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Abstract
Absence of closed form solutions for many financial models has given rise to numerical
and simulation techniques in the recent past. In the current study direct simulation, which
is one of the popular approaches in aerospace engineering is used for studying
applications in finance, especially option pricing.

Monte Carlo (MC) is one of the popular simulation approaches for approximating the
value of the quantity under question. However, the slow convergence rate, O(N–1/2) for
N number of samples of the MC method has motivated research in Quasi Monte-Carlo
(QMC) techniques. QMC methods use low discrepancy (LD) sequences that provide
faster, more accurate results than MC methods. In this paper, we focus on the
parallelization of the QMC method on a heterogeneous network of workstations
(HNOWs) for option pricing. HNOWs are machines with different processing
capabilities and have distinct execution time for the same task. It is, therefore, vital to
allocate and schedule the tasks depending on the performance and resources of these
machines. We present an adaptive, distributed QMC algorithm for option pricing, taking
into account the performances of both processors and communications. The algorithm
will distribute data and computations based on the architectural features of the available
processors at run time. We implement the algorithm using mpC, an extension of ANSI C
language for parallel computation on heterogeneous networks. We compare and analyze
the performance results with different parallel implementations. The results of our
algorithm demonstrate a good performance on heterogenous parallel platforms.

1. INTRODUCTION
We introduce in this section some basic motivation for molecular simulation in finance. Our aim is in
the design and development of a Quasi Monte-Carlo algorithm to price options.

1.1 Need for Simulation
The main idea of microscopic simulation (MS) methodology is to study complex systems by
representing each of the microscopic elements individually on a computer and simulating the behavior
of the entire system, keeping track of all the elements and their interactions in each time period without
making any simplifying assumptions. Throughout the simulation, global, or ”macroscopic”, variables
that are of interest such as temperature and pressure can be recorded, and their dynamics can be
investigated. Such complex systems generally do not yield to analytical treatment. 

The main advantage of the microscopic simulation is that, unlike analytical methods, it does not
force one to make simplifying assumptions for the sake of tractability. Thus, virtually any system with
heterogeneous elements and complicated interactions can be investigated. Complexity arises from
interaction and disorder, from the cooperation and competition of the basic units. Financial markets
certainly are complex systems, judged both their multiscale structure and interaction of sub structures.
Millions of investors frequent many different markets organized by exchanges for stocks, bonds,
commodities etc. Change in investment decisions (by an individual investors (micro)) affects the prices
of the traded assets, and these price changes influence decisions in turn (at macro level, for example
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change in the interest rate etc). The scales of activity in a given system varies widely in finance, like
any other scientific domains.

When attempting to draw parallel between physics and financial markets, an important source of
concern is the complexity of human behavior which is at the origin of the individual trades. However,
nowadays a significant fraction on many markets is performed by computer programs (for simpler
decisions); complex situations could be handled by autonomic computing and no longer by human
operators. Still, human behavior is largely an unexplained phenomenon to account for. Furthermore, if
we make abstraction of the trading volume, an operator only has the possibility to buy or to sell, or to
stay out of the market.

Microscopic simulation with the knowledge of statistical physics has a great potential as a research
tool in finance and in economics. In this study, we try to quantify a mechanism to link the microscopic
behavior of high temperature gases and investor behavior. There is no doubt that financial markets, in
which a multitude of heterogeneous quasi-rational investors operate, are very complex systems. MS
allows the modeling and investigation of such systems without unrealistic simplifying assumptions.
The unrealistic assumptions can be relaxed one by one, and the effect of each simplifying assumption
on the results can be investigated. One additional component of challenge in this study is handling the
multiscale of phenomena from microscopic (individual investor behavior) to macroscopic (market
behavior that in turn affects individual investor’s behavior) phenomenon. With these observations of
similarities between microscopic behavior of a physical system, it becomes easier to apply the
computational tools and techniques from high temperature physics to financial systems.

