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Due to the limited cell resolution in the representation of flow variables, a piecewise continuous initial
reconstruction with discontinuous jump at a cell interface is usually used in modern computational fluid
dynamics methods. Starting from the discontinuity, a flux function in a numerical scheme should be
based on the real flow physics, or at least mimic what happens from an initial discontinuity, i.e., the
non-equilibrium flow behavior. The adaptation of the exact Riemann solver of the Euler equations
assumes the underlying equilibrium flow, and this assumption may introduce intrinsically a mechanism
to develop instabilities in strong shock simulations. In order to clarify the flow physics from a
discontinuity, the unsteady behavior of one-dimensional contact discontinuity and shock wave is
studied on a time scale of (0∼10000) times of the particle collision time. For high Mach number flow
simulation, inside a numerical shock layer this time scale and the corresponding length scale may have
the same order as the time step and cell size used in a numerical scheme. Therefore, the use of
equilibrium solution of the Euler equations in these cases may be invalid physically. In the study of the
non-equilibrium flow behavior from a discontinuity, the collision-less Boltzmann equation is first used
for the time scale within one particle collision time, then the direct simulation Monte Carlo (DSMC)
method will be adapted to get the further evolution solution. The transition from the free particle
transport to the dissipative Navier-Stokes solutions are obtained as an increasing of time. The exact
Riemann solution becomes a limiting solution with infinite number of particle collisions.
Unfortunately, the infinite number of particle collisions never achieves for the gas molecules across the
whole shock layer. Therefore, the use of the Riemann solution inside the numerical shock layer is
fundamentally flawed. For the continuum flow at high Reynolds number, the non-equilibrium scale
should be very small in comparison with cell size and time step, and the Riemann solution can be used
here to capture the flow evolution from the discontinuity. In order to develop a robust and accurate
numerical scheme for all speed flows, the numerical scheme should be able to describe both
equilibrium and non-equilibrium flow behavior. Even for the continuum flow computation, the
numerical shock must be considered as an enlarged non-equilibrium region, especially in the strong
shock case. The non-equilibrium flow physics, which approaches to the equilibrium one with the
increasing of particle collisions, is a valid physical process to develop such a numerical flux function.
The use of exact Riemann solution, such as the Godunov method, lacks this kind of mechanism. On the
other hand, the gas-kinetic scheme (GKS) follows the non-equilibrium flow physics and its evolution
to an equilibrium state, which may be the reason for its absence from shock instabilities in high Mach
number flow computations.

I. INTRODUCTION
The Boltzmann equation is generally regarded as the governing equation for the motion of fluid. It
describes the time evolution of a large number of particles through binary collisions in statistical
physics. This is a seven-dimensional integral-differential equation, which is more fundamental than the
Euler and Navier-Stokes equations. This equation, however, can be simplified under some conditions.
For the equilibrium flow, the Boltzmann equation leads to the compressible Euler system which is a
nonlinear hyperbolic system of conservation laws. The basic wave structure of the hyperbolic system,
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such as shock wave, contact discontinuity, and rarefaction wave, has been well studied in the past
decades. Among these waves, shock wave and contact discontinuity are considered to be simple jump
discontinuities, and how to capture them numerically motivated the development of modern CFD
methods [1,2]. Even though great success has been achieved in CFD for the compressible flow
computations in the past decades, for high Mach number flow computation most numerical schemes
based on the Euler solution, i.e., the Riemann problem, have encountered great numerical difficulties,
such as the emerging of shock instabilities or the carbuncle phenomena [3,4]. The exact Riemann
solution is based on the equilibrium flow solutions everywhere connected through discontinuities. In
order to mimic the real physics, inside a numerical shock layer, the cell size must be on the same order
of as the numerical particle mean free path l, i.e., ∆x � (1.0,100) × l. Since the particle transport from
upstream to downstream may only suffer from tens or hundreds collisions, there is no enough particle
collisions to form distinct waves among the states inside the shock layer. Therefore, the development
of a valid CFD algorithm under this situation has to take into account the non-equilibrium flow
behavior associated with particle transport and collisions. The non-equilibrium flow behavior
converges to the equilibrium one only in the case with massive particle collisions. In the numerical
shock region with finite thickness, such that the shock front is not fitted, it is necessary to use the non-
equilibrium flow physics to follow up the time evolution of initial discontinuities in the design of
reliable numerical schemes.

