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ABSTRACT
The current paper discusses the exhaust flow features and the various unsteady flow
separation characteristics in subscale overexpanded nozzles that lead to generation of
side-loads. While a DiMR type of Mach reflection features in the exhaust of a truncated
ideal contour nozzle an InMR occurs in a thrust optimized parabolic nozzle. The main
contributor towards generation of sideloads in a parabolic nozzle is known to be the flow
transitions (free shock separation → restricted shock separation and vice-versa) and the
shock unsteadiness preceding them. However, in a truncated ideal contour nozzle (that
features only FSS condition) the strongest cause of side-load origin are seen to be (i) the
asymmetry of separation front around the nozzle circumference, (ii) length of separation
region and, (iii) length of back-flow region. The flow asymmetry causes variations in
pressure rise at separation and hence, in the local value of rms fluctuations. The length
of separation region also shows considerable variations with NPR and tends to peak at
NPR similar to those at which peaks in (σw/Pw)max value and strain-gauge signal occur.
Data therefore suggests that that the necessary condition for side-load generation in a TIC
nozzle is not just the flow asymmetry but also the length of separation region which
shows significant variation as the separation front gradually approaches the nozzle exit.
The length of back-flow region, on the other hand, also seems to control the large-scale
fluctuations of the separation front. As the extent of back-flow region decreases, the
oscillations of separation shock die down with a subsequent drop in the side-load signal
even when the separation front exhibits circumferential asymmetry.

LIST OF SYMBOLS
G(f) = power spectral density
f = sampling frequency, Hz
Dm = diameter of the Mach disk, mm
L = length of the divergent section of nozzle, mm
Minc = Mach number at incipient separation location
P0 = stagnation chamber pressure, mbar
Pa = ambient pressure, mbar
Pw = local mean wall pressure, mbar
Ppl = plateau pressure after separation, mbar
Pinc = incipient wall pressure at separation, mbar
Psep = wall pressure at physical separation, mbar
Re = radius at the nozzle exit, mm
Rj = radius of the shear-layer at the nozzle exit, mm
rt = radius of nozzle throat, mm
X = co-ordinate along nozzle axis, mm
XDm = X-location of the Mach disk from nozzle exit, mm
Xsep = point of physical separation, mm
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Xinc = point of incipient separation, mm
Xexit = X-location of nozzle exit, mm
∈e = area ratio of the nozzle
∈sep = area-ratio of nozzle at separation location
σw = rms of the local wall pressure
(σw/Pw)max = non-dimensionalized maximum value of rms pressure fluctuation
ϕ = circumferential wall angle, degrees

1. INTRODUCTION
Flow separation in a fluid dynamic system, in general, is a result of a natural adjustment process by
which a viscous flow adjusts to its surroundings under particular conditions. This adjustment
mechanism may, in certain cases, enhance performance or permit better flow control conditions while
in others may result in performance penalties and instabilities that arise from separation. In general, as
the flow expands in the divergent section of the nozzle, it separates from the nozzle wall at some axial
location where the wall pressure reaches a particular fraction of the ambient pressure [1], Figure 1 (a).
This depends upon the nozzle pressure ratio (NPR) and is indicated in the wall pressure distribution by
the first rise in wall pressure known as the point of incipient separation, Figure 1 (b). Summerfield
criterion [2] predicts that the flow in a nozzle separates when the ratio of wall pressure to the ambient
pressure (Pinc/Pa) is less than or equal to 0.4. This pressure rise accompanying separation has been
found to be a function of the incipient separation Mach number, Minc [3, 4]. Thereafter, the separation
region or in other words the region of initial compression terminates at the point of physical separation,
Figure 1. This is immediately followed by a “back-flow’’ or mixing region wherein the separated nozzle
flow mixes with entrained air from the atmosphere [3]. Although the major pressure rise occurs in the
separation region the remaining increase (which is only a small percentage of the initial rise) occurs in
the back-flow/mixing region, Figure 1 (b). It has been reported [3] that the pressure rise occurring in
the back-flow/mixing region depends on (i) the entrainment effect of the separated jet and, (ii) on the
length and geometry of the nozzle wall downstream of the point of physical separation. In general, the
wider is the divergence angle and the shorter the back-flow region the less is pressure in the back-flow
region different from ambient pressure. However, this holds good for conical nozzles with divergence
angles ≥ 15 degrees [5]. The flow conditions in the back-flow/mixing region of a contoured nozzle,
however, are very different from that of a conical nozzle primarily owing to the varying divergence
angle of the nozzle wall along its length. This results in lower pressures in the back-flow/mixing region
relative to conical nozzles. With increasing NPR the separation point is pushed closer to the nozzle exit
and the pressure rise (Pinc/Pa) accompanying separation no longer correlates well with the rest of the
data. This flow condition is known as the “end-effect’’ regime wherein the pressure recovery is limited
by the reducing length of back-flow/mixing region. Further increase in NPR does not change the
separation location but the pressure rise across separation keeps on decreasing with increasing chamber
pressure until at very high NPR the wall pressure at nozzle exit becomes equivalent to the ambient
pressure (full-expansion).
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Figure 1. Schematic showing the (a) flow features of an overexpanded nozzle and, (b) wall
pressure distribution in an overexpanded nozzle