1.2 Simulation in Finance
The Black-Scholes model of option pricing is a continuous time model similar to the Navier-Stokes
equations. The solution describe the option value in terms of the macroscopic quantities, viz. asset
price, strike price, volatility, etc. a collection of asset prices. The option pricing system can then be
quantified based on the particle properties like investment capital, investment growth, greediness of the
investor etc. All the macroscopic quantities are related to the microscopic quantities through
summations or averages. The continuum assumption is valid when the characteristic length (the length
scale which is of interest) namely the period of the option contract is much larger than the mean free
path, which is the frequency of interaction among individual investors or frequency at which individual
assets are traded.

This can be quantified by saying that the continuum assumption is valid only in the low Knudsen
number regimes. The market (fluid)) in this state is said to be in equilibrium. This means that over the
length scale of interest (option periods contract, for example, three months or longer), several particle
collisions (overall exchanges between investors) occur. This causes the market to reach an equilibrium
condition. Such a situation implies that the statistical fluctuations in the macroscopic quantities are
miniscule, and can be neglected. However, this assumption of continuous market does not hold under
extreme conditions (like very low pressures at higher altitudes for physical systems or financial product
that are of no interests to investors). Such situations correspond to a high mean free path of the
molecules in the physical system leading to less collisions; and infrequent interaction among the
investors means the market may not reach an equilibrium condition. Such extremely infrequent
integrations may be of interest to long dated options such as bond options.

Accurate modeling of such pricing problem is possible by treating it at a microscopic level as an
aggregation of particles based on the more fundamental laws of physics. This is a computationally very
challenging task especially since the number of particles (investors) to handle is very very large. Still,
Direct Simulation is a more computationally feasible approach for analyzing such problems. Bird [3]
proposed a research method to study gas flows in upper atmosphere, where the air almost cease to be
a continuum media. The scheme adopts a statistical/physical, rather than mathematical, description of
the phenomenon under study. Hence, the name Direct Simulation as it can be used to directly simulate
the financial system rather than modeling it mathematically. For example, microscopic structure in
physics is equivalent to the random walk taken by price particles of various assets in the market. There
are many particle models in physics and details of these models can be found in Bird [4]. The
methodology extracts meaningful data from the simulations by sampling a large number of repetitive
random walks. This is the essence of a Monte Carlo methodology.

The ability of miscroscopic simulation to capture individual phenomenon within a market is an
added advantage over other approaches such as binomial lattice or fast Fourier transform. Moreover,
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Monte-Carlo simulation is easy for parallel implementation than the above technique. MC simulation
can use as many processors as there are in the system, one for each random walk.

The slow convergence rate, for N number of samples of the MC method has motivated research in
Quasi Monte-Carlo (QMC) techniques. QMC methods use low discrepancy (LD) sequences that
provide faster, more accurate results than MC methods. In this paper, we focus on the parallelization of
the QMC method on a heterogeneous network of workstations (HNOWs) for option pricing.

1.3 Monte-Carlo Technique
Monte Carlo is a widely used microscopic simulation method in science, as well as to simulate asset
prices as random walk [7] with the help of these asset prices, pricing of financial options were carried
out. This is highly desirable since it is very difficult to get closed from (analytical) solution for many
financial models. Since Boyle [7] introduced the MC simulation in pricing option in 1977, the literature
in this area has grown very rapidly. For example, Hull and White [17] employed MC method in
stochastic volatility application and obtained more accurate results than using Black-Scholes model [6];
the latter often overprices options about ten percent and the error will be exaggerated as the time to
maturity increase. Schwartz and Torous [29] use MC method to simulate the stochastic process of
prepayment behavior of mortgage holders and the results matched closely to that actually observed. Fu
[12] gives introductory details concerning the use of Monte Carlo simulation techniques for options
pricing. Even though the prevailing belief that American-style options cannot be valued efficiently in a
simulation model, Tilley [32], Grant et al. [15], as well as Broadie and Glasserman [9] and some others,
have proposed MC methods for American-style options and obtained acceptable results. Examples
about valuing exotic options can be found in [19]. The literature on MC methods in valuing options
keeps growing. More examples can be found in [8, 14]. The traditional MC methods have been shown
to be a powerful and flexible tool in computational finance [27].