When the flow deviates slightly from local equilibrium in the continuum flow regime, the
approximate solution derived from the Boltzmann equation leads to the Navier-Stokes equations [5],
where the dissipative terms being proportional to the gradients of velocity and temperature. In terms of
NS solution, the shock wave and contact discontinuity are not mathematically discontinuities anymore
due to viscous diffusion and heat conductivity. However, in most times the physical thickness of shock
wave and contact discontinuity can be much thinner than the mesh size. Therefore, still these waves
have to be treated theoretically as discontinuities when solving the Navier-Stokes equations. Once there
is discontinuity, the non-equilibrium physics needs to be considered. 

In this paper, we will first present the numerical difficulties in modern CFD methods which are
based on the Riemann solution. In section 3, we are going to present the real flow physics from a
discontinuity. More specifically, we will study the unsteady flow behavior of both shock wave and
contact discontinuity from a simple mathematical jump to the development of a well-defined
dissipative structure. Then, in section 4, following the non-equilibrium flow evolution process, we will
present the methodology of the gas-kinetic scheme (GKS). A few numerical examples from the GKS
will be presented to illustrate its robustness and accuracy in the high speed Mach number flow
computations. The last section is the conclusion about the valid physical process which needs to be used
in the development of modern CFD methods. 

II. NUMERICAL DIFFICULTIES FOR GODUNOV-TYPE SCHEMES
The modern CFD method for compressible flow is based on the Riemann problem from piecewise
constant states [6,7]. The necessity to use discontinuous initial condition is due to the limited cell
resolution to represent physical flow structure. Due to the preparation of discontinuous initial data
through the so-called nonlinear limiter, the numerical dissipation is implicitly added in the shock
capturing schemes [8]. In the past decades, the shock capturing CFD methods based on the exact or
approximate Riemann problems are extremely successful in the aerospace engineering applications and
the scientific study of compressible flows. However, when going to hypersonic flow computation, i.e.,
M>10, the controversy between accuracy and robustness of a numerical scheme appears. A outstanding
challenge is the shock instability or carbuncle phenomenon in the blunt body simulations [3,9], see Fig.
1. It seems that for high Mach number flow most Riemann solvers are intrinsically rooted with the
shock instability, except for a few very dissipative schemes. Theoretically, these dissipative schemes
are not solving the Euler equations at all. Many have proposed cures to the shock instability, but none
are universally accepted at the current stage. It is well-known that adding numerical viscosity in the
fluxes could prevent these problems but with an unavoidable lose of accuracy. The weakness for this
kind of approach is that we cannot be sure how and in which amount the additional dissipation is

158 Valid Physical Processes from Numerical Discontinuities 
in Computational Fluid Dynamics 

International Journal of Hypersonics



appropriate. There are proposals to adopt a hybrid of very dissipative and less dissipative fluxes,
deploying the former near the shock and the latter away from shock, but the basis of the switch is
somewhat ad hoc. Furthermore, it is not clear how any switch would work for complex problems like
shock-boundary layer interactions or shock-contact interactions. If the physical viscosity is included as
in the Navier-Stokes equations, the tendency to form a carbuncle is reduced, but it disappears only at
very low Reynolds number, where the physical dissipation suppresses the numerical instability. 

