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ABSTRACT
The equilibrium interaction between the processes of charge formation on the surface of
a nanochannel and ionic distribution within the confined electrolyte is studied for
situations where electric-double-layer (EDL) are of size comparable to the nanochannel
cross-dimension and the mean-field surface electrostatic potential is comparable to or
larger than the thermal energy per unit charge of an ion. The effects of channel size, pH,
ionic composition and the compact region of the electric double layer are investigated.
The results can be used for understanding electrokinetic phenomena involving current
conduction and fluid flow in nanochannels, as demonstrated through a comparison of the
theoretical results with measured electrical conductance data.

1. INTRODUCTION
When a solid surface comes in contact with water or an aqueous solution, it forms a surface charge
which in turn results in a near-surface crowding of predominantly oppositely charged ions from the
solution forming an electrical double layer (EDL) [1]. The Guoy-Chapman-Stern-Grahame
model[1]posits the EDL to be composed of a near-surface compact zone termed Stern layer followed
by a larger diffuse zone further away. The EDL can be taken advantage of to realize electrokinetic
phenomena such as electro-osmosis, streaming current and electrophoresis through the external
imposition of forces and/or motion. While studying electrokinetic phenomena, it is common to assume
in the electrostatic model that the effect of formation of charges on the electrical double layers can be
imposed through either a (i) specified surface potential, or (ii) a specified surface charge density.

A large fraction of historical studies (see e.g. [2], [3],[4]) and even recent studies (see for example,
[5]) requiring the solution of the Poisson-Boltzmann equation employ boundary condition (i). The
specified surface charge boundary condition (itemized above as (ii)) has gained more recent attention
in nanofluidics, because of its purported less sensitivity to solution ionic concentration and evidence
from studies on current conduction in nanochannels [6],[7].

It has been long realized (see e.g.[8]) that neither specifying surface charge nor specifying surface
potential on a wall is an adequate representation of reality. In fact, both these boundary condition ignore
the charge formation process on the wall. However, a majority of such studies appreciating this fact [9],
[10], [11], [12]and the references therein) are theoretically formulated to study a single ionizing surface
in contact with an electrolyte. In the context of microfluidic applications, taking into account the
electrostatic screening effect at typical ionic strengths (of the order of 0.01–100 mM), it can be inferred
that these models will be limited to systems employing microchannels rather than nanochannels. With
the progressive reduction of experimentally achievable scales to the nanometer level[13], it is essential
to further generalize the charge formation and electrical double layer (EDL) models in these works.

Developing a “surface ionization model” and understanding the effect of model input parameters
arising from nanochannel geometry and electrolyte composition as well as the assumed compact-
diffuse structure of the EDL will be a principal thrust of this study. Further, the electrostatic model
developed will be employed to understand experimental data from[7] on external electric field driven
charge transport in through nanochannels. For the sake of generality, the Debye-Huckel linearization of
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the electrostatic model which is strictly applicable only to weakly charged surfaces [14] and the isolated
surface approximation[15] via the Grahame equation[1] which can be too restrictive for nanofluidic
situations are both avoided in this study. Two other studies, in with the charge formation and EDL
models are formulated in a form applicable to nanochannels are [6] and [16].

The development of the surface ionization model and a semi-analytical efficient grid-free procedure
to solve the same is discussed in detail. At no stage of the electrostatic and the electrokinetic model,
numerical discretization (as in[17],[18], [19] ) and/or numerical differentiation (as in[6]) is resorted to;
this feature of the model leads to quick and accurate predictions. Although, the authors of [16] model
the same physical processes at equilibrium as in the current work, the electrostatic model is not applied
to study any non-equilibrium phenomenon, as done in the current work through comparison with
experimental data on current conduction in nanochannels.

The following two sections of this article discuss the theoretical model and its semi-analytical
solution procedure. The effects of various input parameters are studied and comparison with an
electrokinetic experiment in nanochannel is presented in the section titled “Results and Discussion”.
Important conclusions and the scope for future work are identified in the final section of this article.

2. THEORETICAL FORMULATION
Consider two infinitely long and wide solid surfaces separated by a distance 2h in a solution containing
a completely dissociating binary electrolyte of concentration n∞. A model to predict the surface charge
acquired by the walls of this nanochannel will be coupled in this section to the model for predicting
ionic charge distribution in the confined solution. This approach will obviate the necessity to provide
surface charge density [6-7] and/or zeta potential [2-5] as inputs to models to study electrokinetic
phenomena and/or electrostatic interactions. The physical process and the corresponding mathematical
representations are discussed in detail below.

