
Volume 4 · Number 1 & 2 · 2013

51

Linear Instability Analysis of the jetting
regime for Co-flowing immiscible liquids

in co-axial microtubes
In-Hwan Yang1,2+ and Mohamed S. El-Genk1,2,3,*

1Institute for Space & Nuclear Power Studies,
2Chemical & Nuclear Engineering Dept. and 3Mechanical Engineering Dept.

University of New Mexico, Albuquerque, NM, USA

Abstract

This paper applies the linear instability analysis to the prediction of the boundary between

transition and jetting regimes for forming disperse droplets using co-flowing immiscible

liquid in coaxial microtubes. Results are compared to a flow regimes map developed based

on numerical simulations covering wide range of parameters and liquids properties. The

results are also compared to reported experimental measurements for co-flowing ionized

water and PDMS oil in coaxial microtubes. Although captures the general trend, the linear

instability analysis consistently under predicts and over predict the boundary between

transition and jetting at low and high Ca
d
, respectively. This is because the analysis neglects

the secondary perturbations and the inertia of the disperse liquid. Nonetheless, the linear

instability analysis is a nearly accurate predicative approach that is much faster than

performing Computation Fluid Dynamic (CFD) simulations or conducting experiments.

1. INTRODUCTION
There are three basic flow regimes for forming disperse droplets using co-flowing immiscible liquids in

co-axial microtubes (Fig. 1 and Table 1), namely: dripping, transition (or poly-disperse dripping) and

jetting. Shifting from one regime to the other occurs by changing the injection velocities and physical

properties of the liquids, the interfacial tension and/or the diameters of the co-axial capillary tubes. Such

changes also affect the size and formation frequency of the disperse droplets, and the common boundaries

between the various regimes.

The dripping regime at low injection velocities produces monodisperse droplets. In this regime,

pinching and an eventual breakup of the droplets occur at the exit of disperse liquid capillary nozzle by

the interfacial tension force (Fig. la). When the diameter of the continuous liquid’s microtube is much

larger than that of the disperse liquid, forming disperse droplets are perfectly spherical and their radius

decreases as the injection rate of the continuous liquid increases [1].

In the transition regime, at higher injection velocities than in the dripping regime, a short disperse-

liquid thread forms, extending from the exit of the disperse liquid microtube to the growing droplet at

the far end of the thread (Fig. lb). Following a pinch-off of the droplet by interfacial tension, the liquid

thread separates from the disperse liquid nozzle and becomes hydro-dynamically unstable, breaking off

into a number of “satellite” droplets of miniature sizes (Fig. 1b). The average size of the primary droplet

is typically smaller than in the dripping regime and depends on the injection velocities and physical

properties of the co-flowing liquids. It also depends on the interfacial tension and the diameters of the

coaxial microtubes [1,2,8]. Increasing the injection rate of the continuous liquid typically increases the

length of disperse liquid thread, decreasing the size of the primary droplet, but increasing the number

and sizes of the satellite droplets (Fig. lb).

The shift to the jetting regime occurs by either increasing the injection velocities of the co-flowing

immiscible liquids and/or decreasing the interfacial tension. These conditions increase the length of the
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disperse-liquid thread, which eventually evolves into either a stable narrowing or widening jet (Fig. 1c).

Disperse droplets form and break off at the tip of these jets by the combined effect of viscous forces of

the co-flowing liquids, interfacial tension, and hydrodynamic instability [2-8,19,23].

More than a century ago, Rayleigh [9,10] conducted a linear instability analysis of a liquid jet in

air. The analysis assumed that an initially unperturbed surface of an infinitely long liquid jet could

become unstable due to the growth of linear perturbations along the surface with time, eventually

causing a breakup of the jet. In his analysis [9,10], the axisymmetrically perturbed interface had an

amplifying sinusoidal wave, x = x
0
ei(kz-w f) with a small initial amplitude (x

0
). Tomotika [11] extended

Rayleigh’s instability analysis to co-flowing immiscible liquids by accounting for the effect of the

continuous liquid viscosity. The work of Rayleigh and Tomotika [9-11] has been the foundation of

recent development and application of linear instability analysis to co-flowing immiscible liquids in

coaxial microtubes.

This hydrodynamic instability analysis applies to the conditions for the jetting regime of forming

disperse droplets. The analysis accounts for the spatial and temporal growth of the amplitude of a surface

perturbation [5,6,12-19]. The amplitude increases exponentially, not only with time, but also with axial

location along the interface separating the flows of the disperse and continuous liquids. Depending on

the spatial and temporal growth of the amplitude, the breakup of a disperse droplet from a stable disperse

liquid jet could be caused by either an absolute or a convective instability. In the absolute instability,

interface disturbances grow and propagate upstream, eventually pinching off the disperse droplet close

to the exit of the inner microtube (Figs, la and lb). On the other hand, the breakup of disperse droplets

at the far end of a stable liquid jet is caused by the convective instability (Fig. lc). The preferential

downstream propagation of growing surface perturbations in the convective instability eventually pinches

off the disperse droplet at the tip of a long disperse-liquid jet (Fig. lc).