The failure of the shock capturing scheme may be due to the inconsistent treatment of flow physics
from a discontinuity, the so-called Riemann solution. The necessity of discontinuity is due to the limited
cell resolution. However, for the high speed flow, on a time scale of particle collision times, the distance
travelled by the fluid particles may be compatible with the numerical cell size. Therefore, on the scale
of a numerical cell size, there may have no enough particle collisions, and the non-equilibrium flow
physics must be taken into account in the gas evolution from a discontinuity. Any point between the
upstream and downstream of a shock wave needs to be considered as a point inside a non-equilibrium
shock structure. A valid physical process here from an initial discontinuity, at least for the gases, should
be the one from collision-less transport to the formation of dissipative NS solution through particle
collisions. The Euler solution in the Riemann problem replaces the above non-equilibrium evolution
process by an equilibrium solution which assumes infinite number of particle collisions anywhere. It
may be true in smooth flow region. In the shock region, the particle transport from one state to another
state may not take infinite number of collisions at all. For example, there may only have tens of particle
collisions for a molecule moving from upstream to downstream of a shock wave.

The flow evolution inside the non-equilibrium shock structure cannot be represented by the Euler
Riemann solution. This can be understood in the following example as well. Suppose that there is a very
strong shock wave with upstream and down stream shock condition (Wu, Wd), and these two states can
be connected through a Rankine-Hugoniot condition. For a numerical scheme, due to the conservation
and averaging it is most likely that there is a point between the above two states, i.e., the middle state
Wm. In order to get time evolution for the above shock solution, the Godunov method needs to solve
two Riemann problems for the states (Wu, Wm) and (Wm, Wd). Since there are only three waves for the
Euler solution, i.e., shock, contact discontinuity, and rarefaction waves. For a stationary strong shock,
the only possible solution between states Wu and Wm, also between Wm and Wd, are shocks. Therefore,
based on the Euler equations, the Godunov method represents a strong shock numerically by two
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FIG. 1. Shock instability. Density contours around blunt body at M=10 (James Quirk, Int. Journal
for Numerical Methods in Fluids, Vol. 18, pp. 555-574 (1994)).



subsequent strong shocks. However, this picture is problematic. For a single strong shock, the largest
density jump is 6 for a diatomic gas. If it is composed of two strong shocks as assumed by the Riemann
solution, the density jump can go to 36, which is an invalid description. In this case, the real mechanism
which saves the Godunov method is the conservative property of the scheme and the cell averaging
which translates kinetic energy into thermal one [8]. The use of conservation and averaging works in
1-D case, certainly with definite post-shock oscillation, but it is not enough in multidimensional cases.
The point inside shock layer needs to be considered as a point inside a non-equilibrium shock layer,
which is dynamically constructed through particle transport and collisions. But, there is no infinite
number of particle collision here to validate the Godunov assumption. Therefore, in the strong shock
case, the use of the Euler solution inside a numerical shock layer is inappropriate. The numerical shock
structure requires the numerical cell size being on the same scale of particle mean free path. Even with
the 1st-order Godunov method, where the dissipation is purely due to the kinematic averaging [8], the
kinematical dissipation alone is not enough to get a stable shock structure. It needs dynamical
dissipation as well through the reality of limited pseudo-particle mean free path in the shock layer,
which is proportional to cell size. 

Both gas evolution models of collision-less particle transport and equilibrium Euler solutions from
a discontinuous initial data have been described by two kinds of numerical schemes which have been
widely used in CFD community. The collision-less limit solution corresponds to the Flux Vector
Splitting (FVS) scheme, such as Steger-Warming [10], van Leer [11], Sanders-Prendergast [12], Pullin
[13], Desphande [14], and many others, while the Euler solution with “intensive” particle collision goes
to the Flux Difference Splitting (FDS) methods, such as Godunov [6], Roe [15], and Osher [16]. Many
other schemes, such as HLL [17], AUSM [18], can be considered somehow as a hybrid method between
FVS and FDS methods, but without solid physical foundation in their construction. So, for the strong
shock waves, the FDS methods generate numerical instability, but these schemes are accurate for the
viscous boundary layer calculation due to less dynamical dissipation in their inviscid flux function. On
the other hand, the FVS schemes are very robust, but inaccurate for the NS solutions. In order to
combine the advantages of both FVS and FDS scheme, many hybrids methods have been developed.
But, the hybridization is through some kinds of averaging, where a detailed governing equation which
controls the “averaging” is absent. An example is Moschetta’s EFMO [19] scheme, which shares the
robustness of Pullin’s EFM or KFVS method and the accuracy provided by Osher’s FDS method.
Unfortunately, in the above hybrid methods, how to control the percentage of FVS to FDS is unknown.
In order to increase the robustness of the Godunov method, the traditional treatment is to modify the
eigenvalues of the hyperbolic system, where the drawback associated with this correction is that the NS
solution cannot be accurately captured. For example, the boundary layers are significantly broadened
when using a typical value of Harten’s entropy fix function, and the exact resolution of contact wave is
also lost. Someone may think to use NS equations directly to cure the shock instability. But, this is not
realistic, since physical viscosity is not enough to cure this flaw by itself. Once there is a discontinuity
at the cell interface, the associated particle evolution physics should be compatible with the
discontinuity, such as the strength of free transport depends on the magnitude of flow jumps. However,
the dissipation introduced through the physical viscosity term in the NS equations takes no any account
on the strength of the initial discontinuous jump. Therefore, the NS viscosity may not be enough to
damp the numerical instability, especially in the high Reynolds number case. 

