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ABSTRACT
The Brownian motion of a nanoparticle in an incompressible Newtonian fluid (quiescent
or fully developed Poiseuille flow) has been investigated with an arbitrary Lagrangian-
Eulerian based finite element method. Results for the motion in a compressible fluid
medium are estimated. Thermal fluctuations from the fluid are implemented using a
fluctuating hydrodynamics approach. The instantaneous flow around the particle and the
particle motion are fully resolved. Carriers of two different sizes with three different
densities have been investigated (nearly neutrally buoyant). The numerical results show
that (a) the calculated temperature of the nearly neutrally buoyant Brownian particle in a
quiescent fluid satisfies the equipartition theorem; (b) the translational and rotational
decay of the velocity autocorrelation functions result in algebraic tails, over long time; (c)
the translational and rotational mean square displacements of the particle obeys Stokes-
Einstein and Stokes-Einstein-Debye relations, respectively. Larger the particle, longer the
time taken to attain this limit; and (d) the parallel and perpendicular diffusivities of the
particle closer to the wall are consistent with the analytical results, where available.

1. INTRODUCTION
The major motivation for the present study is the simulation of a nanoparticle thermal motion in a fluid
flow that occurs in targeted drug delivery where the drug carrying nanocarriers are intravascularly
introduced into the vasculature. Nanoparticles allow more precise and successful infiltration of drugs
to target cells. In general, nanoparticle drug-delivery systems have been shown to enhance the
solubility of compounds, and to reduce the impact of drugs on non-target tissue, thereby eliminating
unwanted and dangerous side effects. In order to more broadly integrate this technology into medicine,
a precise understanding of how to guide the nanoparticle to the target site is necessary. To achieve this
goal, as a first step, it is necessary to determine the motion of a nanocarrier (due to thermal and
hydrodynamic effects) in a fluid medium.

A nanoparticle suspended in a fluid undergoes random motion due to the thermal fluctuations in the
fluid. As a consequence, translational and rotational degrees of freedom become important. In
determining the translational and rotational motions of the nanoparticle in an incompressible Newtonian
medium, there exist two methods that couple the thermal fluctuations with the hydrodynamic
interactions. These are the generalized Langevin method [1] and the fluctuating hydrodynamics method
[5]. Either procedure would require numerical simulations for covering extensive parameter space. Over
the years, many numerical simulation schemes, such as the finite volume method, Lattice-Boltzmann
method, and stochastic immersed boundary method have been employed for this purpose. In the present
study, the fluctuating hydrodynamics approach is considered. This essentially consists of adding
stochastic stresses to the stress tensor (random stress) in the momentum equation and stochastic fluxes
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to the heat flux where an energy equation is present in the formulation. The fluctuating hydrodynamic
equations for the fluid coupled with the equations of motion for the nanoparticle result in the description
of the Brownian motion of a nanoparticle in a fluid [5].

In this paper, a direct numerical simulation adopting an arbitrary Lagrangian-Eulerian based finite
element method is employed to simulate the Brownian motion of a nanoparticle in an incompressible
Newtonian fluid contained in a horizontal micron sized circular tube. Both translational and rotational
motions of a nanoparticle in a (i) stationary fluid medium, and (ii) Poiseuille flow are investigated. The
results for the attainment of thermal equilibrium between the particle and the surrounding medium,
diffusivity for the particle in the medium, effect of the presence of the confining vessel wall on particle
displacement and diffusivity are evaluated and discussed in detail. The result as appropriate to a
compressible fluid medium are also reported.

2. THEORETICAL FORMULATION
The Brownian motion of a nanoparticle in an incompressible Newtonian fluid contained in a
horizontal circular vessel is considered. The fluid and particle equations are formulated in an inertial
frame of reference with the origin coinciding with the center of the vessel. The diameter, D, and the
length, L, of the vessel (tube) are very large compared to the particle size, d, the diameter of the
particle. Two different cases for the fluid medium are considered: a fluid at rest in a cylindrical
vessel, and a fully developed Poiseuille flow in a circular tube. Initially, a nanoparticle is introduced
either at the vessel (tube) centerline or at suitably chosen locations away from the center line towards
the bounding wall. In the numerical simulation for Poiseuille flow, the particle is initially fixed at the
starting location and the flow is allowed to evolve until the flow is fully developed in the entire
domain. Then the particle is released and allowed to move (see, [5]). This way, the velocity profiles
in the flow cases are fully developed in the domain of interest and calculations are effected in the
fully developed regime. No body force is considered either for the particle or for the fluid domain.
At time t = 0, the nanoparticle is subjected to Brownian motion in each case. The motion of the
nanoparticle is determined by the hydrodynamic forces and torques acting on the particle and the
wall interactions.