When the surface of a siliceous materials such as glass, quartz, fused silica (typical forms used in
microfluidics) comes in contact with water or an aqueous solution, it is known to acquire a negative
surface charge density, primarily through the dissociation of the terminal silanol (SiOH) groups, a
process which releases a proton from the surface to the solution and forms a negatively charged group
on the surface. The degree of dissociation and thus the surface charge density is determined from the
equilibrium in the presence of the electrical double layer between the ions formed at the glass surface
and the free ions in the bulk electrolyte.

In the following discussion, it has been assumed that surface acquire positive for the sake of
simplicity. The hypothetical groups B- and A+ discussed below can, therefore, be considered oppositely
charged analogues of the dissociated hydrogen ion and the ionized silanol group, respectively.
Extension of the results obtained to a negatively charged surface is trivial. The mechanism by which
glass and silica surface acquire a charge in contact with water is the dissociation of silanol groups and
can be represented by

(1)

Within this model the charge on the solid is regarded as localized entirely on the surface and arising
from a concentration of dissociated head groups (e.g. silanol in case of silica), giving rise to the surface
charge density

(2)

However, only a fraction of the total concentration of chargeable sites dissociate. Therefore,

⎯ →⎯⎯⎯
← ⎯⎯⎯⎯ ++ −AB A B

σ = + Γ +e A
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(3)

Here, G is total site density and it is assumed to be constant (G = 8 nm-2) in this model. In dilute
solutions, the dissociation process in eqn. (1) is characterized by an equilibrium constant K defined by

(4)

The dissociation constant is estimated to be in the range [9], [11], [12], [16], [20] pK = -log10
K = 5.8-7.5. Henceforth, the straight bracket indicates volumetric concentration expressed in moles per
liter and the subscript “0” indicates “as evaluated on the ionizing surface”. Due to Boltzmann
equilibrium

(5)

Here, [B-]b = 10-pH mole/liter is the bulk concentration of the species B- and kBT denotes the thermal
energy. Here, the bulk concentration should be interpreted to be the concentration of the salt that
prevails in reservoirs of dimensions much larger than the nanochannel that are connected to the ends of
the nanochannel. In this situation, eqn. (5) is an expression of electrochemical equilibrium[21], [22],
[23] between the reservoir and the channel interior. A different model for overlapped EDLs in an
infinitely long thin channel which rather than using the equilibrium criteria given by eqn. (5) involves
conserving the mass of each EDL ionic species assuming one-dimensional diffusion and migration
perpendicular to the walls after the formation of surface charge, also appears in the literature [24], [25].
It has been suggested [26] on the basis of simulation of a perturbed electrical double layer in a
reservoir-connected closed system using the transient Nernst-Planck equations with convection that
that models discussed in [24], [25] is representative of intermediate quasi-equilibrium state reached
after the typical cross-diffusion time, whereas eqn. (5) represents the long-time equilibrium reached
after the typical axial diffusion/convection times. For studying certain kinds of electrokinetic
phenomena which involve applied forces such as electric field and pressure-gradients, Eqn. (5) has
been classically used in the literature[27]; this usage (also adopted in the current work) can be
interpreted in the sense of small/no departure from the layering of ions perpendicular to the walls of a
long channel which is reached after the long-time-equilibrium discussed above.

Eqns. (1)-(5) may be combined to read

(6)

where pH = -log10[B
-]b. The diffuse layer of counterions is assumed to be separated from the ionizing

surface by a thin Stern layer across which the electrostatic potential drops linearly from the value j0 to
a value jd called the diffuse layer potential[9]. This potential drop is characterized by the Stern layer

capacitance(C) defined by . Using this definition and introducing dimensionless variables

of the form j* = ej/(kBT) , eqns. (6) and (7) can be combined to

ϕ
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(7)

Under consideration is the region away from the reservoir channel interface, where the layering
of ions occurs perpendicular to the straight walls. Integration of the Poisson-Boltzmann equation in
the gap 2h between two parallel plates for a symmetric binary 1:1 electrolyte leads to the forms (as
derived in [28]) leads to

(8)

(9)

where jc is the electric potential at the centerline of the channel, k = exp(-fc
*) and the dimensionless

variable y* = y/l is the ratio of the distance from channel symmetry axis to the Debye length l in the
electrolyte.