Figure 1. Regimes for forming disperse droplets for co-flowing immiscible liquids [8].



Guillot et al. [5], Guillot, Colin, and Ajdari [19], and Herrada, G.-Calvo, and Guillot [6], assuming

creep flows, analytically derived the dispersion relation between the complex frequency and the wave

number. Thus, the inertial forces of the co-flowing liquids are negligibly small compared to their viscous

forces. In their linear instability analysis, Guillot et al. [5] radially averaged the flow and the perturbation

of the co-flowing liquids and neglected their inertia. They also performed experiments, employing

disperse aqueous solution of 50 wt% glycerin and silicon oil as the continuous liquid. These liquids have

viscosities of 55 mPa.s and 235 mPa.s, respectively. The radii of the co-axial capillaries for injecting the

continuous and disperse liquids varied from 200-500 mm and 20-50 mm, respectively. The trend of their

instability analysis results generally agreed with the experimental measurements, when plotting the flow

rate of the disperse liquid versus that of the continuous liquid. At low flow rates of the disperse liquid,

the predicted flow rates of the continuous liquid at the boundary between the transition and jetting

regimes were much higher than the experimental results.
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Table 1. Disperse droplets regimes for co-flowing immiscible liquids [8].

Item

Flow Regime

Dripping Transition
Jetting

Narrow Wide

Condition Moderate

velocities, high

interfacial tension,

low viscous drag

Higher velocities

and lower interfacial

tension

High continuous liquid injec-

tion & interfacial tension

Low continuous

liquid injection &

interfacial ten-

sion

Emulsion Mono-disperse

droplets

Mono-disperse pri-

mary droplets, fol-

lowed by tiny

satellite droplets

Poly-disperse droplets of small

sizes

Mostly mono-

disperse droplets

with a few tiny

satellite droplets

Primary

droplets break

off

Pinch-off by inter-

facial tension at exit

of disperse liquid

microtube

Pinch-off by interfa-

cial tension at far

end of thin short dis-

perse liquid thread

Hydrodynamic instability at far end of stable dis-

perse liquid jets

Satellite dis-

perse droplets

Rare, depending on

conditions

By breakup of dis-

perse liquid thread

Infrequent, following break off of primary droplets

Formation fre-

quency

Lower than transi-

tion & narrowing

jet, but higher than

widening jet

Higher than drip-

ping & widening jet,

but lower than nar-

rowing jet

Very high Very low

Primary

droplet size

Larger than transi-

tion & narrowing

jet but lower than

widening jet

Much smaller than

in dripping and wide

jetting regimes

Smallest Largest

Herrada et al. [6] have developed an axisymmetric instability model, similar to that of Guillot et al. [5],

but accounted for the inertia of both the co-flowing liquids. They considered 3-D perturbed liquid flows
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and compared the results of the instability analysis with their experimental measurements. They developed

a regimes map in terms of the flow rates of the co-flowing liquids, similar to Guillot et al. [5]. Only at high

flow rates of the disperse liquid, the predicted flow rates of the continuous liquid for the boundary between

transition and jetting agreed with the experiments. The experiments of Herrada et al. [6] varied the diameter

of the disperse liquid microtube from 40-100 mn and that of the continuous liquid flow was either 550 or

860 mm. Their experiments were conducted using three pairs of disperse and continuous liquids (water

with a viscosity of 1.0 mPa.s and hexadecane with a viscosity of 3 mPa.s, water-glycerin solution with a

viscosity of 55 mPa.s and silicone oil with a viscosity of 235 mPa.s, and water-glycerin solution with a

viscosity 650 mPa.s and silicone with a viscosity of 235 mPa.s). They controlled the interfacial tension in

the experiments by adding sodium dodecyl sulfate to the aqueous solutions and Span-80 to the hexadecane.

Utada et al. [3] and Castro-Hernandez et al. [4] have introduced a flow regimes map that characterizes

the boundary between transition and jetting, assuming transition is a part of the dripping regime (Figs,

la and lb). These flow regimes map are based on the capillary number of the continuous liquid, Ca
c
, and

the Weber number of the disperse liquid, We
d
. When the exerted viscous and inertial forces of the co-

flowing immiscible liquids on the interface outweigh that of interfacial tension, a disperse-liquid jet

forms. Narrowing jets (Fig. lc) from when the viscous shear of the continuous liquid helps overcome

the effect of the interfacial tension. On the other hand, widening jets from when increasing the viscous

shear of the disperse liquid. The inertial force of the creeping disperse liquid flow is negligibly small

(Re
d

< 1).

Castro-Hernadez et al. [4] did not perform instability analysis, but conducted experiments to investigate

the criteria of Utada et al. [3] for the predicting the boundary between transition and widening jetting.