In order to fully solve this problem, we need to follow the flow physics closely from a discontinuity.
In the next section, the gas evolution from two discontinuities will be fully studied. One is the contact
discontinuity and the other is the shock wave. For example, the physical shock structure is obtained
through the balancing of particle transport and collisions. A highly non-equilibrium wave structure is
needed in the construction of such a structure. Even though for a numerical scheme, we don’t need to
get a precise physical shock structure, the numerical evolution process in the construction of fluxes
must be consistent with the physical one. The numerical shock structure in the shock capturing scheme
needs to be considered as an enlarged “physical” one. In other words, for the shock capturing schemes,
even with only two or three transition points in the shock layer, the “numerical” shock should have a
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structure which has the non-equilibrium physical properties described in the next section. The trigger
of carbuncle phenomena in high Mach number case is mainly due to the absence of non-equilibrium
physical process in the FDS-type Riemann solution. The dissipation in the 1st-order Godunov method
is not enough for the construction of a stable numerical shock structure. The FVS methods have the
mechanism associated with the free transport, the so-called introduction of dynamical dissipation, and
the particle collision process is implicitly included in the preparation of the initial data [8], therefore
the FVS schemes have a consistent physical process to construct a stable numerical shock structure and
avoid carbuncle phenomena. However, this reliable shock structure from FVS is obtained through the
sacrifice of accuracy, because the free transport and collision in FVS schemes use the cell size and time
step as the physical mean free path and particle collision time, which could easily poison the NS
solutions in the smooth flow regime. For the FDS schemes, there is no a corresponding valid physical
process because it models a limiting case with infinite number of particle collisions. The above analysis
is consistent with the fact that the strict stability and exact resolution of contact discontinuities in a
numerical scheme are not compatible. The incompatibility is due to the reason that the stability requires
the free transport mechanism and the contact preservation requires the full equilibriums state. They are
two limiting solutions with no particle collision and infinite number of particle collisions. In order to
develop a valid scheme with both robustness and accuracy, it requires a governing equation which
controls the transition from FVS to FDS. 

As presented in section IV, the gas-kinetic scheme (GKS) can be considered as a combination of
FVS and FDS schemes. However, the GKS has a continuous transition from FVS to FDS, and the
weighting function depends on the ratio between the time step and the particle collision time. In the
GKS, the limits taken depend on the flow situation. In the dissipative shock layer, the collision-less
limit plays a dominant role in the construction of non-equilibrium shock structure, and in the smooth
boundary layer the NS solution limit will be achieved. Therefore, both accuracy and robustness can be
kept in the GKS. 

III. VALID PHYSICAL PROCESS FROM AN INITIAL DISCONTINUITY
Mathematical discontinuities exist only in hyperbolic equations, where there are no spatial and time
scales which are related to the physical property of the gas. When the particle collision time appears in
the mathematical modeling, the dissipative terms appear and the strong gradients of flow properties
around the discontinuities will smear the discontinuities. At a time scale less than one mean collision
time of the gas molecules, the flow can be predicted using the free molecular theory.