Here, sn(p, q), cn(p, q), dn(p, q) and cd(p, q) are Jacobi elliptic functions with argument p and
modulus q[29]. Eqn. (8) can be rearranged into

(9)

Using exp (j d
*) from eqn. (7)

(10)

where cd is an abbreviation for the term within straight brackets in eqn. (9). In terms of the 

dimensionless surface charge density, and , eqn. (10) can be written as

(11)

The surface charge density also satisfies the boundary condition s* = dj*/dy*˙y = h/l which can be
used in eqn. (9) leading to

(12)

Solution of eqns. (11) and (12) completely specifies the electric potential distribution although not
tractable analytically. It can be noted here that the Stern plane will be assumed to be coincident with
the shear plane in this work and therefore, the zeta potential z = jd.
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3. SOLUTION PROCEDURE
A fixed point iteration technique with current iteration number denoted by N was based on eqns. (11)
and (12) via the following successive evaluations:

A relaxation factor (0 < r < 1) was used to under-relax the above iteration scheme. The convergence

criteria used was .

4. RESULTS AND DISCUSSION
The discussion of results in this section will be mainly in reference to the silica surface, although the
mathematical model has been developed for its oppositely charged analogue. The variables in displayed
figures will also adhere to the sign of charges adopted in the mathematical model. To relate the
equations discussed beforehand and the figures to be presented below to the silica surface, the
transformation mathematically required is simply inserting a negative sign before all calculated
potentials and charges. However, for brevity, this will not be resorted to explicitly; instead reference
will be made to magnitudes of quantities such as zeta potential and surface charge density.

At the onset of this section, a convenient interpretation of the theoretical model developed in the
previous section can be noted. Rearranging eqn. (10)

(15)

The expression in curly brackets can be interpreted in the context of silica (with the transformation
discussed above) to be the fraction of the total number of silanol sites on the surface that dissociates to
form the surface charge. The first term in the denominator of this expression can be considered to be
the (volumetric) concentration of H+ions on the surface where the silanol groups reside. This term is a
product of two factors, the factor 10-pH is the bulk (reservoir) concentration of H+ ions and the
exponential quantity multiplying this factor is an enhancement/depletion originating from the
Boltzmann equilibrium of H+ ions. The latter factor is dependent on the electric potential (the term
within brackets inside the exponential) on the surface of adsorption.

Following inference of the effect of certain input parameters can be drawn based on eqn. (15) and
will not be investigated further. A large site density will give rise to a large surface charge density and
a large pK (weakly dissociating surface) will lead to a small surface charge, as expected on physical
grounds.

However, it can be noted that eqn. (15) is not an explicit expression for the surface charge density,
since the zeta potential depends on surface charge as indicated by the function notation used and that
the second term inside the bracket within the exponential signifies a change in potential in the Stern
layer which is proportional to the surface charge.
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Certain conclusions made in the study of the effect of different parameters like pH, Stern layer
capacitance can be qualitatively rationalized in terms of eqn. (15), while temporarily ignoring the
implicitness discussed above, although in the remainder of this study, this equation will not be
explicitly referenced for explanations. In the following discussion, the effects of various input
parameters of the model on the surface charge density and zeta potential, no qualitative deviations were
noticed between the “true picture” obtained by solving the full model with the picture inferred from
eqn. (15) with the above assumption, though such a possibility exists mathematically (e.g. for the effect
of Stern layer capacitance) if the implicit dependences are strong.

Figure 1 shows the variation of dimensionless surface zeta potential (z *) as a function of height of
channel (h). It can be observed from Figure 1 that the dimensionless surface zeta potential z * is higher
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for a narrow channel. This can be explained as for a constant surface charge density condition the
number density of counter ions increases as the channel thickness is decreased and a higher surface
potential will be required to populate the channel with a larger density of counter-ions.

Figure 2 shows the variation of dimensionless surface charge density s* as a function of height of
channel (h). It can be observed from Figure 2 that s* is lower for a narrow channel. This fact can be
understood since the narrowness of channel yields high values of electric potential within the channel.
The higher potential leads to a higher availability of H+ ions (according to Boltzmann equilibrium) on
the surface which lowers the degree of dissociation of silica surface (to preserve chemical equilibrium).
The reduced dissociation at the silica surface leads to decrease in surface charge. From Figures (1) and
2, it can be concluded that, unlike in microchannels, the degree of completion of the charge forming
chemical process on the walls of a nanochannel is dependent on the channel size.

Figure 3 shows the variation of dimensionless surface zeta potential (z *) as a function of
concentration of solution. It can be observed from the Figure 3 that the dimensionless surface zeta
potential (z *) is higher for a lower concentration. This can be explained as for a higher concentration
reservior condition a larger number of counter ions is present in the EDL. Hence, with this larger
number of counter-ions per unit volume, lower electrical potential energy levels within the nanochannel
are sufficient to balance the surface charge. This leads to a lower surface potential.