Their results indicated the shift from transition to jetting occurs at a lower Weber number of the disperse

liquid, We
d
, than reported by Utada et al. [3]. They also confirmed that only when Reynolds number of

the disperse liquid, Re
d
> 1.0, Weber number, We

d
, can be used to indicate the shift to jetting [4].

Several assumptions have been made to simplify the complex mathematical formulations of the linear

instability for predicting the conditions for the jetting regime. These include neglecting higher order

perturbations of the interface and the radial component of the surface perturbations, and assuming creep

flows and that the transition regime (Fig. lb) is as a part of dripping (Fig. la). Although the reported

analysis results provided valuable insights, they were inconclusive and there was not a unified criterion

for accurately predicting the boundary between transition and jetting.

Recently, the authors [8] conducted extensive numerical simulations covering wide ranges of

parameters, including the microtubes radii, the properties of the co-flowing liquids, and the interfacial

surface tension. The numerical results were used to generate motion picture movies to accurately identify

the prevailing regime and the conditions for shifting from dripping to transition and from transition to

jetting. The results were also used to develop semi-empirical dimensionless correlations for predicting

the boundaries between dripping, transition and jetting in terms the Capillary number of the disperse

liquid (Ca
d
), the dynamic force ratio of the continuous and disperse liquids ( ), and the ratio of the

microtubes radii (R*). The correlations were in good agreements with the numerical simulation results

and the reported experimental data for different immiscible liquids. These include ionized water and

PDMS (Polydimethylsiloxane) oil with R* = 10, and aqueous solutions of glycerine into silicone oil flow

with and without surfactant (Sodium Dodecyl Sulfate) with R* = 13.8 [3,5,6].

The objective of this work is to perform hydrodynamic liner instability analysis and compare the

results to the recently developed dimensionless correlation by the authors [8] and the reported

experimental results [3] for the boundary between transition and jetting. Presented and discussed next

are the constituent equations, initial and boundary conditions, the solution methodology for the

hydrodynamic linear instability and the dispersion relation that is identical to those of Herrada, G.-Calvo,

and Guillot [6].

2. HYDRODYNAMIC INSTABILITY ANALYSIS
The instability analysis assumes an infinite cylindrical thread of the disperse liquid as “a basic flow” in

a coaxial flowing continuous liquid and treats the perturbed interface using linear perturbation equation.

Fig. 2 presents an illustration that compares unperturbed and perturbed interfaces of a disperse liquid jet
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in a co-flowing immiscible liquid. The initial basic instability of the interface grows or decays, depending

on the hydrodynamic drag and inertia forces of the co-flowing liquids and the value of the interfacial

tension. The growth and decay of the perturbed interface is characterized by traveling linear waves. The

present analysis examines the stability of the interface by solving the constituent equations and the

dispersion relation. It predicts the conditions of forming a stable, disperse liquid jet and the breakup of

disperse droplets from the jet. The perturbed velocity and pressure of the basic disperse liquid flow are

expressed as:

                                                                                                                                      
(1a)

                                                                      
                                                                (1b)

                                                                
                                                          (1c)

In these equations, u
n
0 and p

n
0 are the velocity and the pressure vectors of the basic flow, u

n
' and p'

n
are

the vectors for the perturbations in the velocity and the pressure, respectively, and k 0 and k ' are the basic

curvature and the induced perturbation in the curvature of the interface between the co-flowing disperse

and continuous liquids (Fig. 2). The interfacial tension is kept constant, which is not applicable to the

case of added surfactant to the disperse liquid. The gradient of the surfactant along the interface would

stimulate Marangoni convection, altering the results and complicating the linear instability analysis. For

simplicity, the present analysis also neglects the effect of the secondary perturbation and the radial velocity

components of the interface (Fig. 3). These assumptions, although simplify the problem for obtaining a

closed form analytical solution, could affect the predictions of the boundary between transition and jetting.

The perturbations along the surface of disperse liquid jet are characterized by a linear wave function.

The governing equations for implementing the hydrodynamic linear instability analysis are [8]:

(a) Continuity equation;

                                                                                                                                (2)

Figure 2. Growth of the perturbations propagating along the surface of disperse liquid jet in a co-
flowing continuous liquid.



56 Linear Instability Analysis of the jetting regime for Co-flowing immiscible liquids in
co-axial microtubes

International Journal of Micro-Nano Scale Transport

(b) Momentum balance equations:

                              
                        (3)

The initial interface of the basic disperse liquid flow grows or decays, depending on the values of the

hydrodynamic drag and inertial forces induced by the co-flowing liquids and the interface tension force.