While the traditional MC methods are widely applied in option pricing, their disadvantages are well
known. In particular, for some complex problems which require a large number of replications to obtain
precise results, a traditional MC method using pseudo-random numbers can be quite slow because its
convergence rate is only O(N–1/2) where N is the number of samples. Different variance reduction
techniques have been developed for increasing the efficiency of the traditional MC simulation, such as
control variates, antithetic variates, stratified sampling, Latin hypercube sampling, moment matching
methods, and importance sampling. For detail about these techniques, please refer to [14]. Another
technique for speeding up the MC methods and obtaining more accurate result is to use low discrepancy
(LD) sequences instead of random sequences. The use of LD sequences in MC method leads to what
is known as quasi-Monte Carlo (QMC) method. The error bounds in QMC methods are the order of
(log N)d · N–1 where d is the problem dimension and N is the number of simulations.

Birge [5] reported how quasi-Monte Carlo sequences can be used in option pricing in 1994 and
demonstrated improved estimates through both analytical and empirical evidence. In 1995, Paskov and
Traub [26] performed tests about two low-discrepancy algorithms (Sobol and Halton) and two
randomized algorithms (classical Monte Carlo and Monte Carlo combined with antithetic variables) on
Collateralized Mortgage Obligation (CMO). They obtained more accurate approximations with QMC
methods than with traditional MC methods and concluded that for the CMO the Sobol sequence is
superior to other algorithms. Acworth et al. [1] compared some traditional MC methods and QMC
sequences in option pricing and drew the similar conclusion. Boyle et al. [8] also found that QMC
outperforms traditional MC and Sobol sequence outperforms other sequences. Galanti and Jung [13]
used both pseudo-random sequences and LD sequences (Sobol, Halton and Faure) with MC
simulations to value some complex options and demonstrated that LD sequences are a viable alternative
to random sequences and the Sobol sequence exhibits better convergence properties than others.

Due to the replicative nature, QMC simulation often consumes large amount of computing time.
Solution on a sequential computer will require hours and may be even days depending on the size of
the problem [27]. In financial markets, there is a high premium on rapid solution. Any rapid solution in
information processing can be translated into potential gains. Therefore, parallel computing is an ideal
choice since it provides a solution for large computational problems in a reasonable computational time
using more than one processing units. QMC simulations are well suited to parallel computing since it
is an embarrassingly parallel problem (no communication between processors [31]). We can employ
many processors to simulate various random walks, then average these values to produce a final
answer. In this scenario, the whole simulation time is minimized. There are three parallel techniques of
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using random sequence in literature, namely, Leapfrog, Blocking, and Parameterization. In recent
times, the above three schemes have been proposed for parallelizing LD sequences (see, for example
[10, 23, 25, 28]). Srinivasan [31] compared the effectiveness of these three strategies in pricing
financial derivatives and concluded that blocking is the most promising method if there are a large
number of processors running at unequal speeds. However, the disadvantages of blocking scheme are
well pronounced. First, if a processor consumes more LD elements than it was assigned, then the
subsequences could overlap. Second, if a processor consumes less LD elements than it was assigned,
then some elements will be wasted. The final result will be the same as the sequential computation that
use the same LD sequence with some “gaps”. Third, if processors run at unequal speeds, the fastest
processor will finish its task first and wait for the slowest processor at synchronization point; then the
overall computation time will be determined by the time elapsed on the slowest processor. It is wasteful
to do this since the most powerful processors will idle most of the time. The parallel computing cannot
take full advantage of the potential computing power. Hence, a good parallel MC algorithm should
distribute computations based on the actual performance of processors at the moment of the execution
of the program. The more powerful a processor, the more tasks it will be assigned. That is, data,
computations, and communications should be distributed unevenly among processors to provide the
best execution performance. In this research, we present such an adaptive QMC algorithm for
European-style option pricing, taking into account performances of both processors and
communications. The algorithm is implemented in mpC, which is a relatively new programming
language for implementing parallel computing on heterogeneous networks.