For simplicity, we assume that the original discontinuity is located at x � 0. Then the initial velocity
distribution function f (c, x, t) of the flow molecules can be expressed in one dimension as:

(1)

where c is the x-component velocity of molecules, u is the x-component mean flow velocity, n is the
number density, β is the inverse of most probable velocity of molecules , T is the gas
temperature, R is the gas constant, H is the Heaviside function, and subscripts 1 and 2 refer to the left
and right sides of the discontinuity, respectively. Following the free molecular theory, the velocity
distribution function at time t is obtained as:

(2)

For contact discontinuities, we assume that the initial velocity of the discontinuities is zero. Then the
distribution function can be simplified as:
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The macroscopic flow quantities can be obtained by integrating the velocity distribution function
with proper quantities. They are:

(4)

(5)

(6)

(7)

where ρ is the mass density, U is the x-component flow velocity, Tn is the temperature in the direction
normal to the wave propagation direction, and Tx is the one in the parallel direction or 
x-component temperature. 

From these expressions, it is clear that contact discontinuities have profiles and the width of
discontinuities is proportional to the time. Details of the diffused contact discontinuities are plotted in
Fig. 2, where and , and σ is the total collision cross section of argon
molecules based on the VHS molecular model [20]. In the plots, the strength of the discontinuities is
denoted by the temperature difference crossing the discontinuity. In general, the contact discontinuities
are diffused in both sides and their width is about several molecular mean free paths at a time of one
mean collision time. Stronger discontinuities diffuse slightly faster though. It is found that there appears
overshoot and undershoot in the density profile (Fig. 2a), which is the result of the movement of
molecules (Fig. 2b). The maximum velocity in the profile is nearly proportional to the difference of the
speed of sound between two sides. The strength of discontinuities, however, determines the detailed
profile of the velocity distribution. The temperature exhibits non-equilibrium behavior among the
translation components. The temperature component normal to the wave propagation direction has a
smooth profile, whereas the parallel component (namely, the x-component in the plot) shows
complicated structure, which is due to the velocity term as shown in Eq. 7. It seems that the
discontinuity in the temperature profiles shifts to the higher temperature side when the strength of the
discontinuity gets stronger. 
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FIG. 2. Free molecular results of contact discontinuities. (a) density; (b) flow velocity; (c) normal-
component temperature; (d) parallel-component temperature.



The free molecular theory is not valid as the time is much longer than the mean particle collision time.
The direct simulation Monte Carlo (DSMC) method [20] is then used to track the development of the contact
discontinuity. Figure 3 shows the corresponding profiles at larger times for the case when the strength of
discontinuity is 8. Notice that there are statistical scatters in the plots because unsteady simulation is
numerically expensive and the minimum sampling size is only 5000 particles for our simulations. The
number of simulated particles, however, does not affect the profiles except the scatters. Clearly, the width of
discontinuity keeps increasing with the time. Specifically, the overshoot in the density profile increases; the
velocity in the higher density side remains decreasing; for the x-component temperature, the first local
maximum disappears gradually and the second local maximum increases. For even longer time (Fig. 4), the
structure of the discontinuity becomes simple: the overshoot of the density profile is varnished; the
temperatures among the translational components reach equilibrium, and the temperature profile looks
smooth. The long time results are expected because the gradients of contact discontinuities become small
due to diffusion and the flow approaches equilibrium state due to particle collisions.
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FIG. 2. (continued ).
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FIG. 3. DSMC results for contact discontinuities. (a) density; (b) flow velocity; (c) normal-
component temperature; (d) parallel-component temperature.



In order to quantify the diffusion process, the thickness of contact discontinuity is defined as 

(8)d
x x

=
−

= =ρ ρ* *. .