The radial location of the interface in the flow domain, r
j
, and the perturbed velocities and pressures of

the continuous and disperse liquids are expressed in cylindrical coordinates (r, z) as:

                                                                

                                                              

                                                          
                                                    

(4)

In these equations, r
j
0 is the initial radial location of the interface of the basic disperse liquid flow,

k is the wave number, w is the frequency, and x is the initial amplitude of the perturbed interface (x
<< 1) (Fig. 2). After substituting equation (4) into equations (2) and (3), the resulting equations are

linearized by neglecting the squares and dot products of the perturbed velocity components as well as

the gravity force. The obtained momentum balance and continuity equations of the disperse and

continuous co-flowing liquids are expressed, respectively, as: 

(a) Momentum balance equations in the radial coordinate, r:

                                
                          (5a)

Figure 3. Growth of propagating linear and secondary perturbations along the surface of a disperse
liquid jet in a co-flowing continuous liquid.
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(b) Momentum balance equations in the axial coordinate, z:

                                      
                                (5b)

(c) Continuity equations:

                                                                
                                                          (6)

Applying the creeping flow approximation omits the inertial terms on the left hand side of the

momentum balance equations (5a and 5b). Thus, the resulting simplified equations, expressed in a

dimensionless form, are given as:

                                        
                                  (7a)

                                            
                                      (7b)

Similarly, equation (6) is expressed as:

                                                                                                                      (8)

Equation (4), expressed in dimensionless form, is given as:

                                                              

                                                          

                                                                                                                
(9)

The axial and radial perturbation velocities are expressed in terms of the stream-function, y, as:

                                                                
                                                        (10a)

and,

                                                                    
                                                            

(10b)
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Substituting these equations, which satisfy the continuity equations (8), and eliminating the perturbed

pressure, the stream-functions for the perturbed flows for the stream-functions of the disperse and

continuous liquids can be expressed as:

(a) Disperse liquid:

                                
                        (11)a

(b) Continuous liquid:

                                
                      (11b)

In these equations, C
1
- C

8
are arbitrary constants. The perturbed radial velocity and the gradient of

the axial perturbed velocity of the disperse liquid along the centerline of the flow domain (r* = 0), are

zero due to symmetric condition (i.e. , and ). Therefore, the modified Bessel

functions of the second kind terms, K
0

(k*r*), K
1

(k*r*), and K
3

(k*r*), in the stream-function expression

for the disperse liquid (equation (11a)) drop out. In addition, the third order, modified Bessel functions

of the first and second kind, I
3

(k*r*), and K
3

(k*r*), for both co-flowing liquids are negligible [6], thus

eliminated from equations (11a) and (l1b). Thus, the resulting stream-function equations for the

continuous and disperse liquids are expressed as:

(a) Disperse liquid:

                                                        
                                              (12a)

(b) Continuous liquid:

                                
                        (12b)

In order to determine the six coefficients in these two equations, six additional equations are needed,

which obtained from applying the following: (a) non-slip condition at the walls, (b) continuity of the

flow field at the interface, and (c) the momentum jump condition at the interface. The radial velocity of

the continuous flow at the wall of the outer microtube is zero, and with no-slip at the wall,

. Applying these boundary conditions to equation (12b) gives:

                      
              (13a)
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and,

                                          
                                  (13b)

At the interface between the two co-flowing liquids (r* = 1) the perturbed velocities of the disperse

and continuous liquids are equal (i.e., û*
r,d
= û*

r,c
and û*

z,d
= û*

z,c
). Substituting these conditions, together

with equations (12a) and (12b) into equations (10a) and (10b), gives:

                                    
                            (14a)

and,

                          
                  (14b)

The final two equations are obtained from satisfying the dynamic force balance (or momentum jump

condition) at the interface [1,8], with the introduced perturbation of the interface (equation (3)). Thus,

the shear tensor (τ′
n
) for the continuous and disperse liquids can be expressed as:

                                                                                                    

(15)

Both the axial and radial components of the interfacial shear stress generally affect the movement of

the interface and the perturbation of the interface is caused by both the axial and radial components of

the liquid motion. In the linear stability analysis, however, the perturbed interface is treated as a plane

wave whereas the perturbing motion of the interface is the results of the momentum transfer only in the

radial direction (τ’
rz,n
= 0 and τ’

zz,n
= 0). Thus, considering the radial components of the interfacial shear

forces, equation (15) becomes:

                                                        

                                                  

(16)

The force balance at the interface is expressed as:
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                              (17a)

And the axial component of the interfacial shear stress is given as:

                                                
                                        (17b)

Substituting equations (4) into (17a) and (17b) and rearranging the results, give the following equations

for the radial and axial components of the interfacial sheer stress:

(a) Radial component of the interfacial shear stress:

                                
                      (18a)

(b) Axial component of the interfacial shear stress

                                                
                                      (18b)

These equations expressed in dimensionless form are:

                            
                    (19a)

and,

                                                
                                        (19b)

The kinematic boundary condition is used to find the dimensionless amplitude of the perturbed

interface (ξ*) in equation (19a). This condition states that the radial and axial velocity components of

disperse and continuous co-flowing liquids at the interface equal those of the interface itself. Thus, at

any radial location, r
j
(z, t) , the interface moves with the same velocity as the disperse liquid. The radial

location, and hence the amplitude, ξ*, of the interface perturbation is obtained from the solution of

following equation [20,21]:

