Access provided by Rice University


P. G. de Gennes, Scaling Concepts in Polymer Physics, 1979, Cornell University Press, Ithaca, NY.
T. Odijk, On the statistics and dynamics of confined or entangled stiff polymers, Macromolecules, 1983, 16, 1340-1344.
CrossRef
L. Yang, I. Akhatov, M. Mahinfalah, and B. Z. Jang, Nano-fabrication: A review, J. Chin. Inst. Eng., 2007, 30, 441-446.
CrossRef
B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, New approaches to nanofabrication: Molding, printing, and other techniques, Chem. Rev., 2005, 105, 1171-1196.
CrossRef
K. Ariga and H. S. Nalwa, Bottom-up Nanofabrication: Supramolecules, Self-Assemblies and Organized Films, 2006, American Scientific Publishers.
I. Teraoka, Po lymer Solutions: An Introduction to Physical Properties, 2002, Wiley-Interscience.
S. F. Sun, Physical Chemistry of Macromolecules: Basic Principles and Issues, 2004, Wiley-Interscience.
D. C. Morse, Viscoelasticity of Concentrated Isotropic Solutions of Semiflexible Polymers. 2. Linear Response, Macromolecules, 1998, 31, 7044-7067.
G. K. Batchelor, An Introduction to Fluid Dynamics, 1967, Cambridge University Press, Cambridge, England.
J. O. Tegenfeldt, C. Prinz, H. Cao, S. Chou, W. W. Reisner, R. Riehn, Y. M. Wang, E. C. Cox, J. C. Sturm, P. Silberzan, and R. H. Austin, The dynamics of genomic-length DNA molecules in 100-nm channels, Proc. Nat. Acad. Sci. USA, 2004, 101, 10979-10983.
CrossRef
W. Reisner, K. J. Morton, R. Riehn, Y. M. Wang, Z. Yu, M. Rosen, J. C. Sturm, S. Y. Chou, E. Frey, and R. H. Austin, Statics and dynamics of single DNA molecules confined in nanochannels, Phys. Rev. Lett. 2005, 94, 196101 (1-4).
CrossRef
C. H. Reccius, J. T. Mannion, J. D. Cross, and H. G. Craighead, Compression and free expansion of single DNA Molecules in nanochannels. Phys. Rev. Lett., 2005, 95, 268101 (1-4).
CrossRef
P.-K. Lin, C.-C. Fu, Y.-L. Chen, Y.-R. Chen, P.-K. Wei, C. H. Kuan, and W. S. Fann, Static conformation and dynamics of single DNA molecules confined in nanoslits, Phys. Rev. E, 2007, 76, 011806 (1-8).
CrossRef
J. D. Cross, E. A. Strychalski, and H. G. Craighead, Size-dependent DNA mobility in nanochannels, J. App. Phys., 2007, 102, 024701 (1-5).
CrossRef
A. Balducci, P. Mao, J. Han, and P. S. Doyle, Double-stranded DNA diffusion in slitlike nanochannels, Macromolecules, 2006, 39, 6273-6281.
CrossRef
D. J. Bonthuis, C. Meyer, D. Stein, and C. Dekker, Conformation and dynamics of DNA Confined in slitlike nanofluidic channels, Phys. Rev. Lett. 2008, 101, 108303 (1-4).
CrossRef
T, Odijk, Scaling theory of DNA confined in nanochannels and nanoslits, Phys. Rev. E, 2008, 77, 060901 (1-4).
CrossRef
L. H. Thamdrup, A. Klukowska, and A. Kristensen, Stretching DNA in polymer nanochannels fabricated by thermal imprint in PMMA, Nanotechnology, 2008, 19, 125301 (1-6).
CrossRef
K. D. Park, S. W. Lee, N. Takama, T. Fujii, and B. J. Kim, Arbitrary-shaped nanochannels fabricated by polymeric deformation to achieve single DNA stretching, Microelec. Eng., 2009, 86, 1385-1388.