In an overexpanded convergent-divergent (C-D) nozzle, such flow conditions occur when the nozzle
expansion ratio is too large for a given NPR, e.g., when the main stage engine uses a high area-ratio
nozzle and is operated under sea-level or low-altitude conditions. Flow separation in such cases
becomes inevitable with high risk of side-load generation. These flow conditions are prevalent mostly
during impulsive start-up or shut-down of engines under ground testing/lift-off, during stage separation
and also during steady engine operation with flow separation inside the nozzle. Side-loads have been
observed both in sub-scale and full-scale rocket engine nozzles during such operations. The resulting
side-forces, although momentary, can be large in magnitude and are known to cause failures of nozzle
exit cone structures and thrust vector control gimbal actuators [6]. However, side-loads may have
different origins, such as due to asymmetric separation line, pressure pulsations in the separation
region, aeroelastic coupling, flow instability etc. on the basis of which, different models have been
developed for their prediction [7]. Most of the earlier nozzle flow studies were initiated by the side-
load activity observed by Nave and Coffey [8] during the cold-gas subscale nozzle tests of the J2-S
engine (with a parabolic nozzle) in 1973. Recent studies in Europe [9-15] identified a type of side-load
behavior that originates as a result of flow transition from free shock separation (FSS) to restricted
shock separation (RSS) and vice-versa. Their results revealed that the key driver to such flow
transitions is the cap-shock pattern which can occur only in nozzles featuring an internal shock (e.g.,
the thrust optimized parabolic (TOP) and compressed truncated perfect (CTP) nozzles). Intense side-
load activity has not only been observed in the rocket nozzles of most high performance launch vehicles
using TOP contour (e.g., SSME and Vulcain engine) design and the CTP design (e.g., LE-7A engine
used on the Japanese H-IIA launcher) but also in those using truncated ideal contour (TIC) design (e.g.,
LR-115 (Saturn C-1), Viking (Ariane 4) and RD-0120 engine (Russian Energia Launcher)) that features
a Mach disc. For an engine, therefore, that satisfies both low-altitude operation and high-altitude
performance, flow separation characteristics have to be thoroughly understood and controlled. This will
help predict, more accurately, flow separation which is required in designing new rocket nozzles. As
such research activities in Europe, lead by the flow separation control device (FSCD) group [9-16], and
in Japan [17,18], by the JAXA nozzle group, have intensified during the recent years in order to
enhance the current knowledge on flow separation and the associated side-load activity.

Although numerous investigations of flow separation in contoured nozzles have been made [5- 18],
the causes of flow unsteadiness accompanying separation have received little attention and are not
completely understood. In fact, very few studies [19-23] report the flow unsteadiness accompanying
the flow separation phenomena in such nozzles. This paper discusses the exhaust flow features and the
various unsteady flow separation characteristics that lead to side-load generation in overexpanded
subscale rocket nozzles. Results reveal that the variation in the length of separation region and back-
flow region seems to have a strong relation towards the generation of flow unsteadiness and hence,
side-loads. The experimental test campaign was conducted in the subscale cold-flow test facility at
DLR Lampoldshausen. Real-time wall pressure measurements using fast piezo-resistive pressure
sensors are acquired along two streamwise locations, one at circumferential location of ϕ = 0˚ and the
other at ϕ = 180˚ to check for any flow asymmetry. Surface oil-pigment visualization method is
employed to measure changes in the location of physical separation in response to varying NPR
whereas spark schlieren is used to study the exhaust flow patterns.

2. EXPERIMENTAL SETUP AND PROCEDURE
2.1 Test Facility
Tests were carried out in the subscale cold gas test facility enhanced with an additional horizontal test
bench, as shown in Figure 2 (a) (see ref. 16 for more details) and not in the high-altitude simulation
chamber which limits visibility during test campaigns with surface oil flow, infrared thermometry etc.
This facility uses dry nitrogen at ambient temperature as the test gas due to its advantage over
compressed air, i.e., the absence of humidity and other impurities that can otherwise cause condensation
of flow during operation. The nozzle pressure ratio was adjusted by varying the nozzle feeding
pressure, P0, and under present test limitations with the nozzle blowing into atmospheric pressure
maximum pressure ratio up to 60 could be achieved. The throat diameter of the sub-scale TIC nozzle
used for the experimental investigation was 20mm, yielding maximum mass flows in the range of m =
4.2 kg/sec. Comparisons are also made with the results of the TOP nozzle (similar throat diameter)
wherever necessary. Both the TIC and TOP nozzles are of identical mass and designed to give identical
specific impulse in vacuum and nozzle exit pressures, Pe [4]. The only substantial difference therefore
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between the two nozzles is their side-load activity. The area-ratio (∈e) of the TIC and TOP nozzle is
20.66 and 30, respectively.

2.2 Wall Pressure Sensors and Data Acquisition
Wall pressures both upstream and downstream of the throat are measured using fast piezo-resistive
pressure sensors (Kulite Semiconductor Inc. model XT-154-190M). These transducers have a  pressure-
sensitive area of 0.71mm in diameter and an outer case diameter of 3.9mm. According to the
manufacturer’s specifications, these transducers have a natural frequency of 50kHz and are capable of
operating in the temperature range of – 40˚C to + 85˚C and 0 to 100% relative humidity. The accuracy,
according to manufacturer’s specification is within 0.5% in the operating pressure range of 0-15psia.
The sensitivity of the transducers is typically 97.206mV/bar. All the transducers were calibrated
statically against atmospheric pressure. Four such pressure sensors are placed in the stagnation chamber
and 14 along a single axial line in the supersonic section of the TIC nozzle at ϕ = 0˚ (with a pitch of 8
mm, sampling frequency 1kHz with low-pass filter cut-off frequency of 160Hz). Four transducers were
placed circumferentially (placed 13 degrees apart) both at the 11th and 12th transducer locations,
Figure 2 (b). The sampling frequency for these transducers was 25 kHz with low-pass filter cut-off
frequency of 8kHz. In order to capture any flow asymmetry, pressure points were also fabricated in
streamwise direction at circumferentially opposite locations, i.e. at ϕ =180˚, for locations 5 to 12 at ϕ
= 0˚.