.
0 2 0 8

0 6

where ρ* is the normalized density as in Fig. 2a. The thickness may be defined as the inverse of the
maximum gradient of the density profile. However, the error of the maximum gradient could be very
large due to the statistical scatter in the DSMC results. Figure 5 shows the defined thickness of
discontinuity for three values of strength at different times. It is clear that the thickness increases with
the time and stronger discontinuities diffuse faster. At early time (less than 10 mean collision times),
the thickness is proportional to the time. When the time is much larger, the thickness is proportional to
the square root of the time, however. This is due to the fact that the non-equilibrium energy equations
reduces to the heat transfer equation of the continuum flow for a large time, and the heat transfer
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FIG. 4. DSMC results of contact discontinuities for longer time. (a) density; (b) temperature.



equation rules that the heat transfer is proportional to the square root of the time. Based on Fig. 5, the
thickness of a contact discontinuity in a sea level atmosphere is about 20µm when the strength is 1.1
and the time lasts for 6 µs, which means that the average diffusion speed is larger than 3m/s during this
time span. In other words, contact discontinuities have obvious diffusion in viscous flows. This may
imply that contact discontinuities should not be treated as jump discontinuities in certain cases.

Unlike contact discontinuity, the upstream and downstream conditions of a shock wave have to
satisfy the Rankine-Hugoniot relations. For simplicity, the origin of the coordinate sits on the shock
wave and monatomic gas argon is considered here. The upstream velocity should be determined from
the shock wave Mach number Ma1 and the downstream conditions follow the Rankine-Hugoniot
relations:

(9)

(10)

(11)

(12)

Using the same procedure for the contact discontinuity, the free molecular results for the shock wave
are obtained as follows:
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FIG. 5. Time evolution of the thickness of contact discontinuities.
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(16)

These expressions involve the non-zero initial velocity, and profiles of shock waves based on these
expressions are shown in Fig. 6. Clearly shock waves are diffused and the thickness of shock waves is
about several mean free paths when the time is one mean collision time. The stronger shock wave,
however, has larger thickness at an early time. An overshoot appears in the density profile on the higher
density side as in the contact discontinuity case, but no undershoot is identified. The strength of the
density overshoot in the shock wave is larger than that in the contact discontinuity for the same
temperature difference between the two sides. The velocity profile is now scaled with the initial flow
velocities instead of the speed of sound. It turns out that the velocity profile is very different from the
contact discontinuity case and there is a local maximum on the lower density side. The normal
component temperature is diffused smoothly across the shock. There are two obvious deflection points
in the profile for the case with T2 / T1 � 8. For the parallel or x component temperature, a large
overshoot is observed in the profiles. The reason for the overshoot is because the fast moving molecules
in the positive x-direction carries more energy from the higher velocity side than those from the
opposite direction. Thus the overshoot increases with the shock strength.
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FIG. 6. Free molecular results of shock waves. (a) density; (b) flow velocity; (c) normal-
component temperature; (d) parallel-component temperature.



Unlike the contact discontinuities, shock waves have stable structures. The jump discontinuity of a
shock wave takes some time to reach its steady state. When the time is larger than the mean collision
time, the free molecular results are not valid. The DSMC method is again employed to simulate the
unsteady behavior of shock waves. Figure 7 shows the profiles of a shock wave with T2 / T1 � 8 at
different times (the corresponding shock Mach number is slightly less than 5). The time indicated in
the plot looks awkward because the same time step used for the contact discontinuity is used for the
shock wave cases. It turns out that the density overshoot decreases with the time and the density
profile reaches a steady state later. Similarly, the temperature diffuses with the time and gradually
reaches to the final shock structure. Notice that the overshoot in the x-component temperature
decreases but does not disappear. Therefore, the parallel and normal components of the temperature
do not reach equilibrium even at very large time. Figure 7d displays the total temperature profiles at
different times. 
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FIG. 6. (continued ).