CrossRef
Y. Chen and M. Muthukumar, Free energy of a molecule in a confined domain, Phys. Rev. B, 1986, 33, 6187-6190.
CrossRef
F. Wagner, G. Lattanzi, and E. Frey, Conformations of confined biopolymers, Phys. Rev. E, 2007, 75, 050902(R) (1-4).
CrossRef
Y. Yang, T. W. Burkhardt, and G. Gompper, Free energy and extension of a semiflexible polymer in cylindrical confining geometries, Phys. Rev. E, 2007, 76, 011804 (1-7).
CrossRef
A. Arnold, B. Bozorgui, D. Frenkel, B.-Y. Ha, and S. Jun, Unexpected relaxation dynamics of a self-avoiding polymer in cylindrical confinement, J. Chem. Phys., 2007, 127, 164903 (1-9).
CrossRef
T. Sakaue, Semiflexible polymer confined in closed spaces, Macromolecules, 2007, 40, 5206-5211.
CrossRef
L. I. Klushin, A. M. Skvortsov, H.-P. Hsu, and K. Binder, Dragging a polymer chain into a nanotube and subsequent release, Macromolecules, 2008, 41, 5890-5898.
CrossRef
R. M. Jendrejack, D. C. Schwartz, M. D. Graham, and J. J. dePablo, Effect. of confinement on DNA dynamics in microfluidic devices, J. Chem. Phys., 2003, 119, 1165-1173.
CrossRef
R. M. Jendrejack, D. C. Schwartz, J. J. dePablo, and M. D. Graham, Shear induced migration in flowing polymer solutions: simulation of long chain deoxyribose nucleic acid in microchannels, J. Chem. Phys., 2004, 120, 2513-2529.
CrossRef
R. M. Jendrejack, E. T. Dimalanta, D. C. Schwartz, M. D. Graham, and J. J. dePablo, DNA dynamics in a microchannel, Phys. Rev. Lett., 2003, 91, 038102 (1-4).
CrossRef
R. B. Bird, C. F. Curtiss, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids, 1987, Wiley, New York.
M. Fixman, Construction of Langevin forces in the simulation of hydrodynamic interaction, Macromolecules, 1986, 19, 1204-1207.
CrossRef
T. Das, S. Das, and S. Chakraborty, Influences of streaming potential on cross stream migration of flexible polymer molecules in nanochannel flows, J. Chem. Phys., 2009, 131, 1 (1-12).
M. X. Fernandes, M. L. Huertas, M. A. R. B. Castanho, and J. G. de la Torre, Conformation and dynamic properties of a saturated hydrocarbon chain confined in a model membrane: a Brownian dynamics simulation, Biochim. Biophys. Acta, 2000, 1463, 131-141.
CrossRef
R. J. Hunter, Zeta Potential in Colloid Science, 1981, Academic, London.
K. S. Schmitz, Macroions in Solutions and Colloidal Suspension, 1993, VCH, New York.
H. Ohshima, T. W. Healy, and L. R. White, Accurate analytic expressions for the surface charge density/surface potential relationship and double-layer potential distribution for a spherical colloidal particle, J. Coll. Int. Sci., 1982, 90, 17-26.
CrossRef
Y. C. Lin and C. P. Jen, Mechanism of hydrodynamic separation of biological objects in microchannel devices, Lab Chip, 2002, 2, 164-169.
CrossRef
S. Das and S. Chakraborty, Electrokinetic separation of charged macromolecules in nanochannels within the continuum regime: Effects of wall interactions and hydrodynamic confinements, Electrophoresis, 2008, 29, 1115-1124.
CrossRef
S. Das and S. Chakraborty, Transport and Separation of Charged Macromolecules under Nonlinear Electromigration in Nanochannels, Langmuir, 2008, 24, 7704-7710.
CrossRef
J. Israelachvili, Intermolecular and Surface Forces. 2 ed., 2003, Academic Press, London.
A. Majumdar and I. Mezic, Stability regimes of thin liquid films, Microsc. Thermophys. Eng., 1998, 2, 203-213.
CrossRef
S. Chakraborty and S. Das, Streaming-field-induced convective transport and its influence on the electroviscous effects in narrow fluidic confinement beyond the Debye-Hückel limit, Phys. Rev. E, 2008, 77, 037303 (1-4).