Surface flow patterns were visualized using the classic oil pigment mixture (using vacuum pump oil,
titanium dioxide and oelic acid) to capture variations in the location of physical separation to changes
in NPR. Online recording of visualization tests was done with a camera looking up into the nozzle
which was later digitized to extract vital flow information. Contrary to usual side load measurement
devices, where forces perpendicular to the nozzle axis are determined by measuring the resulting torque
with respect to a cardan point, the P6.2 test stand uses, inspired by Dumnov [7], a simple, very thin-
walled bending tube, made of a special aluminium-alloy is mounted upstream the convergent nozzle
part (Figure 2). It resists the high nozzle feeding pressure, but is still sensitive to lateral forces. Pairs of
two strain gauges are applied in each quadrant. Opposite pairs build a full Wheatstone bridge to
measure one of the two lateral directions. Due to the wiring only bending strains are measured. All other
strains, provoked by the inside pressure, the longitudinal nozzle force and temperature effects, are
compensated. The first eigen frequency of the bending tube calibrated under static tests was found to
be 73.245Hz.

3.0 RESULTS AND DISCUSSIONS
Convergent-divergent nozzles are designed to generate high Mach number flows for a given chamber
pressure and area-ratio. Initially for rockets, conical nozzles were being used which performed well as
long as the nozzle half angle was kept between 12 and 18 degrees. However the pressing needs for
higher thrust required high area-ratio nozzles to be used but with minimum nozzle exit divergence
losses. Keeping the divergence loss low, in a high area-ratio nozzle, results in a long nozzle that has a
penalty in the rocket propulsion system mass. This problem was solved by using bell-shaped nozzle that
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Figure 2. (a) Schematic of the cold gas subscale nozzle test-facility and (b) schematic of
the pressure sensor locations and the choice of axis on a TIC nozzle



is designed to expand the high pressure chamber gases more efficiently than the conical nozzle of same
area-ratio and length. However, the flow inside such nozzles is primarily determined by the wall
contour angle downstream of the last point of the circular arc forming the nozzle throat, see Figure 3
[ref.1]. The demand for higher thrust requirements therefore resulted in contoured nozzles that have
wall angles ranging between 16 degrees to as high as 38 degrees, Figure 3 (a). In parabolic nozzles, the
contour downstream of the circular arc forming the throat is not adapted to the expansion waves coming
from the throat (unlike the ideal nozzle design). At this transition point, the wall contour and wall slope
are both continuous while the wall curvature is discontinuous [24]. As a result compression waves are
induced by the parabola leading to formation of an internal shock (IS), Figure 4 (b). A cap-shock
pattern, typical to such nozzles, results from an interaction of the over-expansion or the separation
shock (coming from the nozzle wall) and an inverse Mach reflection of the internal shock at the nozzle
centerline. It can be seen in Figure 3 (b) that the change in contour for the truncated ideal contour nozzle
is not as severe as seen for TOP nozzle. This results in significant changes in the structure of exhaust
flow development in each case, Figure 4 (a).

3.1 Exhaust Flow Features
Mach Reflections
Courant and Friedrichs in 1948 [25] while investigating the shock reflection phenomena indicated the
existence of three types of Mach reflections (MR) broadly classified on the basis of the slipstream
direction from the triple point location. According to them if the slipstream from the triple point moves
away from the reflected shock, the Mach reflection is called direct Mach reflection (DiMR), if it moves
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Figure 3. Schematic showing the variation in divergence angles downstream of the point of
circular arc forming the throat, for different nozzles used in rocket engines ref. [6].

Figure 4. Schlieren pictures showing the exhaust flow features of an overexpanded (a) TIC
nozzle and, (b) TOP nozzle; NPR=60



parallel to exhaust centerline, it is called stationary Mach reflection (StMR) and finally if it moves
towards the reflected shock, it is called the inverse Mach reflection (InMR). The first and the last cases
are encountered in the flows discussed in the following sections.

3.1.1 Direct Mach Reflection (DiMR)
The type of Mach reflection that is observed in the TIC nozzle is the direct Mach reflection (DiMR) or
the type-II shock/shock interference, Figure 4 (a). The type-II interference situation arises when the
strengths of separation/overexpansion shocks (CO) are high enough so that the crossing of these shocks
along the centerline is replaced by a nearly normal shock, or Mach disk, between the triple points (T)
[26]. The separation caused on the lower and upper walls gives rise to a lambda shock pattern, with the
flow behind the separation shocks (CO) being still supersonic. The reflected shocks (CR) form the legs
of the lambda shock.

The flow while passing through set of successive shocks (CO) and (CR) experiences an entropy rise
that is different from that it undergoes while passing through the Mach disk alone. As a result a slip line
(∑T) separates the downstream flows from normal shock or Mach disk (CN) and the one passing
through oblique shock (CR), which have different velocities, densities, temperatures, Mach numbers but
identical pressures. The subsonic channel downstream of the Mach disk and bound by the slip line, is
accelerated under the influence of adjacent flows, so that sonic throat appears after which the flow is
again accelerated to supersonic speeds [26]. The penetration of the reflected shock wave (CR) in the
separated shear layer generates a reflected expansion fan (that deflects the shear layer away) which on
reflection from the slip line (∑T) forms a converging fan of compression waves that coalesces
downstream to form a single compression wave (that turns the separated shear layer towards the
centerline flow direction). For an axisymmetric case, the triple points are replaced by a “circular triple
line’’ and the slipline by a cylindrical one.

