Access provided by Rice University


T. S. Sammarco and M. A. Burns, Thermocapillary pumping of discrete drops in microfabricated analysis devices, AIChE Journal, 45, 1999, 350-366.
CrossRef
P. Y. Chiou, H. Moon, H. Toshiyoshi, C. J. Kim and M. C. Wu, Light actuation of liquid by optoelectrowetting, Sensors and Actuators A, 104, 2003, 222-228.
CrossRef
X. Geng, H. Yuan, H. N. Oguz and A. Prosperetti, Bubble-based micropump for electrically conducting liquids, Journal of Micromechanics and Microengineering, 11, 2001, 270-276.
CrossRef
F. Mugele and J. C. Baret, Electrowetting: from basics to applications, Journal of Physics.: Condensed Matter, 17, 2005, R705-R774.
CrossRef
R. B. Fair, Digital microfluidics: is a true lab-on-a-chip possible?, Microfluidics and Nanofluidics, 3, 2007, 245-281.
CrossRef
S. Y. Teh, R. Lin, L. H. Hung and A. P. Lee, Dropelt microfluidics, Lab on a Chip, 8, 2008, 198-220.
CrossRef
A. Quinn, R. Sedev and J. Ralston, Contact angle saturation in electrowetting, Journal of Physical Chemistry B, 109, 2005, 6268-6275.
CrossRef
M. Vallet, M. Vallade and B. Berge Limiting phenomena for the spreading of water on polymer films by electrowetting, European Physical Journal B, 11, 1999, 583-591.
CrossRef
A. Quinn, R. Sedev J. Ralston, Influence of the electrical double layer in electrowetting, Journal of Physical Chemistry B, 107, 2003, 1163-1169.
CrossRef
H. J. J. Verheijen and M. W. J. Prins, Reversible electrowetting and trapping of charge: model and experiments, Langmuir, 15, 1999, 6616-6620.
CrossRef
T. B. Jones, An electromechanical interpretation of electrowetting, Journal of Micromechanics and Microengineering, 15, 2005, 1184-1187.
CrossRef
N. Kumari, V. Bahadur and S. V. Garimella, Electrical actuation of electrically conducting and insulating droplets using ac and dc voltages, Journal of Micromechanics andMicroengineering, 18, 2008, 105015.
CrossRef
D. Quere, Non-sticking drops, Reports on Progress in Physics, 68, 2005, 2495-2532.
CrossRef
X. Il, D. Reinhoudt and M. Crego-Calama, What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces, Chemical Society Reviews, 36, 2007, 1350-1368.
CrossRef
M. Nosonovsky and B. Bhushan, Superhydrophobic surfaces and emerging applications: non-adhesion, energy, green engineering, Current Opinion in Interface and Colloid Science, 2009.
X. Zhang, F. Shi, J. Niu, Y. Jiang and Z. Wang, Superhydrophobic surfaces: from structural control to functional application, Journal of Materials Chemistry, 18, 2008, 621-633.
CrossRef
J. Heikenfeld and M. Dhindsa, Electrowetting on superhydrophobic surfaces: Present status and prospects, Journal of Adhesion Science and Technology, 22, 2008, 319-334.
CrossRef
V. Bahadur and S. V. Garimella, Electrowetting-based control of static droplet states on rough surfaces, Langmuir, 23, 2007, 4918-4924.
CrossRef
C. J. Kim, Micropumping by electrowetting, ASME International Mechanical Engineering Congress and Exposition New York IMECE2001/HTD-24200, 2001.
M. G. Pollack, A. D. Shenderov and R. B. Fair, Electrowetting-based actuation of droplets for integrated microfluidics, Lab on a Chip, 2, 2002, 96-101.
CrossRef
M. G. Pollack and R. B. Fair, Electrowetting-based actuation of liquid droplets for microfluidic applications, Applied Physics Letters, 77, 2000, 1725-1726.
CrossRef
K. Mohseni and A. Dolatabadi, Electrowetting droplet actuation in micro scale devices, 43rd AIAA Aerospace Science Meeting and Exhibit, Nevada AIAA-677, 2005.
J. S. Kuo, P. Spicar-Mihalic, I. Rodriguez and D. T. Chiu, Electrowetting-induced droplet movement in an immiscible medium, Langmuir, 19, 2003, 250-255.
CrossRef
P. Paik, V. K. Pamula and K. Chakrabarty, Adaptive hot-spot cooling of integrated circuits using digital microfluidics, Proceedings of IMECE 2005 IMECE2005-81081, Florida (USA), 2005.