                                                                
                                                        (20a)
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This equation can also be written as:

                                                                                                          
(20b)

Substituting for the total flow velocity in this equation from equation (4), neglecting the axial

perturbed velocity, , and rearranging the result give the following equation:

                                                                                                        
(21a)

This equation expressed in a dimensionless form as:

                                                                                                              
(21b)

In this equation, the amplitude (ξ*) is eliminated by substituting equation (21b) into (19a), which

yields:

                                                    

(22)

The dimensionless pressure terms ( and ) in this equation are obtained from the

solution of equation (7b) together with equations (9a) and (9b). Equations (22) and (19b) are rewritten

by expressing the velocities of the continuous and disperse liquids in terms of the stream function

(equations (10a), (10b), (13a), and (13b)). The resulting equations are given, as:

                                        

(23a)

and,

                                
                        

(23b)

In equation (23a), Ka is the capillary number of the disperse liquid at the interface of the basic flow.

The six equations (13, 14, and 23) constitute a homogeneous linear system that involves six unknown
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constants (C
1

to C
6
). The amplitude of the perturbations at the interface equals the eigenvalues calculated

using equation (24). Note that the determinant of the square matrix on the left-hand side of equation (24)

should be zero.

      
(24)

The constants A
2
, A

5
, A

6
, B

1
, B

2
, B

3
, B

4
, D

2
, D

5
, D

6
, E

5
, and E

6
are expressed as:

                                  

(25)

The square matrix in equation (24) is a very long equation in terms of k*, w*, Ka, R
c
*, and m

r
. The

rearranged equation gives the following expression for the dimensionless wave frequency, as:

                                                                                              
(26)

In this equation, the functions NM and Dn are expressed in terms of k*, R
c
* and m

r
by equations

(A.l) and (A.2) in Appendix-A. Equation (26) determines the values for the absolute and convective

instabilities corresponding to the transition and jetting regimes, respectively. In the present linear

instability analysis, both the wave number and frequency are complex numbers, so that the growth

of the amplitude of the surface perturbations depend exponentially on (w* - k*). The values of both

IM[w*] and IM[-k*] should be positive for the interface to become unstable due to the temporal and

spatial growths of the amplitude of the interface perturbations. These perturbations travel at a velocity,

IM[w*]/IM[-k*].
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A droplet breakup from the tip of a stable disperse liquid jet is affected by the traveling perturbation

velocity of the interface. Thus, the position where a stable liquid jet breaks up can be predicted by the

value of the traveling perturbation velocity at the interface. When this velocity is positive, the growing

perturbations of the interface propagate downstream (convective instability), and when the velocity is

negative, the growing surface perturbations propagate upstream toward the exit of disperse liquid

microtube (absolute instability). Thus, the breakup of a disperse droplet in the jetting regime, the result

of convective instability occurs when the spatial growth rate of the wave, -k*i, the moving velocity,

IM[îw*/îk*] and the growth rate of the amplitude of the moving wave front, RE[îw*/îk*], are all positive.

3. SOLUTION METHODOLOGY AND RESULTS
Using the commercial algebra software, Mathematica 8.0 (www.wolfram.com), equation (26) is solved,

subject to the following conditions for marginal convective instability: IM[îw*/îk*] = 0, RE[îw*/îk*] =

0, and -k*i > 0. The values of R
c
* in the analysis varied from 1.7 to 553, the radius of the continuous

liquid microtube varied from 160 to 600 mm and the ratio of the viscosities of the disperse and continuous

liquids, m
r
, is taken equal unity (Table 2) for simplicity and comparison with the numerical results

reported in [8]. However, in the comparisons of the results of the present analysis with the reported

experimental results, the viscosity ratio is not unity and varies in values [3,6]. The analytical solution

determines the values of k*, w* , Ka and R
c
*, corresponding to the boundary between transition and jetting.

The selected values of R
c
and R

c
* in Table (2) cover a wide range of possibilities including those used in

the numerical analysis reported in reference [8]

Table 2. Properties and parameters used in the present linear instability analysis.

To express the instability analysis results in terms of the dimensionless quantities, Ca
d 
and the

injection velocities of the disperse and continuous liquid had to be calculated. The obtained value of Ka

is used to calculate the interface velocity of the basic disperse liquid flow, . This interface velocity

and the calculated value of from the solution of equation (26) are used to calculate the injection flow

rates of the co-flowing liquids , as:

                                                                                                        (27a)

and,

Parameter Value / Range Units

Inner microtube radius, R
d

50 mm

Outer microtube radius, R
c

160 - 600 mm

Disperse liquid viscosity, m
d

0.06 Pa.s

Continuous liquid viscosity, m
c

0.06 Pa.s

Disperse/ continuous liquid density, r
d
/r

c
1000/1000 kg/m3

Interfacial tension, s
d,c

0.02 N/m

Dimensionless outer microtube radius, R
c
* = R

c
r

j
0 1.75 - 553 –

Microtubes’ radii ratio, R* 3.2 - 10.2 –



64 Linear Instability Analysis of the jetting regime for Co-flowing immiscible liquids in
co-axial microtubes

International Journal of Micro-Nano Scale Transport

                                                    .
                                            (27b)

Equation (27a) expresses the injection rate of the continuous liquid, , in terms of its injection

velocity, and the radii ratio of the continuous liquid microtube and the disperse liquid jet .