CrossRef
J. K. G. Dhont, Thermodiffusion of interacting colloids, J. Chem. Phys., 2004, 120, 1642-1653.
CrossRef
R. Khare, M. D. Graham, and de Pablo, Cross-stream migration of flexible molecules in a nanochannel, Phys. Rev. Lett., 2006, 96, 226405 (1-4).
P. Tian and G. D. Smith, Translocation of a polymer chain across a nanopore: A Brownian dynamics simulation study, J. Chem. Phys., 2003, 119, 11475-11483.
CrossRef
J. Wang and H. Gao, A generalized bead-rod model for Brownian dynamics simulations of wormlike chains under strong confinement, J. Chem. Phys., 2005, 123, 084906 (1-13).
CrossRef
J. P. Hernández-Ortiz, J. J. de Pablo, and M. D. Graham, Fast computation of many-particle hydrodynamic and electrostatic interactions in a confined geometry, Phys. Rev. Lett., 2007, 98, 140602 (1-4).
CrossRef
Y.-L. Chen, H. Ma, M. D. Graham, and J. J. de Pablo, Modeling DNA in confinement: A comparison between the Brownian Dynamics and Lattice Boltzmann method, Macromolecules, 2007, 40, 5978-5984.
CrossRef
I. Huopaniemi, K. Luo, T. Ala-Nissila, and S.-C. Ying, Polymer translocation through a nanopore under a pulling force, Phys. Rev. E, 2007, 75, 061912(1-6).
CrossRef
D. Wei, W. Yang, X. Jin, and Q. Liao, Unforced translocation of a polymer chain through a nanopore: The solvent effect, J. Chem. Phys., 2007, 126, 204901 (1-8).
CrossRef
K. Luo, T. Ala-Nissila, S.-C. Ying, and A. Bhattacharya, Translocation dynamics with attractive nanopore-polymer interactions, Phys. Rev. E, 2008, 78, 061918 (1-8).
CrossRef
K. Luo, T. Ala-Nissila, S.-C. Ying, and A. Bhattacharya, Sequence dependence of DNA translocation through a nanopore, Phys. Rev. Lett., 2008, 100, 058101 (1-4).
CrossRef
W. Mobius, E. Frey, and U. Gerland, Spontaneous unknotting of a polymer confined in a nanochannel, Nano Lett., 2008, 8, 4518-4522.
CrossRef
L. Huang and D. E. Marakov, The rate constant of polymer reversal inside a pore, J. Chem. Phys., 2008, 128, 114903 (1-9).
CrossRef
P. Prinsen, L. T. Fang, A. M. Yoffe, C. M. Knobler, and W. M. Gelbart, The force acting on a polymer partially confined in a tube, J. Phys. Chem. B, 2009, 113, 3872-3879.
V. Kuppa and E. Manias, Dynamics of poly (ethylene oxide) in nanoscale confinements: A computer simulations perspective, J. Chem. Phys., 2003, 118, 3421-3429.
CrossRef
G. A. Schwartz, R. Bergman, and J. Swenson, Relaxation dynamics of a polymer in a 2D confinement, J. Chem. Phys., 2004, 120, 5736-5744.
CrossRef
Y. Rabin and M. Tanaka, DNA in nanopores: Counterion condensation and coion depletion, Phys. Rev. Lett., 2005, 94, 148103 (1-4).
CrossRef
A. Aksimentiev, J. B. Heng, G. Timp, and K. Schulten, Microscopic kinetics of DNA translocation through synthetic nanopores, Biophys. J., 2004, 87, 2086-2097.
CrossRef
E. Y. Lau, F. C. Lightstone, and M. E. Colvin, Dynamics of DNA encapsulated in a hydrophobic nanotube, Chem. Phys. Lett., 2005, 412, 82-87.
CrossRef
S. T. Cui, Molecular dynamics study of single-stranded DNA in aqueous solution confined in a nanopore, Mol. Phys., 2004, 102, 139-146.
CrossRef
J. B. Heng, A. Aksimentiev, C. Ho, P. Marks, Y. V. Grinkova, S. Sligar, K. Schulten, and G. Timp, The electromechanics of DNA in a synthetic nanopore, Biophys. J., 2006, 90, 1098-1106.