R. B. Fair, V. Srinivasan, H. Ren, P. Paik, V. K. Pamula and M. G. Pollack, Electrowetting-based on-chip sample processing for integrated microfluidics, IEEE International Electron Devices Meeting, 2003.
V. Bahadur and S. V. Garimella, An energy-based model for electrowetting-induced droplet actuation, Journal of Micromechanics and Microengineering, 16, 2006, 1494-1503.
CrossRef
H. Oprins, B. Vandevelde, E. Beyne, G. Borghs and M. Baelmans, Selective cooling of microelectronics using electrostatic actuated liquid droplets-modeling and experiments, International Workshop on Thermal Investigations of ICs and Systems, Cote d'Azur (France), 2004, 207-212.
L. Lee, H. Moon, B. Fowler, T. Schoellhammer and C. J. Kim, Electrowetting and electrowetting-on-dielectric for microscale liquid handling, Sensors and Actuators A, 95, 2002, 259-268.
CrossRef
D. Chatterjee, B. Hetayothin, A. R. Wheeler, D. J. King and R. L. Garrell, Droplet-based microfluidics with nonaqueous solvents and solutions, Lab on a Chip, 6, 2006, 199-206.
CrossRef
C. G. Cooney, C. Y. Chen, M. R. Emerling, A. Nadim and J. D. Sterling, Electrowetting droplet microfluidics on a single planar surface, Microfluidics and Nanofluidics, 2, 2006, 435-446.
CrossRef
U. C. Yi and C. J. Kim, Characterization of electrowetting actuation on addressable single-side coplanar electrodes, Journal of Micromechanics and Microengineering, 16, 2006, 2053-2059.
CrossRef
A. Torkkeli, J. Saarilahti, A. Haara, H. Harma, T. Soukka and P. Tolonen, Electrostatic transportation of water droplets on superhydrophobic surfaces, 14th International IEEE Conference on MEMS, 2001, 475-478.
A. Kumar, M. Pluntke, B. Cross, J. C. Baret and F. Mugele, Finite conductivity effects and apparent contact angle saturation in AC electrowetting, Materials Research Society Symposium Proceedings 899E 0899-N06-01.1-8, 2006.
T. B. Jones, Liquid dielectrophoresis on the microscale, Journal of Electrostatics, 51, 2001, 290-299.
R. Baviere, J. Boutet and Y. Fouilliet, Dynamics of droplet transport by electrowetting actuation, Microfluidics and Nanofluidics, 4, 2008, 287-294.
CrossRef
M. Washizu, Electrostatic actuation of liquid droplets for micro-reactor applications, IEEE Industry Applications Society Annual Meeting, New Orleans, USA, 1997.
B. Berge and J. Peseux, Variable focal lens controlled by an external voltage: an application of electrowetting, European Physical Journal E, 3, 2000, 159-163.
CrossRef
N. Kumari, V. Bahadur and S. V. Garimella, Electrical actuation of dielectric droplets, Journal of Micromechanics and Microengineering, 18, 2008, 085018.
CrossRef
T. Ward, Electrohydrostatic wetting of poorly-conducting liquids, Journal of Electrostatics, 64, 2006, 817-825.
CrossRef
H. Pellat, Mesure de la force agissant sur les diélectriques liquides non électrisés placés dans un champ élitrique, C. Royal Academy Science Paris, 119, 1895, 691-694.
T. B. Jones, M. Gunji, M. Washizu and M. J. Feldman, Dielectrophoretic liquid actuation and nanodroplet formation, Journal of Applied Physics, 89, 2001, 1441-1448.
CrossRef
T. B. Jones, K. L. Wang and D. J. Yao, Frequency dependent electromechanics of aqueous liquids: Electrowetting and dielectrophoresis, Langmuir, 20, 2004, 2813-2818.
CrossRef
T. B. Jones, J. D. Fowler, Y. S. Chang and C. J. Kim, Frequency-based relationship of electrowetting and dielectrophoretic liquid microactuation, Langmuir, 19, 2003, 7646-7651.
CrossRef
J. H. Song, R. Evans, Y. Y. Lin, B. N. Hsu and R. B. Fair, A scaling model for electrowetting-on-dielectric microfluidic actuators, Microfluidics and Nanofluidics, 2009.