3.1.2 Inverse Mach Reflection (InMR)
The exhaust flow pattern from thrust optimized parabolic (TOP) and compressed truncated ideal
contour (CTIC) nozzle is significantly different from what is observed from a TIC or conical nozzle. In
these nozzles the internal shock (CI) terminates in a normal shock near the centerline with a cap-shock
or reflected shock (CR) emanating from the triple point. This pattern resembles a Mach reflection in the
sense that here the cap-shock (CR) can, in fact, be thought of as a Mach reflection of the internal shock
(incident shock (CI)). However, a major difference exists relative to DiMR case and that lies in the
orientation of the slipstream. Whereas in DiMR, the slipstream extends from the triple point towards
the exhaust centerline, in an InMR the slipstream extends away from the centerline along the reflected
shock (CR), as shown in Figure 4 (b). InMR is generally considered as a temporary reflection
phenomena [26] and terminates when the triple point collapses along the centerline as the internal
shock proceeds towards transitional regular reflection (TRR) [26]. The main part of TRR is the RR
wave configuration followed by a new triple point and an additional shock wave that emanates from
the new triple point perpendicular to the centerline [26]. The physical reason for the formation of an
additional shock wave in TRR (new Mach disk) is to compensate for the sudden drop in pressure that
is associated with this transition [27].

So with increase in NPR, the normal shock is pushed downstream with a consequent reduction in its
lateral extent (because the lateral extent of high Mach number flow bounded by internal shock in the
vicinity of the centerline gradually decreases [28], Figure 5 (a)) until at some downstream location the
internal shock converges and intersects the centerline, Figure 5 (b). When this happens the exhaust flow
pattern experiences a major change with a flow transition from cap-shock to a Mach disk, as seen in
the hot-firing test pictures of SSME, Figure 6. This marks the transition from InMR→DiMR and
happens for a TOP nozzle in high altitude mode or at high NPR, Figure 5 (b). A new triple point forms
where the Mach disk intersects the overexpansion shock (CO) that forms a reflected shock (CR) as in
DiMR. Centerline pressure distribution obtained from computational studies [28] show two pressure
jumps, one caused at the cross-over location of internal shock and followed by the other caused by the
Mach-disk.

As for any transition, like RR to MR and vice-versa, a “hysteresis” exists in this case too. The
forward transition from InMR to DiMR is sudden whereas the backward transition occurs gradually
since the Mach disk in this case first approaches the intersection point of internal shock to experience
the backward transition. Such hysteresis has been observed in the Vulcain engine tests at DLR
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[10,16,28]. Further increase in NPR causes the nozzle exit pressure Pe to increase which results in a
gradual reduction in the strength of overexpansion shocks and eventually the Mach disk gets replaced
by a regular reflection RR (type-I interference). Finally, as the design NPR for the nozzle is approached
the overexpansion shock disappears and the nozzle exhaust flow becomes full-flowing and shock-free.

3.1.3 Flow-Field Features of Over-Expanded Nozzles
Typical flow-field features of an overexpanded nozzle are schematically shown in Figure 7 (a). Here
the variation in the diameter of the Mach-disk or normal shock (Dm) and its distance from the nozzle
exit (XDm) are measured (from schlieren pictures) for a range of nozzle pressure ratios. It can be seen
that the variation in the distance of the Mach-disk (XDm) with NPR follows a particular trend similar to
that followed by sonic jets, Figure 7 (b). This distance increases with increasing NPR until at higher
values after which the trend approaches an asymptotic value. Although a similar trend is followed by
the normal shock from a TOP nozzle, its location from the nozzle exit is much less than that of the Mach
disk from a TIC nozzle. The variation in the diameter of the Mach-disk/normal shock (Dm) with NPR,
however, shows some interesting trends, Figure 7 (c). It can be seen that the Mach-disk for the TIC
nozzle initially grows in size, reaches a maximum diameter at NPR of approximately 35 after which it
begins to decrease with increasing NPR. The decreasing Mack-disk diameter is associated with
significant elongation of the first shock-cell length, Figure 7(b). Stark and Wagner [29] recently
reported that the axial position of the Mach-disk and its diameter are not affected by the nozzle length
or by the varying extent (length and radial-size) of back-flow region. The normal shock in the TOP
nozzle also follows a similar trend except that (a) its diameter is much higher than the Mach disk for
similar NPR (due to inverse Mach reflection) and, (b) the change in the trend of normal shock size
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Figure 5. Schlieren pictures showing details of the exhaust flow pattern from a TOP nozzle; (a)
NPR=79 and, (b) NPR=610

Figure 6. Exhaust flow pattern from SSME showing flow transition from InMR to DiMR at high
pressure-ratios



variation occurs at much higher NPR (of approximately 70), Figure 5 (a) after which it begins to
decrease as was observed for the TIC nozzle.

At very high NPR the shock structure in the TOP nozzle undergoes a sudden transition from InMR
to DiMR and the overexpansion shocks later meet at a point along the centerline. Further increase in
NPR makes each nozzle full-flowing and shock-free. The radial size of the recirculation/ back-flow
region (Re – Rj)/rt also shows a decreasing trend (as expected) with increasing NPR until the separation
shock reaches the nozzle exit where it becomes nearly zero, Figure 7 (d). However, for the TOP nozzle
a discontinuity in this trend is observed for NPR of 35 after which the previous trend is again followed.
This discontinuity is caused by the flow transition from free-shock separation (FSS) to partially formed
restricted shock separation (pRSS) which pushes the separation location downstream and gives the
appearance to the nozzle exhaust similar to a full-flowing nozzle [30]. During this condition, the
exhaust flow fluctuates between FSS and RSS as a function of time and is known to generate high side-
loads in this class of nozzle. Once the partially formed separation bubble (as a consequence of pRSS)
reaches the nozzle exit, it opens up causing the ambient air to rush in thereby pushing the separation
front upstream. When this happens, the (Re – Rj)/rt value shows a sudden increase and the previously
followed trend continues.