CrossRef
B. Luan and A. Aksimentiev, Electro-osmotic screening of the DNA charge in a nanopore, Phys. Rev. E, 2008, 78, 021912 (1-4).
CrossRef
D. I. Dimitrov, A. Milchev, K. Binder, L. I. Klushin, and A. M. Skvortsov, Universal properties of a single polymer chain in slit: Scaling versus molecular dynamics simulations, J. Chem. Phys., 2008, 128, 234902 (1-11).
CrossRef
F. Höfling, T. Munk, E. Frey, and T. Franosch, Entangled dynamics of a stiff polymer, Phys. Rev. E, 2008, 77, 060904(R) (1-4).
CrossRef
Y. Jung, S. Jun, and B.-Y. Ha, Self-avoiding polymer trapped inside a cylindrical pore: Flory free energy and unexpected dynamics, Phys. Rev. E, 2009, 79, 061912 (1-8).
CrossRef
S. Matysiak, A. Montesi, M. Pasquali, A. B. Kolomeisky, and C. Clementi, Dynamics of polymer translocation through nanopores: Theory meets experiment, Phys. Rev. Lett., 2006, 96, 118103 (1-4).
CrossRef
S. Melchionna, M. Bernaschi, M. Fyta, E. Kaxiras, and S. Succi, Quantized biopolymer translocation through nanopores: Departure from simple scaling, Phys. Rev. E, 2009, 79, 030901(R) (1-4).
CrossRef
M. G. Gauthier and G. W. Slater, Nondriven polymer translocation through a nanopore: Computational evidence that the escape and relaxation processes are coupled, Phys. Rev. E, 2009, 79, 021802 (1-7).
CrossRef
M. Fyta, S. Melchionna, S. Succi, and E. Kaxiras, Hydrodynamic correlations in the translocation of a biopolymer through a nanopore: Theory and multiscale simulations, Phys. Rev. E, 2008, 78, 036704 (1-7).
CrossRef
Y. Wang and I. Teraoka, Structures and thermodynamics of nondilute polymer solutions confined between parallel plates, Macromolecules, 2000, 33, 3478-34484.
CrossRef
P. Cifra and I. Teraoka, Partitioning of polymer chains in solution with a square channel: lattice Monte Carlo simulations, Polymer, 2002, 43, 2409-2415.
CrossRef
I. Teraoka, P. Cifra, and Y. Wang, Polymer chains in good solvent facing impenetrable walls: what is the distance to the wall in lattice Monte Carlo simulations, Coll. Surf. A, 2002, 206, 299-303.
CrossRef
Y. Wang, Q. Lin, P. Cifra, and I. Teraoka, Partitioning of bimodal polymer mixtures into a slit: effect of slit width, composition and pore-to-bulk volume ratio, Coll. Surf. A, 2002, 206, 305-312.
CrossRef
T. Bleha and P. Cifra, Free energy and confinement force of macromolecules in a slit at full equilibrium with a bulk solution, Polymer, 2003, 45, 3745-3752.
I. Teraoka and Y. Wang, Computer simulation studies on overlapping polymer chains confined in narrow channels, Polymer, 2004, 45, 3835-3843.
CrossRef
R. Bundschuh and U. Gerland, Coupled dynamics of RNA folding and nanopore translocation, Phys. Rev. Lett., 2005, 95, 208104 (1-4).
CrossRef
A. Cacciuto and E. Luijten, Confinement-driven translocation of a flexible polymer, Phys. Rev. Lett., 2006, 96, 238104 (1-4).
CrossRef
J. Kalb and B. Chakraborty, Single polymer confinement in a tube: Correlation between structure and dynamics, J. Chem. Phys., 2009, 130, 025103 (1-9).
CrossRef
W. Lim, S. Y. Ng, C. Lee, Y. P. Feng, and J. R. C. van der Maarel, Conformational response of supercoiled DNA to confinement in a nanochannel, J. Chem. Phys., 2008, 129, 165102 (1-6).
CrossRef
M. G. Gauthier and G. W. Slater, A Monte Carlo algorithm to study polymer translocation through nanopores. I. Theory and numerical approach, J. Chem. Phys., 128, 065103 (1-8).