The motion of an incompressible Newtonian fluid satisfies the conservation of mass and momentum
given by

(1)

(2)

where u and ρ (f) are the velocity and density of the fluid, respectively, σσ is the stress tensor, p is the
pressure, J is the identity tensor, and µ is the dynamic viscosity. The random stress tensor S is assumed
to be a Gaussian with

(3)

where 〈  〉 is the ensemble average, κE is the Boltzmann constant, T is the absolute temperature, δij is
the Kronecker delta, and the Dirac delta function δ(x−x′) denotes that the components of the random
stress tensor are spatially uncorrelated (Markovian). The right hand side of equation (3) shows that the
mean and variance of the thermal fluctuations are chosen to be consistent with the fluctuation-
dissipation theorem [2, 3] for an incompressible fluid.
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For a rigid particle suspended in an incompressible Newtonian fluid, the translational and rotational
motions of the particle satisfies Newton’s second law and the Euler equation, respectively,

(4)

where m is the mass of the particle, I is its moment of inertia, and, U and ω are the translational and
angular velocities of the particle, respectively. The hydrodynamic force F and torque T acting on the
particle are given by

(5)

where X is the position of the centroid of the particle, (x−X) is a vector from the center of the particle
to a point on its surface, ∂Σp denotes the particle surface, and n̂ is the unit normal vector on the surface
of the particle pointing into the particle.

The initial and boundary conditions for the problem are

(6)

(7)

(8)

where up is the prescribed velocity (zero or fully developed Poiseuille flow inlet profile), Σ0 is the
domain occupied by the fluid and ∂Σi and ∂Σ0 are the inlet and outlet boundaries, respectively. The
stochastic governing equations (1)–(5) along with the initial and boundary conditions (6)–(8) are solved
numerically. It is assumed that there is no body torque acting at any point in the fluid and the viscous
stress tensor, σ, is symmetric. A numerical simulation at a mesoscopic scale involving a particle in a
fluid could be based on a discretization of the equations (1)–(8). However, the discrete forms have to
satisfy the fluctuation-dissipation theorem [4]. The details of the finite-element spatial and temporal
discretization, and, mesh movement algorithm are discussed in [5].

3. RESULTS AND DISCUSSION
A solid spherical particle of radius a = 200 nm or 300 nm is initially placed at the center of a cylindrical
tube (R = 5 µm) containing a Newtonian fluid. Both, quiescent and fully developed Poiseuille flows are
considered. The computational domain moves with the particle, and from the particle location, the ends
of the computational domain are at a distance of 20a at any instant of time [5]. The physical parameters
chosen are: kB = 1.3806503 × 10–23kgm2/s2K; µ = 10–3kg/ms; ρ(f) = 103kg/m3; and three particle densities
in the range, 990kg/m3 ≤ ρ(p) ≤ 1010kg/m3. The temperature of the fluid is initially set to Tp = 310 Κ
and the particle at zero degrees. The maximum fluid velocity for Poiseuille flow presented in this study
is Umax = 10mm/s, relevant to some biological applications. For this Umax, the flow Reynolds number,
Ref = ρ(f)RUmax/µ = 5 × 10–2 and the particle Reynolds number, Rep = ρ(f)aUmax/µ = 2.5 × 10–3.

The different time scales involved in this study are: (i) hydrodynamic time scale, τv = a2/v Brownian
time scales, (ii) τb = m/ζ(t) and (iii) τd = a2ζ(t)/kBT. Here, v is the kinematic viscosity and ζ(t) = 6πµa is
the Stokes dissipative friction force coefficient for a sphere. It is required that the time step for the
numerical simulation ∆t be smaller than the smallest of all the physical time scales. The simulations
presented in this study have been carried out for long enough durations to allow for the temperature of
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the particle to equilibrate - i.e., if N is the number of simulated time steps then N · ∆t = t >> τv. The
number of time steps depends upon equilibration of particle temperature, or determination of velocity
autocorrelation functions (VACFs) and mean square displacements (MSDs). In order to ensure the
uniqueness of the realizations, different initial seeds are chosen for a Gaussian random number
generator. To account for compressibility effects, the particle mass m is augmented by an added mass
M = m + m0/2, where m0 is the mass of the displaced fluid [6].

Figure 1 shows that translational and rotational temperatures of nearly neutrally buoyant Brownian
particles, thermally equilibrated, in a quiescent fluid medium are independent of the density of the
particle in relation to that of fluid. The error bars have been plotted from standard deviations of the
temperatures obtained with 15 different realizations.