Equation (27b) expresses in terms of the injecytion rates and viscosity ratio of the continous and

dispers liquids. The proceedues for deriving Equations (27a) and (27b) are detailed in Appendix-B.

This section presents the obtained results of the performed linear instability analysis to predict the

boundary between transition and jetting for co-flowing immiscible liquids in co-axial mictotube for the

parameters listed in Table 1. The analysis parametrically varies the injection rates of the liquids and the

radii of the coaxial microtubes. The results are validated by comparing them to those of the linear

instability analysis of Herrada, G.-Calvo and Guillot [6] for aqueous solutions of glycerine and silicone

oil flow in coaxial microtube with R* = 13.8.

The present results are also compared to the reported experimental data by Utada et al. [3] for ionized

water and PDMS (Polydimethylsiloxane) oil with R* = 10. In addition, the results of the present linear

instability analysis for the range of parameters in Table 2 are formulated in terms of the dimensionless

quantities: Ca
d

and . The obtained values for the boundary between transition and jetting are

compared with the results of the numerical simulations and the dimensionless correlation developed

recently by the authors [8].

Figure 4 plots the injection rate of the continuous liquid versus that of the disperse liquid. It compares

the present results of linear instability analysis of the boundary between transition and jetting with those

reported by Herrada et al. [6], using an identical approach. The results for the conditions listed in the

figure are for an aqueous solution of glycerine, as the continuous liquid, and silicon oil, as the disperse

liquid. Thus, it is not surprising that the present analysis results and those of Herrada et al. [6] are identical.

Nonetheless, such an agreement validates the absence of errors in the present linear instability analysis,

which used to perform a parametric analysis using the liquid properties and parameters in Tables 2. The

Figure 4. Comparisons of present instability analysis results with those of Herrada et al. [6].
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results of this analysis are formulated in terms of the dimensionless capillary number of disperse liquid,

Ca
d
, and the ratio of the dynamic forces of the continuous and disperse liquids, . These

dimensionless quantities have been used successfully to compose flow regimes map and accurately

characterize the conditions for the boundaries between dripping, transition and jetting [8]. The developed

dimensionless correlation for the boundary between transition and jetting was expressed, as [8]:

                                            
                                    (28)

In this correlation, the capillary number of the disperse liquid along that boundary between transition

and jetting, Ca
d,TJ

, strongly depends on the ratio of the microtubes radii, R*, and is inversely proportional

to the ratio of the dynamics forces for the co-flowing liquids, . The first term on the right hand

side of equation (28), (0.014 R*1.75), is the highest Ca
d

beyond which the boundary between the transition

and jetting regimes becomes independent of (Figs. 5 and 6).

The developed dimensionless correlation for the boundary between dripping and transition in Figure 5

was given as [8]:

                                                                                                      (29)

In this correlation, the capillary number of the disperse liquid along that boundary, Ca
d,DT

, is independent

of the ratio of the microtubes radii, R*, and solely depends on the ratio of the dynamics forces for the co-

flowing liquids, .

The dimensionless correlations given by equations (28) and (29) are in good agreement with the

numerical simulation results of Yang and El-Genk [8], covering wide ranges of parameters and liquids

Figure 5. A flow regimes map for disperse droplets (dripping, transition and jetting).
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properties. The results of the simulation were in good agreement, to within ±20%, with the reported

experimental measurements for different immiscible liquids. These include ionized water and PDMS

(Polydimethylsiloxane) oil with R* = 10, and aqueous solutions of glycerine into silicone oil flow with

and without surfactant (Sodium Dodecyl Sulfate) with R* = 13.8 [3,5,6]. The agreement validated the

numerical results and confirmed the fidelity of the developed flow regimes map (Fig. 5) and of the

developed semi-empirical dimensionless correlations (Equations (28) and (29)) for predicting the

boundaries between dripping, transition and jetting regimes [8].

Figures 6a - 6c compare the results of the present linear instability analysis with the flow regimes

map developed recently by the authors [8]. The flow regimes map in Figure 6a, for R
d
= 50 and 100 mm

and R* = 3.2, incorporates a total of 147 data points, including 51 data points in the dripping regime, 36

in the transition regime and 60 in the jetting regime. The flow regimes map in Figure 6b, for R
d
= 50 and

100 mm and R* = 6.4, includes 166 data points in the dripping regime, 242 in the transition regime and

188 in the jetting regime. Figure 6c, for R
d
= 50 and 100 mm and R* = 10.2, includes 69 data points in

the dripping regime, 140 in the transition regime and 53 in the jetting regime. Figures 6a - 6c also

compare the present results of the linear instability analysis for R* = 3.2, 6.4, 10.2 with the developed

dimensionless correlation in equation (28) for the boundary between transition and jetting [8].