The separation characteristics in a TOP nozzle that lead towards the generation of side-load activity
have been discussed in detail is ref. [21, 22] and so will not be repeated here. Therefore, the separation
characteristics of TIC nozzle alone will be discussed in this paper.
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Figure 7. (a) Schematic of the flow-field features of an overexpanded nozzle; Variation of (b)
Mach-disk diameter, (c) Mach-disk axial distance and, (d) radius of re-circulation region as a
function of NPR, respectively.



3.2 Separation Characteristics of a TIC Nozzle
3.2.1 Streamwise Wall Pressure Distributions
Figure 8 (a) shows the streamwise mean wall pressure distribution for a start up sequence. Here the wall
pressure Pw is non-dimensionalized by the ambient pressure Pa, and the nozzle axial distance X is non-
dimensionalized by the nozzle throat radius, rt. It can be seen that as the flow accelerates, it expands
until at some downstream location where it experiences a sudden jump in wall pressure indicating the
point of incipient separation. Thereafter, a gradual pressure adaptation to the ambient pressure occurs
over the remaining length of the nozzle. The pressure in this region was generally observed to remain
in the range of 0.8 to 0.95. This region is the backflow region wherein the pressure drop occurs due to
acceleration of ambient air caused by the pumping action of the separated mixing-layer. For NPR : 40,
the incipient separation location moves closer to the nozzle exit with an accompanying reduction in
length of the back-flow region and a decrease in pressure adaptation. This marks the beginning of
separation “end-effect’’ as shown in Figure 8 (b) where a change in trend for separation pressure ratio
(Pinc/Pa) is clearly apparent. It can be seen that the Pinc/Pa value initially decreases with increasing NPR
but later on starts to increase for NPR ≥ 40 as Xinc reaches 80% of the area-ratio (∈e) [16]. This is
because for Minc to remain constant for a constant Mach number area-ratio nozzle, increasing P0 will
result in an increase in Pinc to maintain this Mach number. Increase in Pinc, on the other hand reduces
the strength of the compression shock (Pa being constant) resulting in a decrease in its deflection angle.
An immediate outcome of this is an increase in the length of the 1st shock cell, seen in Figure 7 (b).
Further increase in P0 will gradually make Pe = Pa which makes the nozzle full-flowing and gives a
uniform distribution of Minc at the nozzle exit.

No unusual behavior is indicated in the mean pressure distribution except that for NPR > 24.9, a
larger than usual downstream movement in separation locations is observed. With each increase in NPR
value by 5, the axial movement of Xinc (identified by the lowest wall pressure in each pressure plot)
increases by 2 pressure locations and then reaches a maximum (3 pressure points) between NPR=30
and 35. Thereafter, Xinc movement once again reduces to 2 pressure points and finally by one point as
nozzle exit is approached. Additionally a small increase in wall static pressure (seen as a bump and
marked by an ellipse in Figure 8) at X/rt =7.845 for NPR>30 is observed. This is caused due to the onset
of nitrogen gas condensation at this axial position [29]. It is well known that this increase in pressure
is caused by the release of latent heat due to condensation [31]. As a result a reduction of Mach number
in front of the compression shock occurs. This delays separation in order to maintain the dependence
of the shock location with Mach number [32-33]. This effect is seen also in Figure 8 (a) for NPR
between 29 and 31 and also seen clearly in Figure 8 (b) with the data points not following the general
trend. The compression waves generated by condensation later develop into a condensation shock
making it easily visible to the naked eye.
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Figure 8. (a) Streamwise distribution of normalized mean wall pressure as a function of nozzle
pressure ratio; start up sequence (b) separation pressure ratio distribution showing the two
flow regimes prevalent in overexpanded nozzles



3.3 Causes of Side-Load Origin
The origin of side-loads in a TIC nozzle is generally attributed to the following causes:

3.3.1 Flow Asymmetry
One of the strongest causes of lateral force origin nozzles is the asymmetry of separation front around
the nozzle circumference. The origin for this flow asymmetry is not fully understood and a lot of
experimental and computational effort is being put to investigate the phenomena. An immediate effect
of this, however, is the variation in pressure rise at separation (circumferentially) and hence in the local
‘rms’ value which is very sensitive to the extent of separation region (this in turn may also be sensitive
to the variations in local wall contour). In order to investigate the flow asymmetry, 8 pressure points
were fabricated at circumferentially opposite locations at ϕ = 180˚ (for locations 5 to 12 at ϕ = 0˚). Data
was simultaneously acquired from transducers located both at ϕ = 0˚ and 180˚ for a number of tests.
Figures 9 (a) and (b) show the streamwise mean wall pressure distribution and its corresponding rms
distribution for one such case with NPR held constant at 28.9 for approximately 8 seconds. A
significant asymmetry can be seen for the incipient separation location and in the pressure adaptation
to ambient pressure in the back-flow region, thereafter.