Figure 4 shows the variation of dimensionless surface charge density s*h/l as a function of
concentration of solution. It can be observed from the Figure 4 that the dimensionless surface charge
density is higher for a higher concentration. This can be explained based on the conclusion from the
previous figure that the zeta potential decreases with increasing concentration. This means that less H+

ions are available on the ionizing surface, which promotes increased dissociation (to preserve chemical
equilibrium) , which in turn leads to a higher surface charge densities.

Figure (5) shows the variation of dimensionless surface charge density (s*) as a function of pH of
the solution. It can be observed from the Figure (5) that s* increases as the pH of the solution increases.
This can be explained as for a higher pH value, the availability of the H+ ion in the solution is less
which leads to more dissociation of the silica surface, to preserve chemical equilibrium. Hence, more
dissociation of the silica surface causes the higher surface charge.

Figure 6 shows the variation of dimensionless surface zeta potential (z *) as a function of pH of the
solution. It can be observed from figure that z * increases as the pH of the solution increases. This can

Pankaj Asija and Subhra Datta 139

Volume 4 · Number 3&4 · 2013

Figure 3. The dependence of surface potential on concentration of solution for the following
input parameters: pK=7.5, C=2.9 F/m2, h = 20 nm, G = 8/nm2, pH = 7
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be explained as for a higher pH value the availability of the H+ ion in the solution is less which leads
to more dissociation of the silica surface (according to the law of mass action). Thus more ions (for the
same bulk ionic concentration) are required to counterbalance this charge, which is achieved with a
higher electric potential energy level for each ion; therefore, a larger zeta potential results.

In the Stern layer model, the compact layer takes the form of a parallel plate capacitor with opposite
charges lining up on the surface and on the Stern plane. The capacitance (per unit area) of such a system
is known as “Stern Layer Capacitance”.
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Figure 7 shows the variation of dimensionless surface charge density (s*) as a function of
capacitance of the Stern layer. The range of capacitance values has been chosen to be within the order
of magnitudes reported in the literature [9], [16]. It can be observed from the Figure 7 that s* increases
as the capacitance of Stern layer increases. This behaviour can be understood as follows. If the
capacitance of Stern layer is higher, the Stern layer will contribute (by the definition of capacitance) to
a lower potential rise from that prevailing at the edge of the diffuse layer (assuming the same charge
density); correspondingly, the availability of the H+ ions on the surface will become lower, which will
lead to a larger degree of dissociation of the silica surface leading to a larger surface charge density.
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Dimension-less surface potential vs pH of the solution
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However, it could be argued that the resultant higher surface charge density could, in turn, mitigate
the effect of the increase in Stern layer capacitance by contributing two counteracting tendencies that
can by themselves increase the H+concentration on the charged surface, namely one which increases the
potential rise that occurs in Stern layer and the second, which increases the potential at the edge of the
diffuse layer (zeta potential). These effects were found not to change the qualitative behaviour of the
numerical results indicating that the counteracting effects are less significant than the primary
mechanism discussed above.

It can be noted that a saturation in the effect of increasing capacitance is observed in the surface
charge density. This is expected because, the limiting case of a Stern layer of infinite capacitance should
not cause any change in potential across the Stern layer; this corresponds to a diffuse model which
neglects the Stern layer altogether. So, the saturation is expected from the fact that larger the
capacitance, less significant is the role of Stern layer.

Figure 8 shows the effect of Stern layer capacitance on the zeta potential. The Stern-layer-
capacitance dependence of the zeta potential follows a qualitative behaviour similar to the surface
charge; i.e. the zeta potential increases as the capacitance increases. This is expected, since more net
charge in the solution are required to counterbalance an increased surface charge, which can be
achieved by attracting more counterions (and repelling co-ions) through a larger surface potential.

The models of EDL developed in this study can also be applied to dynamic situations i.e. the study
of electrokinetic phenomena provided that such phenomena do not rearrange the layering of ions
normal to the nanochannel to a significant degree[30] . For example, in terms of quantities developed
in this study the electrical conductance (G) [31],[6] of a nanochannel array of N̂ parallel channels each
of width w, length L and height h with w, L ≫ h using a symmetric binary 1:1 electrolyte salt with bulk
(reservoir) concentration n∞ as the conductive fluid can be expressed in the form

(16)