Figure 6. Comparison of present linear instability analysis results with the dimensionless correlation
and numerical simulation results [8] for the boundary between transition and jetting. (a) R* = 3.2,
(b) R* = 6.4 and (c) R* = 10.
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The linear instability analysis predictions of the boundary between transition and jetting are

consistently lower than equation (28) at low and intermediate Ca
d
values, but higher at higher Ca

d 
(Figures

6a-6c). At low dynamic force ratios, < 0.85, the predictions of the linear instability analysis are

higher than both the correlation (equation (28)) of the boundary between transition and jetting and the

numerical results [8] (Fig. 6a). The difference becomes progressively smaller as  increases beyond

0.85. Increasing R* from 3.2 to 6.4 and 10.2 decreases the value of beyond which the linear

instability analysis under predicts the boundary between transition and jetting. This value is ≈

0.4 and 0.15 when R* = 6.4 and 10.4, respectively (Figs. 6b and 6c). 

Underestimating the boundary between transition and jetting by the linear instability analysis could

be attributed to neglecting higher order terms in the linearized continuity and momentum balance

equations and other assumptions indicated earlier. These assumptions simplified the governing equations

for obtaining a closed form analytical solution, requiring relatively much shorter time to perform the

calculations than the numerical simulations [8]. Note that for low , the linear instability analysis

missed the trend of the boundary between transition and jetting, indicating that the corresponding Ca
d

is

almost independent of (Figs. 6a -6b).

In short, the under prediction of the linear stability analysis at the low values of Ca
d

is mainly caused

by neglecting the effect of the secondary perturbations. However, at high value of the Ca
d
, the over

prediction of the linear stability analysis could be attributed to neglecting not only the secondary

perturbation but also the inertia of the disperse liquid.

Neglecting the secondary perturbations of the interface (Fig. 3) decreases the effective surface area

of the disperse liquid jet, overestimating the total hydrodynamic energy per unit surface area

corresponding to the boundary between transition and jetting. This causes the linear instability analysis

predictions of the boundary between transition and jetting to occur at lower dynamic force ratios,

, compared to the numerical results and equation (28) [8]. The effect of neglecting the secondary

perturbations of the interface in the linear instability analysis, decreases as the capillary number of

Figure 7. Comparison of the results of linear instability analysis with the experimental data of
Utadaetal. [3],
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disperse liquid, Ca
d
. The calculated values of the dynamic force ratios for the boundary between transition

and jetting by the linear instability analysis gradually approach the numerical results [8], with increasing

Ca
d
. The difference diminishes when Ca

d
= 0.064, 0.25, and 0.0.5 in Figures 6a, 6b, and 6c, respectively.

Figure 7 compares the present results of the linear instability analysis and the predictions of the

correlation given in Eq. (28) with the experimental results of Utada et al. [3] for co-flowing ionized

water and PDMS (Polydimethylsiloxane) oil in coaxial microtubes with R* = 10. They only identified

two regimes in the experiments, jetting and dripping, considering the transition regime a part of the

dripping regime. The correlation in equation (28) for the boundary between transition and jetting is in

good agreement with the experimental results of Utata et al. [3]. However, the linear instability analysis

under predicts that boundary at low values of Ca
d
, because of neglecting the secondary perturbations.

At low Ca
d
, the inertia of the disperse liquid is low and its effect is negligibly small. Conversely, the

linear instability analysis over predicts the boundary between jetting and transient at high Ca
d

values.

This is because of neglecting both the secondary perturbation and the inertia of the disperse liquid in the

analysis in order to simplify the governing equations for obtaining a closed form solution, as detailed in

this paper. Thus, future instability analysis needs to include both the secondary perturbations and the

inertia of the disperse liquid in order to improve the solution fidelity and accuracy.

4. SUMMARY AND CONCLUSION
Results show that the linear instability analysis is an effective approach for predicting a nearly accurate

boundary between the transition and jetting regimes for forming disperse droplets using co-flowing

immiscible liquid in coaxial microtubes. This predicative approach is much faster than performing

Computation Fluid Dynamic (CFD) simulations or conducting experiments. The analysis results,

assuming disperse liquids creep flows and neglecting secondary perturbations, are identical to those

of Herrada, G.-Calvo, and Guillot [6]. The analysis results are compared to a semi-empirical

dimensionless correlation and flow regimes map, recently developed based on numerical simulations

covering wide ranges of parameters and liquids properties [8]. They are also compared to reported

experimental data by Utadaet al. [3] for co-flowing ionized water and PDMS oil in coaxial microtubes.

Although captures the general trend, the linear instability analysis consistently under predicts and

over predict the boundary between transition and jetting regimes at low and high Ca
d
values, respectively.