CrossRef
T. Cui, J. Ding, and J. Z. Y. Chen, Dynamics of a self-avoiding polymer chain in slit, tube, and cube confinements, Phys. Rev. E, 2008, 78, 061802 (1-7).
CrossRef
K. Luo, S. T. T. Ollila, I. Huopaniemi, T. Ala-Nissila, P. Pomorski, M. Karttunen, S.-C. Ying, and A. Bhattacharya, Dynamical scaling exponents for polymer translocation through a nanopore, Phys. Rev. E, 2008, 78, 050901(R) (1-4).
CrossRef
O. B. Usta, A. J. C. Ladd, and J. E. Butler, Lattice-Boltzmann simulations of the dynamics of polymer solutions in periodic and confined geometries, J. Chem. Phys., 2005, 122, 094902 (1-11).
CrossRef
O. B. Usta, J. E. Butler and A. J. C. Ladd, Flow-induced migration of polymers in dilute solution, Phys. Fluids, 2006, 18, 031703 (1-4).
CrossRef
O. B. Usta, J. E. Butler and A. J. C. Ladd, Transverse migration of a confined polymer driven by an external force, Phys. Rev. Lett., 2007, 98, 098301 (1-4).
CrossRef
S. Reboux, F. Capuani, N. Gonzlez-Segredo, and D. Frenkel, Lattice-Boltzmann simulations of ionic current modulation by DNA translocation, J. Chem. Theory Comput., 2006, 2, 495-503.
CrossRef
Y. Xie, H. Yu, H. Yang1, Y. Wang, X. Zhang and Q. Shi, Monte Carlo study on spontaneous recoil of confined DNA chain, Chin. J. Chem. Phys., 2008, 21, 281-285.
CrossRef
D. A. Fedosov, G. E. Karniadakis, and B. Caswell, Dissipative particle dynamics simulation of depletion layer and polymer migration in micro- and nanochannels for dilute polymer solutions, J. Chem. Phys., 2008, 128, 144903 (1-14).
CrossRef
J. A. Millan, W. Jiang, M. Laradji, and Y. Wang, Pressure driven flow of polymer solutions in nanoscale slit pores, J. Chem. Phys., 2007, 126, 124905 (1-9).
CrossRef
J. A. Milan and M. Laradji, Cross-stream migration of driven polymer solutions in nanoscale channels: A numerical study with generalized dissipative particle dynamics, Macromolecules, 2009, 42, 803-810.
CrossRef
E. Moeendarbary, T. Y. Ng, H. Pan, and K. Y. Lam, Migration of DNA molecules through entropic trap arrays: a dissipative particle dynamics study, Microfluid. Nanofluid., DOI 10.1007/s10404-009-0463-0.
Z. Ye, J. Cai, H. Liu, and Y. Hu, Density and chain conformation profiles of square-well chains confined in a slit by density-functional theory, J. Chem. Phys., 2005, 123, 194902 (1-8).
CrossRef
Z. Ye, H. Chen, J. Cai, H. Liu, and Y. Hu, Density functional theory of homopolymer mixtures confined in a slit, J. Chem. Phys., 2006, 125, 124705 (1-7).
CrossRef
Z. Ye, H. Chen, H. Liu, Y. Hu, and J. Jiang, Density functional theory for copolymers confined in a nanoslit, J. Chem. Phys., 2007, 126, 134903 (1-6).
CrossRef
S. Asakura and F. Oosawa, On interaction between two bodies immersed in a solution of macromolecules J. Chem. Phys., 1954, 22, 1255-1256.
J. L. Barrat and J. P. Hausen, Basic Concepts for Simple and Complex Liquids, 2003, Cambridge University Press, Cambridge.
A. Vrij, Polymers at interfaces and the interactions in colloidal dispersions, Pure. Appl. Chem., 1976, 48, 471-483.
E. J. Meijer and D. Frenkel, Colloids dispersed in polymer solutions. A computer simulation syudy, J. Chem. Phys., 1994, 100, 6873-6887.