Figure 2 shows the numerically simulated components of (U − U
–

) (Figure 2(a),(c)) and (ω − ω–)
(Figure 2(b),(d)) (represented by three different symbols) of the nanoparticle (a = 200 nm) are
compared with the analytical Maxwell-Boltzmann distribution (MBD) with a zero mean and variance
of kBT/M and kBT/I respectively. It is observed that each degree of freedom individually follows MBD
within 5% error (see dotted line in Figure 2). This validates the numerical procedure employed in this
study.

16 Fluctuating Hydrodynamics Approach for the Simulation of Nanoparticle 
Brownian Motion in a Newtonian Fluid

International Journal of Micro-Nano Scale Transport

0.99

(a)

(b)

0.995

ρ ρ(p)/   (f )

T
/T

p
T

/T
p

1.0 1.005

Preset temperature
Translation
Rotation

1.01 1.0150.985

1.1935

1

0.8065

0.99

a  = 200 nm

0.995

ρ ρ(p)/   (f )

1.0 1.005 1.01 1.0150.985

1.1935

1

0.8065

Preset temperature
Translation
Rotation

  a = 200 nm

Figure 1. Translational and rotational temperatures of a nearly neutrally buoyant nanoparticle in
a stationary fluid medium as a function of the particle density normalized with fluid density.



Figures 3 (a) and (c) show the numerically obtained translational and rotational VACFs of a nearly
neutrally buoyant nanoparticle (a = 300 nm) in a quiescent fluid medium. It is observed that the
translational and rotational VACFs of the Brownian particle have power-law decays, Bt–3/2 and Ct–5/2,
respectively, over long times, where B = Mρ(f)1/2/12π3/2µ3/2 and C = Iρ(f)3/2/32π3/2µ5/2. The error bars
have been plotted from  standard deviations of the decay at particular time instants obtained with 15
different realizations.

Figures 3 (b) and (d) show the numerically obtained translational and rotational MSDs of nearly
neutrally buoyant nanoparticle (a = 300 nm) in a quiescent fluid medium, initially placed at the center
of the vessel (R = 5 µm), for both short and long times. It is observed that in the regime where the
particle’s motion is dominated by its own inertia (ballistic), the translational and rotational motions of
the particle follow (3kBT/M)t2 and (3kBT/I)t2 respectively. In the diffusive regime, t >> τb, the translational
and rotational MSDs increase linearly in time to follow 6D∞

(r)t (Stokes-Einstein relation) and 6D∞
(r)t

(Stokes-Einstein-Debye relation), respectively, where D∞
(t) = kBT/ζ(t), and D∞

(r) = kBT/ζ(r) (ζ(r) = 8πµa3)
are the translational and rotational self-diffusion coefficients.

Tables 1 and 2 respectively show the numerically obtained translational and rotational, ballistic and
diffusive regimes for various size of nanoparticle. It is observed that higher the radius of the particle,
longer the time taken by the translational and rotational motion of the particle to attain the Stokes-
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Figure 2. Equilibrium probability of the (a) translational and (b) rotational velocities of the
nanoparticle (a = 200 nm) in a stationary fluid medium for ρ(p)/ρ(f) = 0.99 and 1.01.



Einstein and Stokes-Einstein-Debye limits, respectively, in the diffusive regime.
Figure 4 shows the numerically obtained parallel (x direction) and perpendicular (y direction) MSDs

of nearly neutrally buoyant particles of different radii initially placed at various distances, h, from the
tube wall, both in a quiescent medium and in a Poiseuille flow.

It is observed that for a given particle of radius a, the diffusivity of the particle decreases closer to
the wall (i.e., as h → 0, Dw/D∞ decreases). Similarly, for a given location of the particle from the wall,
h, the diffusivity of the particle decreases for the larger particle (i.e., as a increases).
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Figure 3. Translational and rotational VACFs and MSDs of a nanoparticle particle of radius a =
200 nm and ρ(p)/ρ(f) = 0.99 in a stationary fluid medium.
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Table 1. Translational ballistic and diffusive regimes for different size of particles.

a Ballistic regime Diffusive regime

200 nm 0.107 ≤ t/τv ≤ 0.178 t/τv ≥ 5.98

300 nm 0.251 ≤ t/τv ≤ 0.501 t/τv ≥ 19.95

Table 2. Rotational ballistic and diffusive regimes for different size of particles.

a Ballistic regime Diffusive regime

200 nm 0.045 ≤ t/τv ≤ 0.1 t/τv ≥ 0.8

300 nm 0.214 ≤ t/τv ≤ 0.428 t/τv ≥ 2.8
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Figure 4. The translational diffusion coefficient of nearly neutrally buoyant Brownian particles of
different radii a initially placed at different locations h from the wall of the circular vessel in a
quiescent medium. Solid and dashed lines correspond to the perturbation solutions given in [7].
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