The difference between the linear instability analysis predictions and both the numerical simulations

and the experimental results decrease as the capillary number of the disperse liquid, Ca
d
, increases, or

the ratio of dynamic forces for the co-flowing liquids, decreases.

At high values of Ca
d
, the boundary between transition and jetting is independent of .The linear

instability analysis does not capture that trend. This could be attributed to the simplifying assumptions

incorporated in the analysis in order to obtain a closed from analytical solution of the constituent

equations and the dispersion relation, including neglecting the higher order terms for the perturbed

interface and the inertia the disperse liquid. At low Ca
d
, the inertia of the disperse liquid is very low and

its effect is negligibly small, but neglecting the secondary perturbations causes the linear instability

analysis to under predict the experimental results for the boundary between jetting and transition.

Conversely, at high Ca
d

values, neglecting both the secondary perturbation and the inertia of disperse

liquid causes the linear instability analysis to over predict the boundary between jetting and transient.

Thus, future instability analysis needs to include both the secondary perturbation and the inertia of the

disperse liquid in order to improve the solution fidelity and accuracy.

NOMENCLATURE
Ca

d
              Capillary number of disperse liquid, 

        Capillary number for dripping-transition boundary.

        Capillary number for transition- jetting boundary.

IM                 Imaginary part of complex number

RE                Real part of complex number

µ σd d d cu ,
Cad DT,
Cad TJ,
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Ka                 Capillary number of basic disperse liquid flow, 

k                   Wave number (m-1)

k*                   Dimensionless wave number, 

p
                  

Pressure (Pa)

p′                   Perturbed pressure (Pa)

p                   Linearized perturbed pressure (Pa)

p*                   Dimensionless linearized perturbed pressure, 

Q                   Liquid flow rate (m1/s)

R                   Microtube radius (mm)

R*                 Microtubes radii ratio, 
R

c*                 Dimensionless outer microtube radius, 

Re
int

              Reynolds number of disperse liquid at interface, 

r                    Radial distance (mn)

r
j

                  Radius of disperse liquid jet (mn)

r*                   Dimensionless radial distance, 

u
                  

Flow velocity (m/s)

u*                   Dimensionless perturbed flow velocity, 

u′                   Perturbed flow velocity (m/s)

û                   Linearized perturbed flow velocity (m/s)

û*                   Dimensionless linearized perturbed flow velocity 

                Average inlet flow velocity (m/s)

                Inlet flow velocity ratio, 

t                     Time (s)

t*                   dimensionless time, 
z

                  Axial distance (mn)

z*                   Dimensionless axial distance, 

Greek
m                   Liquid viscosity (Pa.s)

m*                  Dimensionless Viscosity, 
m

r                   Viscosity ratio, 
x

                  Amplitude of interface perturbation (mn)

x *                  Dimensionless amplitude of interface initial wave, 

r                   Liquid density (kg/m3)

r*                  Density ratio, 
s

d,c                 Interfacial tension, (N/m)

t ′                 Shear tensor

y                   Perturbed stream-function

w                   Wave frequency (1/s)

w *                 Dimensionless wave frequency, .

Superscript
0                   Basic flow 

Subscript
c                   Continuous

∆ ∆,intp ud zρ 0 2( )
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d                   Disperse

int                 Disperse-continuous liquids interface

n                   Liquid Identifier, (c = continuous or d = disperse)

r                    Radial

z                   Axial
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Appendix-A
This appendix presents the functions DN and NM used in equation (26) for calculating the determinant of

the square matrix (equation (24)). These functions are fully expanded in terms of Ka, R
c
* and m

r
in equations

(A.1) and (A.2) below:
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Appendix-B
This appendix presents the derivations of Equations (27a) and (27b) in section 3 on the solution

methodology and results in the main text. For steady state and unperturbed interface, the momentum

balance equation is expressed as:

                                                                                                                        (B.1)

The velocity fields for the continuous and disperse liquids can be obtained from the solution of

Equation (B.I) based on the following conditions: (a) non-slip at the wall of the outer tube of the

continuous liquid , (b) continuity of the velocity and shear stress at the interface

, and (c) no perturbations of the interface

. The solution gives for the following velocity fields:

                                              
                                      (B.2)

                                
                        (B.3)

Equations (B.2 and B.3) are expressed in a dimensionless form by dividing by the flow velocity at

the interface , which gives:

                                                                    
                                                          (B.4a)

                                                                  
                                                      (B-4b)

The injection flow rates of the continuous and disperse liquids are determined from integrating the

fully-developed flow velocities over the cross-section flow area, as:

                                                            
                                                  

(B.5)



The result gives the following expression of the volumetric flow rate of the continuous, same as

Equation (27a) in the main text, as:

                                                                                                            
(B.6)

In addition, these dimensionless expressions are obtained:

                                                                                              
(B.7a)

                                                                                                                        
(B.7b)

Inverting Equation (B.7b) gives [6]:

                                                                                                      
(B.8)

This equation is the same as Equation (27b) in the main text.
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