Access provided by Rice University


H. Honda and H. Takamatsu, J. J. Wei, 2002, Enhanced boiling of FC-72 on silicon chips with micro-pin-fins and submicron-scale roughness, J. Heat Transfer, vol. 124, pp. 383-390.
CrossRef
J. Mitrovic and F. Hartmann, 2004, A new microstructure for pool boiling, Superlattices and Microstructures, vol. 35, pp. 617-628.
CrossRef
S. Ujereh, T. Fisher, and I. Mudawar, 2007, Effects of carbon nanotube arrays on nucleate pool boiling, Int. J. Heat and Mass Transfer, vol. 50, pp. 4023-4038.
CrossRef
Hee Seok Ann, Vijaykumar Sathyamurthi, and Debjyoti Banerjee, 2009, Pool boiling experiments on a nano-stuructured surface, IEEE Trans. Compon. Package Technol., vol. 32, no. 1, pp. 156-165.
C. K. Yu, D. C. Lu, and T. C. Cheng, 2006, Pool boiling heat transfer on artificial-cavity surfaces in dielectric fluid FC-72, J. Micromech. Microeng., vol. 16, pp. 2092-2099.
CrossRef
N. D. Nimkar, S. H. Bhavnani, R. C. Jaeger, 2006, Effect of Nucleation Site Spacing on the Pool Boiling Characteristics of a Structured Surface, Int. J. Heat and Mass Transfer, vol. 49, pp 2829-2839.
CrossRef
S. Vemuri, K. Kim, 2005, Pool boiling of saturated FC-72 on nano-porous surface, International Communications in Heat and Mass Transfer, vol. 32, pp. 27-31.
CrossRef
S. M. You, K. N. Rainey, C. N. Ammerman, 2004, A New Microporous Surface Coating for Enhancement of Pool and Flow Boiling Heat Transfer, Advances in Heat Transfer, vol. 38, pp. 73-142.
M. S. El-Genk, J. L. Parker, 2005, Enhanced Boiling of HFE-7100 Dielectric Liquid on Porous Graphite, Energy Conversion and Management, vol. 46, pp. 2455-2481.
CrossRef
G. M. Lazarek and S. H. Black, 1982, Evaporative heat transfer, pressure drop and critical heat flux in a small vertical tube with R-113, Int. J. Heat Mass Transfer, vol. 25, pp. 945-959.
CrossRef
W. Nakayama, 1982, Enhancement of heat transfer, Proc. 7th Int. Heat Transfer Conf., Munich, vol. 1, pp. 223-240.
J.R. Thome, 1990, Enhanced Boiling Heat Transfer, Hemisphere, New York.
R.L. Webb, 1994, Principles of Enhanced Heat Transfer, John Wiley & Sons, Inc., New York.
C. Li, Z. Wang, Pei-I Wang, Y. Peles, N. Koratkar, and G. P. Peterson, 2008, Nanostructured copper interfaces for enhanced boiling, Small, vol. 4, issue 8, pp. 1084-1088.
CrossRef
R. Chen, M. Lu, V. Srinivasan, Z. Wang, H. H. Cho, and A. Majumdar, 2009, Nanowires for enhanced boiling heat transfer, Nanoletters, vol. 9, no. 2, pp. 548-553.
CrossRef
F. Keler, M. S. Hunter, D. L. Robinson, 1953, Structural features of oxide coatings on aluminum, J. Electrochem Soc., vol. 100, p. 411.
CrossRef
G. E. Thompson, R. C. Furneaux, G. C. Wood, J. A. Richardson, J. S. Gode, 1978, Nucleation and Growth of Porous Anodic Films on Aluminum, Nature, vol. 272, p. 433.
CrossRef
G. Cao, 2004, Nanostrucures & Nanomaterials: Synthesis, Properties & Appications, Imperial College Press, p. 114, London.
Y. Im, Y. Joshi, S. S. Lee, 2009, Experimental investigation of pool boiling of a dielectric liquid on copper nanowire enhanced surfaces, Proc. 7th ECI Int. Conf. on Boiling Heat Transfer, Brazil, May 3-7.
Y.Y. Hsu, On the Size range of Active Nucleation Cavities on a Heating Surface, 1962, J. Heat Transfer, vol. 84, pp. 207-216.
CrossRef
>

Issue Details

International Journal of Micro-Nano Scale Transport


International Journal of Micro-Nano Scale Transport

Print ISSN: 1759-3093

Related Content Search

Find related content

By Keyword
By Author

Subscription Options

Individual Offers