CrossRef
W. Poon, Colloids as big atoms, Science, 2004, 304, 830-831.
CrossRef
K. E. Eboigbodin, J. R. A. Newton, A. F. Routh, and C. A. Biggs, Role of nonadsorbing polymers in bacterial aggregation, Langmuir, 2005, 21, 12315-12319.
CrossRef
B. Neu and H. J. Meiselman, Depletion-Mediated Red Blood Cell Aggregation in Polymer Solutions, Biophys. J., 2002, 83, 2482-2490.
CrossRef
D, Marenduzzo, K. Finan, and P. R. Cook, The depletion attraction: an underappreciated force driving cellular organization, J. Cell Biol., 2006, 175, 681-686.
CrossRef
A. A. Gorbunov and A. M. Skvortsov, Statistical properties of confined macromolecules, Adv. Coll. Int. Sci., 1995, 62, 31-108.
CrossRef
I. Teraoka, Polymer solutions in confining geometries, Prog. Polym. Sci. 1996, 21, 89-149.
CrossRef
P. Cifra, T. Bleha and A. Romanov, Monte-Carlo calculations of equilibrium partitioning of flexible chains into pores, Polymer, 1988, 29, 1664-1668.
CrossRef
T. Bleha, P. Cifra, and F. E. Karasz, The effects of concentration on partitioning of flexible chains into pores, Polymer, 1990, 31, 1321-1327.
CrossRef
T. Bleha and F. E. Karasz, Depletion potential between two attractive plates mediated by polymers, Polymer, 2005, 46, 10996-11002.
CrossRef
E. Eisenriegler and R. Maassen, Center-of-mass distribution of a polymer near a repulsive wall, J. Chem. Phys., 2002, 116, 449-450.
CrossRef
H.-P. Hsu and P. Grassberger, Polymers confined between two parallel plane walls, 2004, 120, 2034-2041.
S. B. Chen, Monte Carlo simulations of conformations of chain molecules in a cylindrical pore, J. Chem. Phys., 2005, 123, 074702 (1-7).
CrossRef
J. P. Hernández-Ortiz, H. Ma, J. J. de Pablo, and M. D. Graham, Cross-stream-line migration in confined flowing polymer solutions: Theory and simulation, J. Chem. Phys., 2006, 18, 123101 (1-12).
J. E. Butler, O. B. Usta, R. Kekre, and A. J. C. Ladd, Kinetic theory of a confined polymer driven by an external force and pressure-driven flow, Phys. Fluids, 2007, 19, 113101 (1-14).
CrossRef
Y. Wang, G. H. Peters, F. Y. Hansen, and O. Hassager, Equilibrium partitioning of macromolecules in confining geometries: Improved universality with a new molecular size parameter, J. Chem. Phys., 2008, 128, 124904 (1-13).
CrossRef
Y. Wang, G. H. Peters, F. Y. Hansen, and O. Hassager, Proof of the identity between the depletion layer thickness and half the average span for an arbitrary polymer chain, J. Chem. Phys., 2008, 129, 074904 (1-8).
CrossRef
E. F. Casassa, Distribution of random-flight polymer chains in solution near a barrier, Macromolecules, 1984, 17, 601-604.
CrossRef
E. F. Casassa, Distribution of star-branched random-flight chains in solution near a plane barrier, Macromolecules, 1995, 28 (23), pp 7756-7763.
CrossRef
E. F. Casassa, Distribution of Random-Flight Chains in Solution near Convex Barriers, Macromolecules, 1997, 30, 1469-1478.
CrossRef
D. Kleshchanok, R. Tuinier and P. R. Lang, Direct measurements of polymer-induced forces, J. Phys.: Condens. Matt., 2008, 25, 073101 (1-25).
A. Sikorski and I. Żukowska, Structure of polymer films in adsorbing slit: A computer simulation study, Coll. Surf. A, 2008, 321, 244-248.
CrossRef
A. Jaeckel and J. Dayantis, Concentration profiles of confined chains having absorbing and reflecting statistics, Polymer, 1996, 37, 3447-3449.
CrossRef
Z. Chen and F. A. Escobedo, Influence of polymer architecture and polymer-wall interaction on the adsorption of polymers into a slit-pore, Phys. Rev. E, 2004, 69, 021802 (1-10).