Here, Œ, m are the permittivity and viscosity of the electrolyte solution, b+/b- are the mobilities of
the co-ion and counter-ion, respectively. In eqn. (16), the first term inside the straight brackets
signifies the contribution to conductivity from electromigration of ions and the second term signifies
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the contribution from transport of net charges by electro-osmotic flow. The angular brackets in eqn.
(16) indicate averaging across the channel; the integrand of the second term is evaluated using eqn.
(9) and the required integrations are performed using Simpson’s rule on a dimensionless grid of
spacing 2.5 ¥ 10-3. The conductance as a function of bulk concentration under an experimental
condition (h = 15 nm, w = 1 mm, L = 120 mm, N̂ = 30, b+ = 7.91 ¥ 10-8 m2/s-V, b- = 7.62 ¥ 10-8 m2/s-V
and properties of water at 25°C) observed in [7] (cf. electronic supplementary information for this
article) has been calculated with the expression in eqn. (16) and compared with the experimental
results from the study in Figure 9. The input parameters to the model in this work are pK = 5.8[9], pH
= 7, C = 2.9F/m2[16]. The resultant surface charge density varies over more than an order of
magnitude as shown on the inset to this figure. Karnik et al. [7] has used a model with constant surface
charge density instead, which could not represent the measurements in moderately dilute solutions
shown in the figure as accurately as in Figure 9; conversely, in very dilute solution the constant surface
charge density model is a more accurate representation of experimental observations, as was evident from
the aforesaid study as well as another literature study on the fluidic conductance of nanochannels [6].

5. CONCLUSIONS
The electric potential distributions studied in this work characterize the ionic distributions in
nanochannels, where the characteristic thickness of the EDL is comparable to the cross-channel
dimension. The Poisson-Boltzmann equation has been solved in un-linearized form, so that the results are
applicable to situation where the electrostatic potential energy of an ion is comparable to or larger than its
thermal energy. Both the formation of surface charge and ionic redistribution in the EDL have been
considered. Further, both the compact and diffuse parts of the EDL are considered in this work; however,
the former is considered only in association with a model of charge accumulation on the surface. 

The effects of solution pH, composition, channel geometry and Stern layer as observed in this study
can be summarised as follows:
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Figure 9. Electrical conductance of nanochannel as a function of the reservoir solution molarity.
The input parameters to the model are pK = 7.5, h = 15 nm, pH = 7 and C = 2.9F/m2. The
symbols denote experimental data from [7] and the solid lines are theoretical results. The inset
shows the theoretically calculated variation of surface charge density with the morality of the
reservoir solution.



1. The surface charge density decreases and zeta potential increases with increasing pH 
of the solution.

2. The surface charge density decreases on reducing the channel size, while the zeta potential
increases.

3. Both the zeta potential and the surface charge density decreases on reducing the Stern layer
capacitance.

While the electrostatic model developed in the current work can be directly utilized to study the
interaction forces between surfaces ([32],[33]) the results presented here are also useful for
understanding of certain dynamical problems, such as the effect of applied pressure and voltage
differentials on fluid flow and current conduction in nanochannels, as relevant to surface
characterization [34], bio-separations [35] employing fluid flow through nanochannels (either electro-
osmotic or pressure-driven) emerging nanofluidic technologies based on current -voltage and current-
pressure characteristics of nanochannels such as fluidic diodes [7] and electrokinetic generators [36].
This is illustrated by the reasonably accurate representation (Figure 9) of the conductance data in [7]
by the surface ionization model developed in this study.

Future studies based on the current work can investigate the following aspects:
1. Generalization of the surface ionization model to take into account the adsorption 

of metal cations
2. Generalization of all the electrostatic models to arbitrary ionic composition 

of the electrolytes
3. Generalization of the electrostatic models to more complicated geometries
4. Study of electrokinetic phenomena in nanochannels.

For more realistic representation of nano-confinement, it will also be useful to take into account
finite-ion-size effects and field-dependent permittivity of water molecules near the silica surface, a
simple way to model these effects are through a modified Poisson-Boltzmann equation approach, as
discussed in[37], [38] and [39].

As mentioned in point (1) on the list above, a more accurate representation of the pH and salt
concentration dependence of zeta potential (whether in microchannels or nanochannels) can be achieved
by considering salt cation adsorption on the silica surface. However, this also necessitates a three-layer
formalism for the EDL and addition of several parameters to the model that are difficult to measure [11],
[9]. After these adjustments, the comparison with microchannel experimental data [9], [12] on zeta
potential would be meaningful. It can be noted however, that unlike in microchannels, in nanochannels
the zeta potential, itself, have to be ascribed inferred values assuming a certain model for the EDL such
as in the current work [21], [34]; future studies can also to be undertaken on the aforementioned problem.
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