E. Baird, P. Young and K. Mohseni, Electrostatic force calculation for an EWOD-actuated droplet, Microfluidics and Nanofluidics, 3, 2007, 635-644.
CrossRef
T. B. Jones, More about the electromechanics of electrowetting, Mechanics Research Communications, 36, 2009, 2-9.
CrossRef
D. Chatterjee, H. Shepherd and R. L. Garrell, Electromechanical model for actuating liquids in a two-plate droplet microfluidic device, Lab on a Chip, 9, 2009, 1219-1229.
CrossRef
S. W Walker and B. Shaipro, Modeling the fluid dynamics of electrowetting on dielectric (EWOD), Journal of Microelectromechanical Systems, 15, 2006, 986-1000.
CrossRef
T. D. Blake, Dynamic contact angles and wetting kinetics in Wettability, Surfactant Science Series 49, Marcel Dekker, New York, 1993, 251-309.
K. Mohseni, E. Baird and H. Zhao, Digitized heat transfer for thermal management of compact systems, Proceedings of the ASME International Mechanical Engineering Congress and Exposition, IMECE2005-79372, Orlando, USA, 2005.
M. Schneemilch, W. J. J. Welters, R. A. Hayes and J. Ralston, Electrically induced changes in dynamic wettability, Langmuir, 16, 2000, 2924-2927.
CrossRef
H. Lu, F. Bottausci, J. D. Fowler, A. L. Bertozzi, C. Meinhart and C. J. Kim, A study of EWOD-driven droplets by PIV investigation, Lab on a Chip, 8, 2008, 456-461.
CrossRef
H. Oprins, J. Danneels, B. V. Ham, B. Vandevelde and M. Baelmans, Convection heat transfer in electrostatic actuated liquid droplets for electronics cooling, Proceedings of Thermal Challenges in Next Generation Electronic Systems, Santa Fe, New Mexico, USA, 2007, 233-230.
H. Ren, R. B. Fair, M. G. Pollack and E. J. Shaughnessy, Dynamics of electro-wetting droplet transport, Sensors and Actuators B, 87, 2002, 201-206.
CrossRef
B. Barbier, C. Combettes, S. Guillemet-Fritsch, T. Chartier, F. Rossignol, A. Rumeau, T. Lebey and E. Dutarde, CaCu3Ti4O12 ceramics from co-precipitation method: Dielectric properties of pellets and thick films, Journal of the European Ceramic Society, 29, 2009, 731-735.
CrossRef
V. Bahadur and S. V. Garimella, Electrowetting-based control of droplet transition and morphology on artificially microstructured surfaces, Langmuir, 24, 2008, 8338-8345.
CrossRef
A. B. D. Cassie, Contact Angles, Discussions of the Faraday Society, 3, 1948, 11-16.
CrossRef
T. N. Wenzel, Surface roughness and contact angle, Journal of Physical Colloid Chemistry, 53, 1949, 1466-1467.
CrossRef
N. A. Patankar, Mimicking the lotus effect: Influence of double roughness structures and slender pillars, Langmuir, 20, 2004, 8209-8213.
CrossRef
Y. Yu, Z. Zhao and Q. Zheng, Mechanical and superhydrophobic stabilities of two-scale surfacial structure of lotus leaves, Langmuir, 23, 2007, 8212-8216.
CrossRef
A. Marmur, The lotus effect: superhydrophobicity and metastability, Langmuir, 20, 2004, 3517-3519.
CrossRef
N. A. Patankar, On the modeling of hydrophobic contact angles on rough surfaces, Langmuir, 19, 2003, 1249-1253.
CrossRef
B. He, N. A. Patankar and J. Lee, Multiple equilibrium droplet shapes and design criterion for rough hydrophobic surfaces, Langmuir, 19, 2003, 4999-5003.
CrossRef
N. A. Patankar, Transition between superhydrophobic states on rough surfaces, Langmuir, 20, 2004, 7097-7102.
CrossRef
B. Liu, and F. F. J. Lange, Pressure induced transition between superhydrophobic states: configuration diagrams and effect of surface feature size, Journal of Colloid and Interface Science, 298, 2006, 899-909.
CrossRef
M. Nosonovsky and B. Bhushan, Patterned nonadhesive surfaces: superhydrophobicity and wetting regime transitions, Langmuir, 24, 2008, 1525-1533.
CrossRef
K. Varanasi, T. Deng, M. F. Hsu and N. Bhate, Design of superhydrophobic surfaces for optimum roll-off and droplet impact resistance, Proceedings of the ASME International Mechanical Engineering Congress and Exposition, IMECE2008-67808, Boston, USA, 2008.