CrossRef
P. Romiszowski and A. Sikorski, Star-Branched Polymers in an Adsorbing Slit. A Monte Carlo Study, J. Chem. Phys., 2005, 123, 104905.
CrossRef
P. Romiszowski and A. Sikorski, Dynamics of polymer chains in confined space. A computer simulation study, Physica A, 2005, 357, 356-363.
CrossRef
P. Romiszowski and A. Sikorski, The Structure of star-branched chains in a confined space, Monatshefte für Chemie, 2006, 137, 969-976.
CrossRef
P. Romiszowski and A. Sikorski, The structure of polymer chains in confinement. A Monte Carlo study, J. Mol. Model. 2009, 15, 681-686.
CrossRef
L. He, K. L. Yung, Y. Xu, Y. W. Shen, The effect of surface features on nanorheology of LCP melts in nanochannels by MD Simulation, J. Tribology, 2007, 129, 171-176.
CrossRef
K. L. Yung, L. He, Y. Xu, Y. W. Shen, Study of surface conditions and shear flow of LCP melts in nanochannels through molecular dynamics simulation, Polymer, 2006, 47, 4454-4460.
CrossRef
P. K. Mishra and S. Kumar, Effect of confinement on coil-globule transition, J. Chem. Phys., 2004, 121, 8642-8646.
CrossRef
P. K. Mishra, D. Giri, S. Kumar, and Y. Singh, Does a surface attached globule phase exist?, Physica A, 2003, 318, 171-178.
CrossRef
R. Rajesh, D. Dhar, D. Giri, S. Kumar, and Y. Singh, Adsorption and collapse transitions in a linear polymer chain near an attractive wall, Phys. Rev. E, 2002, 65, 056124 (1-7).
CrossRef
J. R. Maury-Evertsz, L. A. Estevez, and G. E. Lopez, Equilibrium properties of confined single-chain homopolymers, J. Chem. Phys., 2003, 119, 9925-9932.
CrossRef
E. H. Feng and G. H. Fredrickson, Confinement of equilibrium polymers: A field-theoretic model and mean-field solution, Macromolecules, 2006, 39, 2364-2372.
CrossRef
K. Jo, D. M. Dhingra, T. Odijk, J. J. de Pablo, M. D. Graham, R. Runnheim, D. Forrest, and D. C. Schwartz, A single-molecule barcoding system using nanoslits for DNA analysis, Proc. Nat. Acad. Sci. U. S. A., 2007, 104, 2673-2678.
CrossRef
H. P. Huinink, J. C. M. Brokken-Zijp, M. A. van Dijk, G. J. A. Sevink, Asymmetric block copolymers confined in a thin film, J. Chem. Phys., 2000, 112, 2452-2462.
CrossRef
A. Alexander-Katz, A. G. Moreira and G. H. Fredrickson, Field-theoretic simulations of confined polymer solutions, J. Chem. Phys., 2003, 118, 9030-9036.
CrossRef
A. Alexander-Katz, A. G. Moreira, S. W. Scotts, and G. H. Fredrickson, Field-theoretic simulations of polymer solutions: Finite-size and discretization effects, J. Chem. Phys., 2005 122, 014904 (1-8).
CrossRef
K. Shin, H. Xiang, S. I. Moon, T. Kim, T. J. McCarthy, and T. P. Russell, Curving and frustrating flatland, Science, 2004, 306, 76.
CrossRef
H. Xiang, K. Shin, T. Kim, S. I. Moon, T. J. McCarthy, and T. P. Russell, Block copolymers under cylindrical confinement, Macromolecules, 2004, 37, 5660-5664.
CrossRef
D. Cao and J. Wu, Surface-induced phase transitions in ultrathin films of block copolymers, J. Chem. Phys., 2005, 122, 194703 (1-8).
CrossRef
M. Wang, W. Hu, Y. Ma, and Y.-Q. Ma, Confined crystallization of cylindrical diblock copolymers studied by dynamic Monte Carlo simulations, J. Chem. Phys., 2006, 124, 244901 (1-6).
CrossRef
P. Maniadis, I. N. Tsimpanogiannis, E. M. Kober and T. Lookman, Phase segregation of diblock copolymers in nanopore geometries, Europhys. Lett., 2008, 81, 56001 (1-6).
