5.1. Path Planning in Obstacle Rich Environment
As discussed before, the algorithm has the capability to provide collision free paths while satisfying a
turn radius constraint. We have tested the performance of the path planner with several scenarios. The
position and size of obstacles are chosen randomly, however, lengths and widths of obstacles are kept
above the prefixed minimum length and width. Each time the path planner finds the flyable path
quickly. In Figure 4, we find a path in a terrain of 5 × 5 km2 with 1500 obstacles. It can be observed
from the figure that the path is free from collision. The tracking performance of the path is checked by
deploying the guidance law developed in Section 4. Planned and executed trajectories are almost on top
of each other. The closeness of the trajectories verify the benefits of incorporating actual trajectory
characteristics into the path planner algorithm.
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5.2. Path Planning with Anytime Approach
There are serval considerations for an ideal path planner including optimality, completeness and
computational complexity. In general the optimal solution demands high computation, and hence
cannot be computed in real time. The RRT algorithm generates a quick solution but it is far from
optimal due to its random exploration of the space. The idea here is to generate suboptimal solutions
while preserving quickness of the algorithm. This is achieved with the anytime approach to develop
a suboptimal path planner which not only provides a solution quickly but the quality of solution gets
better as the computation time increases. The steps of the proposed algorithm are given in
Algorithm 4. The anytime approach uses the idle state of the processor, when the UAV flies between
two given waypoints, to find new paths. The search is carried out during the time it takes to fly from
one waypoint to the next. If the cost of any new path is less than the previous path it is accepted;
otherwise the UAV follows the earlier path. This search is continued until the UAV reaches the
target.



5.3. Path Planning With Pop-up Obstacles
Obstacles are classified into two types: a priori known obstacles (e.g. from a terrain map) from which
a trajectory can be generated before flight, and pop-up obstacles encountered during flight. A terrain
map is usually used to generate initial waypoints, and a local path planning scheme such as bouncing
[9] is used to avoid pop-up obstacles. Here we deal with both types of obstacles through the proposed
algorithm because it is able to provide solutions very quickly. It is assumed that the UAV is mounted
with onboard sensors which can detect obstacles if they are on collision course. As soon as the UAV
detects an obstacle, the algorithm incorporates this information into the terrain map and starts searching
for a new path. Figure 5 shows such a scenario in which pop-up obstacles are encountered twice in the
waypath. The algorithm finds a new path in 0.04 sec and 0.06 sec respectively. The pop-up obstacles
are shown in red blocks in the figure whereas green blocks represent static obstacles. The blue lines
show the new path after pop-up and the red line represents the actual trajectory of the UAV. The third
pop-up obstacle does not appear on the path and therefore there is no need to search for a different path.
As soon as a new waypath is generated, it is tracked effectively by the UAV using the guidance law
given in Section 4.
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Figure 5. Path planning with pop-up obstacles

Figure 6 shows the trajectories with and without the anytime approach strategy. It can be observed
that during the flight the proposed algorithm always tries to find a low cost path to the next waypoint.
Note that although we have considered a one waypoint ahead search strategy, it is not always necessary
that the search is carried out up to the next waypoint. One can choose intermediate points as well and
can find new paths for use once the intermediate path has been reached.

5.4. Computational Performance of the Path Planning Algorithm
The proposed path planning algorithm can provide a solution in real time as shown in this study The
simulations are carried out using MATLAB 7.0 on a Pentium 4 (2.4 GHz) machine with 2 GB RAM.
In the simulations, we have kept the starting and the target positions the same in an environment of 
5 km × 5 km with 500,750 and 1000 obstacles respectively. The computation time to find a path is
recorded and the results are summarized in Table 1. It can be observed that even in the worst case the
computational time required is of the order of 10 sec. Moreover, the computation time requirement does
not increase significantly as the number of obstacles increases. Hence the proposed scheme can be
useful for real time applications.



6. CONCLUSIONS
In this paper, a suboptimal path planing strategy for a UAV is proposed for obstacle rich environments.
The proposed method incorporates actual trajectory characteristics with anytime approaches. The
algorithm performs well and provides collision free paths in the presence of static and popup obstacles.
The algorithm finds a path in a reasonably short time and the quality of solution improves as
computational time increases. The performance of path planner is verified by various simulation studies
and is found to be satisfactory.
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