FIG. 7. DSMC results for shock waves. (a) density; (b) normal-component temperature; (c)
parallel-component temperature; (d) overall translational temperature.
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The time for a shock wave to reach its steady state can be estimated from the history of shock
thickness. The shock thickness again is defined as in Eq. 8. In order to eliminate the effect of different
definition, the shock thickness is normalized by its thickness at the steady state. Figure 8 shows the
evolution of the normalized shock thickness for two shocks. It is found that the shock thickness initially
increases with time, reaches a maximum, and has a slight decrease to approach the final thickness. For
a Mach 5 shock wave, it only takes about 10 mean collision times to reach a steady state. It takes more
time for a weaker shock wave to develop, however. For instance, it will take more than 1000 mean
collision times for a Mach 1.1 shock wave to develop. There are two reasons for the slow evolution of a
weak shock wave. One is that the nonlinear advection term in the fluid equations approaches to the linear
limit as shock becomes weak, and the lack of steeping mechanism make the thickness large. Navier-
Stokes results predict that shock thickness approaches infinite when the shock strength gets weaker and
weaker. The other is because the diffusion speed decreases when the shock strength decreases. 

The above solution from discontinuities of contact and shock waves give us a clear picture about the
gas evolution, from the collision-less solution to the construction of the NS solution due to intensive
particle collisions. The Euler solution can be only reached on a time scale which is much larger than
the particle collision time. For the hypersonic flow computations, with the scale of mesh size, the
particles may not encounter enough collisions to form equilibrium wave structures. A reliable
numerical scheme should somehow respect the physical process presented in this section. 
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IV. PHYSICAL PROCESS IN THE GAS-KINETIC SCHEME 
Instead of using the macroscopic Euler and NS equations, the gas-kinetic scheme (GKS) is constructed
based on the Boltzmann equation [8], which is far more general than the NS equations in the description
of flow physics. The gas-kinetic BGK scheme model is

,

where f is the gas distribution function and g is the equilibrium state. For the finite volume gas-kinetic
scheme (GKS), the integral solution of the above BGK model is used for the flux evaluation, 

,

where fI is the initial gas distribution function constructed based on the discontinuous initial data, and
its solution represents a free transport process along particle trajectory. The term fII is related to the
integration of equilibrium state, which accounts for particle collisions. In the limit of t >> τ, the term
fII automatically gives a distribution function which recovers the NS solution. The Euler solution can
be considered as a limiting solution of the NS one. Therefore, in the GKS the basic physical process
underlying fI is the same as the FVS method, and underlying fII it gives a process to go to the NS
solution. The FDS solution can be considered as the limiting solution of fII. Therefore, the GKS method
is a unification of upwind FVS and FDS schemes, and it provides an evolution model from FVS to
FDS. This model is consistent with the real physical process presented in the last section. 

On the other hand, in the GKS a piecewise discontinuous initial data is usually used, and the upwind
property is intrinsically rooted in its free transport term fI. However, the fII term represents the drifting
of the equilibrium state, which recovers a continuous distribution across a cell interface. So, this term
is similar to the central difference method. If a continuous initial reconstruction is used in the smooth
flow regime, the upwind property in fI disappears automatically. With the combination of fII term, the
GKS method goes back to the traditional Lax-Wendroff type central difference scheme for the NS
equations. Therefore, the use of upwind or central difference depends solely on the smoothness of the
initial reconstruction in the GKS method. It doesn’t settle down to the upwind or central difference
schools from the starting point in the design of a numerical scheme. In other words, the GKS scheme
is a unification of the central difference and upwind methods. Also, the traditional way of extending
upwind differencing to multidimensional equations is by doing it dimension by dimension. This means
that numerically all transport is done by waves moving normal to the cell faces. This makes the upwind
scheme be sensitive in the shock solution which depends on the relative orientation between the shock
front and mesh lines. However, for the GKS scheme [21], a natural multi-dimensional solution can be
obtained from an initial piecewise continuous flow distribution with variation in both normal and
tangential directions of a cell interface. In smooth flow region, the GKS goes to multi-dimensional
central-difference methods. 