The rest of this paper is organized as follows. In the following section we provide a basic
introduction to the world of options and option pricing. In section 3, we present a theoretical
background to both Monte-carlo and Quasi Monte- Carlo methods followed by a review of use of these
methods for option pricing in section 4. In section 5, we present a partition algorithm for QMC.We
describe our parallel algorithm in section 6 and compare the experimental results to its carefully written
MPI counterparts in section 7 followed by conclusion in section 8.

2. BACKGROUND
An option is an agreement between two parties to buy or sell an asset at a certain time in the future for
a certain price. There are two types of options:
• Call Option: A call option [18] is a contract that gives the right to its holder (i.e. buyer) without

creating an obligation, to buy a prespecified underlying asset at a predetermined price. Usually
this right is created for a specific time period, e.g., six months, or more.

• Put Option: A put option [18] is a contract that gives its holder the right without creating the
obligation, to sell a prespecified underlying asset at a predetermined price.

If the option can be exercised only at its expiration (i.e. the underlying asset can be bought/sold only
at the end of the life of the option) the option is referred to as a European style Call/Put Option (Or
European Call/Put). If it can be exercised any date before its maturity, the option is referred to as an
American style Call/Put option (or American Call/Put). We use the following notation: K is the strike
price; T is the life time of (expiration date) of the option; St is the stock price at time t; r is the interest
rate; µ is the drift rate of the underlying asset (a measure of the average rate of growth of the asset
price); σ is the volatility of the stock; C denotes the option value. Here is an example to illustrate the
concept of option pricing. Suppose an investor enters into a call option contract to buy a stock at price
K after six months. After six months, suppose the stock price is ST. If ST > K then he can exercise his
option by buying the stock at price K and by immediately selling in the market to make a profit of ST
– K. On the other hand, If ST ≤ K he is not obligated to be buy the stock. Hence, we see a call option
to buy the stock at time T at price K will get payoff (ST – K)+, where (ST – K)+ ≡ max(0; ST – K).

3. MONTE CARLO AND QUASI-MONTE CARLO METHODS
In general, Monte Carlo (MC) and Quasi-Monte Carlo (QMC) methods are applied to estimate the
integral of function f(x) over the [0, 1]d unit hypercube where d is the dimension of the hypercube, the
solution space.

(1)I =
∫

[0,1]d
f(x)dx
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In MC methods, I is estimated by evaluating f(x) at N independent points randomly chosen from a
uniform random distribution over [0, 1]d and then evaluating the average

(2)

From the law of large numbers, Î → I as N → ∞ . The standard deviation is

(3)

Therefore, the error of MC methods is proportional to .

QMC methods compute the above integral based on low-discrepancy (LD) sequences. The elements
in a LD sequence are “uniformly” chosen from [0, 1]d rather than “randomly”. The discrepancy is a
measure to evaluate the uniformity of points over [0, 1]d. Let fqng be a sequence in [0, 1]d, the
discrepancy D*

N of qn is defined as follows, using Niederreiter’s notation [24].

(4)

where B is a subcube of [0, 1]d containing the origin, A(B, qn) is the number of points in qn that fall
into B, and vd(B) is the d-dimensional Lebesgue measure of B. The elements of qn is said uniformly
distributed if its discrepancy D*

N → 0 as N → ∞ . From the theory of uniform distribution sequences 

[?], the estimate of the integral using a uniformly distributed sequence {qn} is , as

N → ∞ then Î → I. The integration error bound is given by the Koksman-Hlawka inequality:

(5)

where V (f) is the variation of the function in the sense of Hardy and Krause (please see [20]), which
is assumed to be finite. The inequality suggests a smaller error can be obtained by using sequences with
smaller discrepancy. The discrepancy of many uniformly distributed sequences satisfies 
O((log N)d/N). These sequences are called lowdiscrepancy (LD) sequences [24]. Inequality (5) shows
that the estimates using a LD sequence satisfy the deterministic error bound O((log N)d/N).