It is well known that a moving shock generates an intermittent wall pressure signal and results in a
sharp rise in fluctuation intensity at separation, represented for example, by the standard deviation of
the wall pressure signal [34]. A large increase in σw indicates the intermittent nature of the pressure
fluctuations caused by the back and forth motion of the separation shock [34] and a peak in its value as
an indication of degree of unsteadiness [35]. The rms distribution, Figure 9 (b), shows a peak in its
value occurring downstream of incipient separation point after which it decreases abruptly in the back-
flow region. Here the rms value is non-dimensionalized by the local mean wall static pressure in order
to reduce the effect of mean flow properties. Such a trend appeared in all the rms distributions at
different NPR suggesting that the large amplitude pressure fluctuations were triggered by the same
mechanism. The difference mainly, however, lies in the peak rms intensity which varies with different
operating conditions (and is discussed later). The plot also shows significant discrepancy in rms value
(approximately by 80%) at circumferentially opposite intermittent separation locations. Such large
variations in pressure fluctuations along the circumferential direction can, during transient operations,
result in the generation of lateral forces.
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Figure 9. Streamwise distribution of (a) normalized wall pressure and, (b) normalized rms;
NPR=28.9 (start up sequence)



3.3.2 Random pressure pulsation of a tilted separation shock
The time-history of wall pressure signal for NPR=28.9 from transducers located at the 5th, 6th and 7th
streamwise pressure points for ϕ = 0˚ and 180˚ (circumferentially opposite) show some interesting
features, Figure 10 (a)-(c) and (d)-(f), respectively. At X/rt = 8.04 (ϕ = 0˚) the signal shows a highly
intermittent nature and is seen to jump between two levels namely, a lower level indicating undisturbed
boundary-layer condition (Pw1) and a higher level indicating shock passages (Pw2) in Figure 10 (b). Pw1
is pressure signal measured when the “foot” of the separation shock moves downstream of this
transducer, whereas Pw2 is measured when the separation shock moves upstream of this transducer. No
such behavior is indicated by the wall pressure signal from ϕ = 180˚, Figure 10 (e). The behavior of all
other wall pressure signals from circumferentially opposite transducer locations (but placed at similar
streamwise locations) also suggests that the separation front is tilted even when the NPR is held
constant. The time-history of wall pressure signals (from the above three transducer locations) as the
NPR of 28.9 is approached, Figure 11, shows that the separation front reaches the transducer locations
at circumferentially opposite locations at different time instants indicating considerable flow
asymmetry. Such an asymmetric transient phenomena can strongly contribute towards the generation
of side-loads in nozzles.

An immediate outcome of flow asymmetry in a round nozzle is a tilted physical separation front
along the nozzle circumference. One such case was observed at NPR=39.8 using surface oil
visualization, Figure 12 (a). For this NPR the separation region (containing the incipient, intermittent
and physical separation information) was captured by the circumferentially placed transducers at the
11th and 12th locations. The 11th pressure point location (X/rt = 12.04) for this NPR is the incipient
separation location, Figure 8 (a), whereas the 12th pressure point locations (X/rt = 12.835) lie partially
in the separation region and partially in the back-flow region immediately downstream of the physical
separation location (X/rt = 12.54), Figure 12 (a). Transducers at locations 12 and 12A are seen to be
upstream of the physical separation line while 12B lies on the separation line and 12C and 12D lie
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Figure 10. Time-history of wall pressure signal for transducer locations showing
movement of separation shock: (a)-(c) ϕ = 0deg. and, (d)-(f) ϕ = 180deg: NPR=28.9



immediately downstream of separation line. The circumferential rms distribution for the incipient
separation locations shows considerable variation in its value, Figure 12 (b) suggesting significant
asymmetry in shock unsteadiness characteristics.

Figure 13 shows the power spectral density of the wall pressure signals in the interaction region
since the wall pressure signals for these circumferentially placed transducers at 11th and 12th locations
were acquired at 25kHz. Here G(f) is plotted against frequency f on a linear-log scale in order to
highlight the dominant frequencies in the signal. The wall pressure signal from incipient separation
location/point of maximum rms for ϕ = 0˚ is dominated by high-amplitude lowfrequency fluctuations
between 40Hz-400Hz, Figure 13 (a). However, for ϕ = 13˚, a large fraction of the energy is seen for
frequencies less than 100Hz. Once again for ϕ = 260 and 390, Figure 13 (b)-(c), the fluctuations appear
for frequencies below 500Hz but with considerably low amplitudes. In the separated region, on the
other hand, the spectra show large fraction of the energy/fluctuations spread in 200-1000Hz frequency
range with a dominant peak at 800Hz for all circumferential locations, Figure 13 (e)-(h). This suggests
that in the separated region the pressure fluctuations caused by the turbulent structures in the separated
shear layer contribute towards relatively higher frequencies > 500Hz. A significant variation in the
spectra is exhibited for the incipient separation location circumferentially although not much can be
seen for the transducers in the separated region. This suggests circumferential variation in the point of
maximum rms location. 