D. J. Herbertson, R. E. Evans, N. J. Shirtcliffe, G. McHale and M. I. Newton, Electrowetting on superhydrophobic SU-8 patterned surfaces, Sensors and Actuators A, 130, 2006, 189-193.
V. Bahadur and S. V. Garimella, Energy minimization-based analysis of electrowetting for microelectronics cooling applications, Microelectronics Journal, 39, 2008, 957-965.
CrossRef
V. Bahadur and S. V. Garimella, Preventing the Cassie-Wenzel transition using surfaces with noncommunicating roughness elements, Langmuir, 28, 2009, 4815-4820.
CrossRef
T. N. Krupenkin, J. A. Taylor, T. M. Schneider and S. Yang, From rolling ball to complete wetting: The dynamic tuning of liquids on nanostructured surfaces, Langmuir, 20, 2004, 3824-3827.
CrossRef
T. N. Krupenkin, J. A. Taylor, E. N. Wang, P. Kolodner, M. Hodes, and T. R. Salamon, Reversible wetting-dewetting transitions on electrically tunable superhydrophobic nanostructured surfaces, Langmuir, 23, 2007, 9128-9133.
CrossRef
L. Zhu, J. Xu, Y. Xiu, Y. Sun, D. W. Hess and C. Wong, Electrowetting of aligned carbon nanotube films, Journal of Physical Chemistry B, 110, 2006, 15945-15950.
CrossRef
Z. Wang, Y. Ou, T. Lu and N. Koratkar, Wetting and electrowetting properties of carbon nanotube templated parylene films, Journal of Physical Chemistry B, 111, 2007, 4296-4299.
CrossRef
Z. Wang, L. Ci, L. Chen, S. Nayak, P. Ajayan and N. Koratkar, Polarity-dependent electrochemically controlled transport of water through carbon nanotube membranes, Nanoletters, 7, 2007, 697-703.
CrossRef
M. Dhindsa, N. R. Smith, J. Heikenfeld, P. D. Rack, J. D. Fowlkes, M. J. Doktycz, A. V. Melechko and M. L. Simpson, Reversible electrowetting of vertically aligned superhydrophobic carbon nanofibers, Langmuir, 22, 2006, 9030-9034.
CrossRef
N. Verplanck, E. Galopin, J. Camart, V. Thomy, Y. Coffinier and R. Boukherroub, Reversible electrowetting on superhydrophobic silicon nanowires, Nanoletters, 7, 2007, 813-817.
CrossRef
A. Ahuja, J. A. Taylor, V. Lifton, A. A. Sidorenko, T. R. Salamon, E. J. Lobaton, P. Kolodner and T. N. Krupenkin, Nanonails: A simple geometric approach to electrically tunable superlyophobic surfaces, Langmuir, 24, 2008, 9-14.
CrossRef
C. Dorrer and J. Ruhe, Drops on microstructured surfaces coated with hydrophilic polymers: Wenzel's model and beyond, Langmuir, 24, 2008, 1959-1964.
CrossRef
C. Priest, T. W. J. Albrecht, R. Sedev and J. Ralston, Asymmetric wetting hysteresis on hydrophobic microstructured surfaces, Langmuir, 25, 2009, 5655-5660.
CrossRef
C. Dorrer and J. Ruhe, Condensation and wetting transitions on microstructured ultrahydrophobic surfaces, Langmuir, 23, 2007, 3820-3824.
CrossRef
C. H. Chen, Q. Cai, C. Tsai, C. L. Chen, G. Xiong, Y. Yu and Z. Ren, Dropwise condensation on superhydrophobic surfaces with two-tier roughness, Applied Physics Letters, 90, 2007, 173108.
CrossRef
R. P. Garrod, L. G. Harris, W. C. E. Schofield, J. McGettrick, L. J. Ward, D. O. H. Teare and J. P. S. Badyal, Mimicking a Stenocara Beetle's back for microcondensation using plasmachemical patterned superhydrophobic-superhydrophilic surfaces, Langmuir, 23, 2007, 689-693.
CrossRef
A. Tuteja, W. Choi, J. M. Mabry, G. H. McKinley and R. E. Cohen, Robust omniphobic surfaces, Proceedings of the National Academy of Sciences of the United States of America, 105, 2008, 18200-18205.
CrossRef