4. MONTE CARLO SIMULATIONS FOR OPTION PRICING
Under the risk-neutral measure, the price of a fairly valued European call option is the expectation of
the payoff E[e–rT (ST – K)+]. In order to compute the expectation, Black and Scholes [6] modeled the
stochastic process generating the price of a non-dividend-paying stock as geometric Brownian motion:

(6)

where W is a standard Wiener Process, also known as Brownian motion. Under the risk-neutral
measure, the drift µ is set to µ = r.

To simulate the path followed by S, suppose the life of the option has been divided into n short
intervals of length ∆t (∆t = T/n), the updating of the stock price at t + ∆t from t is [18]:

(7)

where Z is a standard random variable, i.e., Z ∼ (0; 1). This enables the value of S∆t to be calculated

St+∆t − St = rSt∆t + σStZ
√

∆t,

dSt = µStdt + σStdWt,

|I − 1
N

N∑
n=1

f(qn)| ≤ V (f)D∗
N (qn)

Î = 1
N

∑N
n=1 f(qn)

D∗
N (qn) = sup

B∈[0,1)d

|A(B, qn)
N

− vd(B)|

1
N − 1

√√√√ 1
N − 1

N∑
i=1

(f(xi) − I)2.

Î =
1
N

N∑
i=1

f(xi).
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from initial value S
0

at time ∆t, the value at time 2∆t to be calculated from S∆t, and so on. Hence, a
completed path for S has been constructed.

In practice, in order to avoid discretization errors, it is usual to simulate ln S rather than S. From
Itô’s lemma, the process followed by ln S of (7) is given by [18]:

(8)

so that

(9)

or equivalently:

(10)

Substituting independent samples Z
1
; . . . ;Zn from the normal distribution into (10) yields

independent samples ST
(i), i = 1; . . . ; n, of the stock price at expiry time T. Hence, the option value

is given by

(11)

The QMC simulations follow the same steps as the MC simulations, except that the pseudo-random
numbers are replaced by LD sequences. The basic LD sequences known in literature are Halton [16],
Sobol [30] and Faure [11]. Niederreiter [24] proposed a general principles of generating LD sequences.
In finance, several examples [1, 8, 13, 26] have shown that the Sobol sequence is superior to others.
For example, Galanti and Jung [13] observed that “the Sobol sequence outperforms the Faure sequence,
and the Faure marginally outperforms the Halton sequence. At 15,000 simulations, the random
sequence exhibits an error of 0:07%; the Halton and Faure sequences have errors of 0:1%; and the
Sobol sequence has an error of 0:03%. These errors decrease as the number of simulations increases”.
In this research, we use Sobol sequence in our experiments. The generator used for generating the Sobol
sequence comes from GNU Scientific Library (http://www.gnu.org/software/gsl/).

5. PARALLELIZATION METHOD
An ideal parallel QMC algorithm should distribute computation tasks to processors proportional to
processors’ actual computing powers. To achieve this, the algorithm must collect information of the
entire computing space and compute relative performances of actual processors in the run time;
otherwise, the load of processors will be unbalanced, resulting in overall poor performance. Traditional
parallel programming tool cannot implement such parallel algorithm except mpC. As a relatively new
parallel programming tool, mpC offers a very convenient way to obtain the statistical information of
the computing space and the power of each processor. Information about mpC is provided in section 6.
Using mpC, a programmer can explicitly specify the uneven distribution of computations across
parallel processors. In addition, mpC system has its own mapping algorithms to ensure each process to
perform computations at the speed proportional to the volume of computation it performs. Hence, these
two way mappings lead to a more balanced and faster parallel program.