A possible physical mechanism responsible for generation of flow unsteadiness during such a free
shock separation (FSS) condition seems to be the back-flow region that is set into pressure pulsations
(caused by the aspiration effect of the turbulent structures in the separated jet being convected
downstream) due to the close proximity of turbulent shear-layer, emanating from the separation point,
to the nozzle wall [22]. This can cause asymmetric pressure distribution in the back-flow region along
the nozzle circumference and hence, influence the local position of the separation front through the
subsonic re-circulation region. This in turn is a strong function of NPR, as discussed earlier and the
radial size of the recirculation zone defined by (∈e – ∈sep).
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Lawrence and Weynand [5] observed from a large number of test cases that the wall pressure just
downstream of separation strongly influences the separation pressure and hence, the position of
separation. It is however not clearly understood as to what extent the pulsations in the back-flow region
affect the separation shock fluctuation. A preliminary examination of the wall pressure signal and its
associated power spectra from separation and separated regions was carried out for NPR=28.9. It can
be seen that for both ϕ=0˚ and 180, the traces of pressure fluctuations felt in the intermittent/separation
regions are also felt in the back-flow/separated regions, 14 (a) and (c). The power spectra of these
signals show low-amplitude low-frequency fluctuations with a dominant frequency centered around
24Hz and 100Hz that shows a subsequent drop in amplitude as the distance in the back-flow region
progresses downstream, Figure 14 (b) and (d). This strongly suggests that there is a strong influence of
pressure fluctuations in the back-flow region on the separation shock unsteadiness. As the length of the
back-flow region decreases (i.e., as the separation front reaches closer to the nozzle-exit into the end-
effect regime), this influence seems to die down with the power spectra showing no traces of separation
shock unsteadiness in the back-flow region. In general it can therefore be said that the pulsations of the
separation shock are perhaps dependent on the length of back-flow region, the strength of the separation
shock and the local wall contour experiencing the flow separation. This may directly affect the length
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Figure 13. Circumferential evolution of power spectra for wall pressure signals from 11th and
12th wall pressure transducers; NPR= 39.8



of separation region which in turn can affect the rms distribution circumferentially. However a more
detailed study with high frequency data acquisition for all streamwise located transducers needs to be
carried out to confirm the influence of back-flow fluctuations on the separation shock unsteadiness,
especially for NPR < 40.

3.3.3 Variation in the length of separation region
The strongest contributor towards the origin of side-loads therefore seems to be therefore the random
pressure pulsation of the separation shock in the separation region (between Xinc and Xsep). This region
not only experiences the movement of separation shock but also experiences a sudden increase in Pw
from very low values to approximately 60-70% of ambient pressure. An attempt was therefore made to
study the effect of the variation in the length of separation region on sideload contribution.

Initially the maximum ‘rms’ values (as indicated by the peak in ‘rms’ value in Figure 9 (b)) from
independent test runs were plotted against its corresponding NPR for both start up and shut down
sequences and for transducer locations along ϕ = 0˚, Figure 15, as suggested by Verma et al [12]. No
data was possible for NPR < 15. It can be observed that the (σw/Pw)max value shows distinct rise and
fall in its value as the NPR is increased and decreased. The (σw/Pw)max value for start up case shows
three peaks occurring at NPR=25, 30 and 40, after which the (σw/Pw)max value begins to drop
significantly (end-effect regime) and tends to remain more or less constant. For the present case the
magnitude of these peaks is much lower than that reported by Verma et al [12] for a TOP nozzle.

The (σw/Pw)max values for ϕ = 180˚ are also plotted in Figure 15 for comparison. It can be seen that
a considerable discrepancy in (σw/Pw)max values exist for the two circumferentially opposite locations.
This suggests that the flow is dominated by flow asymmetry at most NPR values below 45. The
strongest cause of lateral-force origin in a TIC nozzle therefore seems to be the asymmetry in separation
front around the nozzle circumference. This asymmetry causes variations in the pressure rise at
separation and hence, in the local value of (σw/Pw)max (which is sensitive to the extent of separation
region). Figure 16 (a) shows the variation in incipient separation and physical separation locations
while Figure 16 (b) shows the variation in the length of separation or (Xsep – Xinc)/rt as a function of
NPR for start-up operation. It is interesting to point out that during start-up operation the length of
separation region shows considerable variations and tends to peak at approximately similar NPR as
those at which peaks in (σw/Pw)max value and strain-gauge signal are observed, Figure 17. Similar
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Figure 14. Influence of back-flow fluctuations on the shock unsteadiness in the separation
region for (a) wall pressure signals at ϕ=0, (b) power spectra for wall pressure signals at ϕ=0,
(c) wall pressure signals at ϕ=180, (d) power spectra for wall pressure signals at ϕ=180 and ;
NPR=28.9



results have recently been reported by Verma and Haidn [21] for a TOP nozzle where the length of
separation region is seen to peak as a flow transition NPR is approached each time. The accuracy of
this study however is limited by the pitch of transducer locations in streamwise direction and therefore
needs further scrutiny.

An asymmetry in separation front alone however cannot be responsible for the generation of flow
unsteadiness and hence, towards the origin of lateral-forces. This point was further scrutinized for a
case where an asymmetry in the separation front was observed for NPR 58 (oil picture not shown). But
interestingly the strain-gauge signal did not show any increase in its magnitude, Figure 16. This means
that an important condition for side-load generation is not just flow asymmetry but also the length of
separation region which begins to decrease as the separation front approaches closer to the nozzle exit
(end-effect regime) with a subsequent reduction in wall pressure fluctuations.

3.3.4 Flow transitions
Flow transitions in nozzles, especially those observed in thrust optimized parabolic (TOP) nozzle are
known to result in peaks in the side-load signal [12-13, 16, 21-22]. Although no such flow transitions
are known to be prevalent in this type of nozzle due to the type of Mach reflection that exists, the one
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Figure 15. Variation of maximum rms in the region of flow separation as a function of NPR
during (a) start up and, (b) shut down sequences, respectively.

Figure 16. Variation of (a) incipient separation and physical separation location and, (b) (Xsep –
Xinc)/rt as a function of NPR for start-up operation, respectively.



that exists at low NPR is common in both these nozzles. This was initially named as quasi-restricted
shock separation (qRSS) and has been extensively studied by Stark et al. [36].