The GKS method unifies the approach of the FVS and FDS fluxes, and the upwind and central
difference discretization. The weighting function between FVS and FDS depends on a relaxation
process from fI to fII. This evolution process is consistent with the physical one from a discontinuity
presented in the last section. However, the quantitative dissipation in the GKS method is closely related
to the discontinuous jump. In other words, the added dissipation is related to the cell resolution. In
comparison with a purely FVS scheme, the advantage of the GKS method is that this amount of
dissipation is controlled and reduced through the relaxation to equilibrium state, and the relaxation
depends on the physical situation. In the high Reynolds number flow, such as the boundary layer, due
to the big ratio between the numerical time step and the particle collision time, the NS flux is
automatically obtained in the GKS scheme due to the dominant of fII term in the final distribution
function f at a cell interface. However, in the strong shock layer, especially in the high Mach number
case, the equivalence between the particle collision time and the numerical time step provides enough
dissipation from fI for the construction of a stable shock structure. Fig. 9 presents the high speed flow
simulation using GKS at M � 20 and 30 at different incident angle around a circular cylinder, where
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carbuncle phenomenon has never been observed, even up to M � 100. In summary, the shock structure
obtained in the GKS scheme is not a purely numerical one, it is constructed through a valid non-
equilibrium physical process of particle transport and collision, even though the scale of the shock
thickness is numerically enlarged to the scale of mesh size. 

V. CONCLUDING REMARKS
The valid time evolution from a discontinuity is studied in this paper through kinetic and DSMC
methods. More specifically, the time evolution of contact discontinuities and shock waves in a non-
equilibrium flow situation has been obtained. The physical process from a discontinuity starts from the
collision-less Boltzmann solution to the dissipative Navier-Stokes wave construction. The benchmark
solutions presented in this paper can be used for the mathematical modeling of non-equilibrium flows
in the construction of reliable CFD methods. Even though the shock capturing scheme in CFD may not
use the precise physical process of non-equilibrium flow evolution on a microscopic scale, to use a
similar numerical representation of non-equilibrium process seems necessary in the construction of
robust and accurate shock capturing schemes. The underlying physical pictures of flux vector splitting
(FVS) and flux difference splitting (FDS) are two limiting cases of the above non-equilibrium gas
evolution model. The direct use of exact Riemann solver in FDS scheme triggers shock instability, such
as the carbuncle phenomenon, because the FDS is a limiting case with the assumption of infinite
number of particle collisions which cannot provide enough numerical dissipation to construct a stable
shock layer, even for the 1st-order scheme. For the hypersonic flow with the Mach number M ≥ 10, a
particle may only suffer tens of particle collisions moving from upstream to downstream. Therefore,
the particle free transport and the limited number of particle collision need to be taken into account in
a numerical scheme. The basic assumption of infinite number of particle collision to form equilibrium
state instantaneously in the Godunov method inside the shock layer is invalid, which is the reason for
the shock instability. On the other hand, the gas-kinetic scheme (GKS) uses a non-equilibrium gas
evolution model in its numerical flux construction, where the particle free transport, collision, and the
formation of equilibrium state have been followed. The GKS mainly composes of two scales, i.e,
kinetic scale from the initial transport term and hydrodynamic one from the integration of the
equilibrium state. The GKS unifies the FVS (kinetic) and FDS (hydrodynamic) methods and the
transition from one to the other depends on the ratio between the time step and particle collision time.
At the same time, the GKS unifies the central difference and upwind schemes. The distinction between
the above two approaches is solely based on the reconstruction of the initial data. In the smooth flow
regime, the discontinuity at a cell interface disappears and the GKS goes back to the Lax-Wendroff type
central difference scheme for the NS solution. In summary, the Godunov method is based on the
limiting equilibrium solution with the assumption of infinite number of particle collisions. This
assumption is not valid inside a numerical shock layer. There have no enough particle collisions in a
highly non-equilibrium shock layer to support the Godunov assumption. Even for the 1st-order
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Godunov method, the numerical dissipation through the averaging is not enough to support a stable
shock layer in the multidimensional case. The persisting shock instability in most shock capturing
schemes clearly shows that the use of exact Euler solution in the construction of numerical flux is
fundamentally flawed even though they are extremely successful in low and modest flow speed. 
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