Having known the power of each processors, the volumes of computation assigned to each processor
can be computed by performing the following partition algorithm (algorithm 1).

Suppose each simulation consumes q elements of the given LD sequence, and processor i has ti
tasks, then the whole number of elements will be consumed by processor i is B = ti × q. Note that B
is not necessarily N/P where N is the number of points and P is the number of processors. Hence, the
LD sequence is partitioned into uneven blocks. This partition of LD sequence is somewhat like the
general blocking scheme in MPI, however, it is superior to general blocking scheme, in which the LD
sequence is partitioned into equal size or the burden is on the programmer to determine B. In the
literature, B is usually chosen to be greater than N/P to avoid overlapping of subsequences. In general,
one does not sure the exact number of points of a sequence which a processor will consume. Because

C =
1
n

n∑
i=1

Ci =
1
n

n∑
i=1

e−rT max{S(i)
T − K, 0.0}.

St+∆t = St exp[(r − σ2/2)∆t + σ
√

∆tZ].

lnSt+∆t − lnSt = (r − σ2

2
)dt + σZ

√
∆t

d lnS = (r − σ2

2
)dt + σdz
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in QMC simulations, there are no “safe” stopping rules [14]. Without experimentation, it is difficulty
to know the number of points of a LD sequence needed to achieve a desired accuracy. Unlike the
traditional MC methods, one can use a standard error estimated from a number of simulations to
determine if a desire precision is reached. Hence, the LD numbers must be generated more than needed.
So the discrepancy of the contiguous points in a block might be different from the discrepancy of the
points which is enough for a sequential run. Therefore, there is a chance that the result produced from
the blocking scheme of QMC is not the same as that of a sequential computing [31]. With the help of
mpC, we can use the same number of points as that used in sequential program, and there is no
overlapping issue in sub-sequences and that the sequential run and the parallel run results match.

6. PARALLEL QMC ALGORITHM WITH MPC
We implemented our algorithm using mpC, which is an extension of the ANSI C language. The mpC
programming tool is specially designed for writing high performance parallel computation programs on
common networks of heterogeneous computers. The current mpC programming environment contains
a compiler, run-time support system (RTSS), libraries and a command-line user interface. For detail
information about mpC language, programming environment and samples, please refer to [2, 21, 22] or
online website available at http://www.ispras.ru/∼mpc/.

The mpC offers a mechanism where other parallel programming languages don’t have, through
which a programmer can describe (dynamically) a virtual network topology for his application. In run
time, the mpC environment will map the virtual network to real executing network based on
information about performances of processors and links of the real network. A network, a basic notation
in mpC, can be taken as a user-defined data object in general programming language. Allocating
network objects and discarding them is performed in similar way as allocating data objects and
discarding them.

Suppose we have m processors doing QMC simulations. One processor (host processor) distributes
tasks to the other processors and collects their results. In QMC simulations, each simulation is
independent, there is no communications between processors except with the host processor. Hence, we
see QMC simulations has a star topology where the host processor is the central node and the other
processors (nodes) connected directly to the central node. The computing and communication are based
on this topology. We define a star topology for our MC simulations. The following network declaration
describes such kind of topology.

/*line 1 */ nettype Star(m, p[m]) { 
/*line 2 */ coord I = m;
/*line 3 */ node { 
/*line 4 */ I ≥ 0: p[I];
/*line 5 */ };
/*line 6 */ link { 
/*line 7 */ I > 0: [0] ↔ [I – 1];
/*line 8 */ };
/*line 9 */ parent [0];
/*line 10 */ };

The header (Line 1) introduces parameters of the topology Star, namely, the integer parameter m
and the vector parameter p consisting of m integers. Vector p is used to store the relative performances
of the m processors. Line 2 introduces a coordinate declaration declaring the coordinate system to
which virtual processors are related. The integer coordinate variable I ranges from 0 to m – 1. Lines
3–5 are node declaration. Line 4 stands for the predicate for all I ≥ 0, the virtual processor, whose
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Algorithm 1 Partition
1: Given N is the total tasks, p is the number of processors, power, is the i-th processor’s power.