Figure 17 shows the time-history of strain gauge signal in the X-Z plane of the nozzle during a test
run. The strain gauge signals shows two distinct peaks corresponding to qRSS at low NPR
(approximately at 4 & 8) and one at high NPR of 40. In between these NPR the strain gauge signal
shows an increase in the magnitude of strain-gauge signal but with no prominent peaks. Beyond NPR
40, the signal shows a significant decrease in magnitude and marks the beginning of end-effect regime.

3.4 Physical causes of separation shock unsteadiness in nozzles
It is interesting to discuss possible causes that lead to side-load origin in nozzle flows. Shockwave
boundary-layer interactions on swept compression corners have shown that the overall rms levels in the
interaction as well as the maximum rms levels generated by the translating separation shock increase
with decreasing sweep and vice-versa. Further the length of the intermittent region, over which the
separation shock foot translates increases with decreasing sweep. These correlate well with our finding
in nozzle flows. The role of shock strength variation also needs to be investigated in triggering the
large-scale motion of separation shock and hence, in the overall flow unsteadiness.

Past studies indicate that the separation shock unsteadiness can be caused by two different physical
phenomena. The small-scale or jittery motion is caused by fluctuations in the ratio of static quantities
across the shock foot. These perturbations induce fluctuations in the separation shock velocity and thus
changes in separation shock position are an integral result of the velocity fluctuations. The large-scale
or global motion of the separation shock on the other hand is caused by a displacement mechanism
related to the dynamics of the separated flow. Thus, an expansion of the separated flow, for example,
displaces the separation shock to an upstream position, whereas a contraction of the separated flow
results in a displacement in the downstream direction. In nozzle flows with the absence of a separation
bubble as during FSS condition, the large-scale motion could be triggered due the interaction between
the separated jet and the accelerating flow into the nozzle in the back-flow region. As the length of
back-flow region decreases, the separation shock oscillations begin to die down and hence the side-load
signal drops even when the separation front exhibits circumferential asymmetry.
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Figure 17. Variation of (a) voltage signals from the strain gauges installed on the bending tube
along XZ plane and, (b) corresponding stagnation pressure variation with time.



3.5 Flow Separation Criteria
Separation criteria have been developed in the past from the experimental data to serve as a prediction
tool for the separation point. However an accurate prediction has always been difficult due to a lot of
parameters involved in the shock-wave boundary-layer interaction phenomena occurring in nozzles
such as nozzle contour, gas properties, wall roughness, wall temperature etc. Figure 18 shows a
comparison of some of these criteria with the experimental data from hot and present cold flow tests.
Significant scatter is apparent between the hot and cold tests. Although Schmucker’s criteria is widely
accepted with an additional margin of 20% from the predicted separation occurrence (as per NASA’s
recommendation in 1976), Hagemann’s criteria [37] agrees very well with the hot-test data while
Ostlund criteria [37] data agrees very well with the conical nozzles and present cold flow tests. These
latter criteria are based on the linear dependence of the Mach number on both the deflection angle θ
and the shock angle β [37]. Another approach towards prediction of separation pressure ratio is
suggested by Reshotko and Tucker [38] and Lawrence and Weynand [5] who derived an equation
resulting in Mach number ratio (M2/Minc) across the separation region. Figure 18 (b) shows a
comparison plot of Lawrence and Weynand [5] criteria with experimental data. It can be seen that the
present curve fit (M2 = 0.695Minc+0.1975) fits well with most of the plotted experimental data and is
close to that suggested by Reshotko and Tucker [38] (M2/Minc = 0.762). The criteria of Lawrence and
Weynand (M2/Minc =0.8) is good for conical nozzles with nozzle half divergence angle > 15 but does
not agree well for contoured nozzles [5].

4.0 CONCLUSIONS
This paper discusses the exhaust flow features and the unsteady flow separation characteristics of
overexpanded subscale rocket nozzles. A DiMR type of Mach reflection features in the TIC nozzle
while an InMR is seen in a TOP nozzle. The main contributor towards generation of sideload signal in
a TOP nozzle is known to be the flow transition from FSS-RSS and vice-versa and the shock
unsteadiness preceding them. But in a TIC nozzle where only FSS condition exists, the strongest causes

S.B.Verma and Oskar Haidn 275

Volume 2 · Number 4 · 2010

Figure 18. Comparison of the present cold test start up data for TIC and TOP nozzles with
previous hot tests for (a) the pressure rise Pinc/Pa as a function of separation Mach number
(b) Mach number ratio across the separation shock



of lateral force origin are seen to be (i) the asymmetry of separation front around the nozzle
circumference, (ii) length of separation region and, (iii) length of back-flow region. The asymmetry of
separation front is seen to cause variations in the pressure rise at separation and hence, in the local value
of (σw/Pw)max. The length of separation region also shows considerable variations with NPR and tends
to peak at NPR similar to those at which peaks in (σw/Pw)max value and strain-gauge signal occur. Data
therefore suggests that that the important condition for side-load generation is not just flow asymmetry
but also the length of separation region which begins to decrease as the separation front approaches
closer to the nozzle exit with a subsequent reduction in wall pressure fluctuations. The small-scale or
jittery motion seems to be caused by fluctuations in the ratio of static quantities across the shock foot
while the large-scale motion could be triggered due the interaction between the separated jet and the
accelerating flow into the nozzle in the back-flow region. As the length of back-flow region decreases,
the separation shock oscillations begin to die down and hence the side-load signal drops even when the
separation front exhibits circumferential asymmetry.
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