then, the tasks assigned to the i-th processor is:

(12)

2: After step1, if there are tasks left, then assign it to host processor.

taski = [N × poweri∑p
i=0 poweri

]



relative performance is specified by the value of p[I], is related to the point with coordinate [I], and so
on. Lines 6–8 are link declaration, which specify links between virtual processors. Line 7 stands for the
predicate for I > 0 and I < m there exists undirected links connecting virtual processors with
coordinates [0] and [I-1]. Line 9 is a parent declaration. It specifies that the parent has coordinate [0].

After network is created in mpC program, it executes the rest of computations and communications.
A call to library function MPC_Processors_static_info returns the number of actual processors and
their relative performances. Based on relative performances of actual processors, algorithm Partition
computes the number of simulations should be computed by every actual processor. Then the
subsequences for each processor can be determined using the method mentioned in section 5. Further,
the steps to follow are: a) broadcast option’s arguments; b) scatter subsequences, c) perform sequential
computing on each processor, and finally d) the host processor gather the results from each processor
and produce the final result. The pseudo-code of this procedure is presented in algorithm 2.

Table 1. Relative performance of 7 heterogeneous workstations

processor p1 p2 p3 p4 p5 p6 p7
power 883 930 879 999 959 870 899

Algorithm 2 Parallel Quasi-Monte Carlo Algorithm
1: Initialize the parameters such as S, r, K, T, σ,
2: Compute relative performances of actual processors
3: Partition tasks (call partition algorithm)
4: Assign elements of LD sequence to processors according to their tasks (Scatter blocks)
5: Broadcast options’ parameters
6: Execute the sequential algorithm on each processor
7: Gather the results of each processors
8: Produce the final result on host processor.

7. EXPERIMENT RESULTS
We run 1,000,000 simulations on seven distributed memory machines running SunOS 5.8. Their
relative performance of the seven processors were detected during the creation of the virtual parallel
machines (table 1). Timing is obtained via the mpC wall clock function, MPC_Wtime(). By using
Algorithm 1, the volume of computations of each processor is computed. The computing time is 3.3054
seconds. The sequential runtime of the same computing is 20.13 seconds. Table 2 lists the computing
time of different combinations of simulations and processors. In the table, 1P denotes one processor,
2Ps denotes two processors, and so on. Note that the running time of the mpC program substantially
depends on the network load.

To get a better estimation of our mpC program, we developed two versions of the MPI programs: 1)
static distribution tasks among processors (general blocking (BK) scheme); 2) a manager-workers
(MW) approach which simulates load balancing scheme to some extent.

Using general blocking (BK) scheme, the tasks (N) and the LD sequence are equally distributed
among the m processors. In this experiment, usually the number of processors must be a factor of the
number of simulations (i.e. N/m is an integer); otherwise, the result will be different from a sequential
algorithm’s result using the same arguments. Since our focus here is to compare the performance of
different algorithms, we do not discuss the computing results.

When designing a manager-workers algorithm, the manager in the algorithm acts as a dispatcher; it
dispatches tasks and gather results; it doesn’t take any tasks to do. However, from experiments, if the
manager takes tasks like workers, the algorithm will be more efficient than the general algorithm. This
is because the manager processor consumes part of whole tasks, the workers will be assigned fewer
tasks; the communications decrease; hence the whole computing time decrease. So in this study, the
manager algorithm is a little different from usual manager algorithm: manager assigns tasks to itself.

In the manager-worker scheme, if the manager assigns one task per request from worker, the
communication will be an overhead for large simulations, results in very poor performance (see Table 3).

Table 3 gives the execution time for 1,000,000 simulations on 7 processor on three different
implementations: mpC, blocking scheme (BK) with MPI and manager-worker scheme (MW) with
MPI. The table also indicates the number of tasks distributed to each processor in each of the three

96 Direct simulation of price particles for option pricing using Monte-Carlo

International Journal of Aerospace Innovations



schemes. In BK scheme, since the task distribution is static, each processor receives 142857 tasks. In
the MW scheme, each processor is assigned one task per request. It’s interesting to see in the table that
though processor 4 has better computing performance than processor 1, processor 1 is assigned more
number of tasks in total. This is done by the scheduler. The MW scheme in MPI does not take the
performance of the processors into consideration. Finally, with mpC, we notice that the processor are
given tasks according to their performance. Processor 4 get the most number of tasks, 155631, since it
is the fastest; while processor 6 gets 135535 number of tasks since it is the slowest. The computing time
also shows the mpC implementation is the most efficient while the MW scheme is very inefficient since
the workload is unbalanced and communications dominate the whole computing (sending requests and
results to manager, receiving tasks from manager).

Table 3. Time to do 1,000,000 simulations using three schemes

Processors’ Processor’s MPI
ID performance mpC BK MW
1 883 137563 142857 500000
2 930 144882 142857 133597
3 879 136937 142857 81659
4 999 155631 142857 77377
5 959 149400 142857 74096
6 870 135535 142857 67771
7 899 140052 142857 65500
time (Sec.) 3.31 4.67 95.48

In the MW program, instead of assigning one task per request, we tried to assign arbitrary number
of tasks to each request, thereby simulating mpC to some extent. Let pt be the number of tasks assigned
to a processor per request. When pt = 1, the computing time is 95.48 seconds. We experimented from
pt = 100 till pt = 30000, with 100 tasks in each increment. Figure 1 illustrates the test results.

From the test, we found in some cases the MW performs better than mpC program and in some cases
does not. For example, when pt = 500, the runtime is 2:70764 seconds; and when pt = 4300, the run
time is 3:81360 seconds. We cannot find any trend about the value of pt that will give the best
performance. Hence, when designing MW algorithm, it would be tedious to find a suitable value for pt
which is user-defined. In addition, the MW scheme is not portable when some conditions are changed.
For example, if the number of processors is changed or the workload of some processors is changed, the
pt value must also be changed manually. Unlike mpC program, the number of tasks will be automatically
changed based on the processors’ performance when the number of processors is changed.

8. CONCLUSION
In this paper, we presented a distributed QMC method for option pricing that is adaptable to the
heterogenous network of workstations. We used the Sobol LD sequence for the QMC Technique and
implemented the algorithm in mpC. The algorithm distributes the data depending on the architectural
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Table 2. Time to do QMC simulations (Sec) (x=100000)

number of processors
sim. 1P 2P 3P 4P 5P 6P 7P
1x 0.02 0.13 0.24 0.35 0.44 0.60 0.43
2x 2.24 2.06 1.95 1.76 1.32 1.04 0.76
3x 5.26 3.18 2.05 1.94 1.87 1.40 1.21
4x 7.11 5.41 3.25 2.44 2.10 1.78 1.34
5x 9.48 6.71 4.30 2.71 2.34 2.19 1.68
6x 11.89 8.10 5.92 3.84 2.64 2.45 1.89
7x 14.22 8.12 6.51 4.11 2.99 2.91 2.28
8x 17.25 9.60 7.29 4.97 3.07 3.11 3.07
9x 19.11 10.25 8.02 5.62 3.31 3.29 3.16
10x 20.13 11.60 8.49 5.71 4.82 3.53 3.31



features of the machines, and takes into account the actual performances of both processors and
communication links. In comparison to other implementation, especially with MPI, the speedup
exhibited by our algorithm presented in this paper are promising. An outstanding feature of using mpC
is that a programmer can specify the topology of the application under study and mpC system can map
the topology to real network system based on processors’ processing speeds and network bandwidths
in run time.
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