CrossRef
Bin Yu, Pingchuan Sun, Tiehong Chen, Qinghua Jin, Datong Ding, and Baohui Li, Confinement-induced novel morphologies of block copolymers, Phys. Rev. Lett., 2006, 96, 138306 (1-4).
CrossRef
J. J. Kasianowicz, E. Brandin, D. Branton, and D. W. Deamer, Characterization of individual polynucleotide molecules using a membrane channel, Proc. Nat. Acad. Sci. U. S. A., 1996, 90, 13770-13773.
A. Meller, L. Nivon, E. Brandin, J. Golovchenko, and D. Branton, Rapid nanopore discrimination between single polynucleotide molecules, Proc. Nat. Acad. Sci. U. S. A., 2000, 97, 1079-1084.
CrossRef
A. Meller, L. Nivon, E. Brandin, Voltage-driven DNA translocations through a nanopore, Phys. Rev. Lett., 2001, 86, 3435-3438.
CrossRef
S. E. Henrickson, M. Misakian, B. Robertson, and J. J. Kasianowicz, Driven DNA transport into an asymmetric nanometer-scale pore, Phys. Rev. Lett., 2000, 85, 3057-3060.
CrossRef
H. Vocks, D. Panja, G. T. Barkema, and R. C. Ball, Pore-blockade times for field-driven polymer translocation, J. Phys.: Condens. Matt., 2008, 20, 095224 (1-8).
CrossRef
E. Slonkina and B. Kolomeisky, Polymer translocation through a long nanopore, J. Chem. Phys., 2003, 118, 7112-7118.
CrossRef
Giovanni Maglia, Marcela Rincon Restrepo, Ellina Mikhailova, and Hagan Bayley, Enhanced translocation of single DNA molecules through α-hemolysin nanopores by manipulation of internal charge, Proc. Nat. Acad. Sci. U. S. A., 2008, 105, 19720-19725.
CrossRef
T. Hu and B. I. Shklovskii, Theory of DNA translocation through narrow ion channels and nanopores with charged walls, Phys. Rev. E, 2008, 78, 032901 (1-3).
CrossRef
J. Li, M. Gershow, D Stein, E. brandin and J. A. Golovchenko, DNA molecules and configurations in a solid-state nanopore microscope, Nat. Mater., 2003, 2, 611-615.
CrossRef
P. Chen, J. J. Gu, E. Brandin, Y. R. Kim, Q. Wang, and D. Branton, Probing single DNA molecule transport using fabricated nanopores. Nano Lett., 2004, 4, 2293-2298.
CrossRef
Y. Lansac, P. K. Maiti, and M. A. Glaser, Coarse-grained simulation of polymer translocation through an artificial nanopore, Polymer, 2004, 45, 3099-3110.
CrossRef
R. J. Murphy and M. Muthukumar, Threading synthetic polyelectrolytes through protein pores, J. Chem. Phys., 2007, 126, 051101 (1-4).
CrossRef
D. K. Lubensky and D. R. Nelson, Driven polymer translocation through a narrow pore, Biophys. J., 1999, 77, 1824-1838.
CrossRef
M. Muthukumar, Polymer translocation through a hole, J. Chem. Phys., 1999, 111, 10371.
CrossRef
C. Y. Kong and M. Muthukumar, Modeling of polynucleotide translocation through protein pores and nanotubes, Electrophoresis, 2002, 23, 2697-2703.
CrossRef
M. Muthukumar, Polymer escape through a nanopore, J. Chem. Phys., 2003, 118, 5174-5184.
CrossRef
Y. Kantor and M. Kardar, Anomalous dynamics of forced translocation, Phys. Rev. E, 2004, 69, 021806 (1-12).
CrossRef
A. J. Storm, C. Storm, J. Chen, H. Zandbergen, J.-F. Joanny, and C. Dekker, Fast DNA translocation through a solid-state nanopore, Nano Lett., 2005, 5, 1193-1197.
CrossRef
P. Tian and G. D. Smith, Translocation of a polymer chain across a nanopore: A Brownian dynamics simulation study, J. Chem. Phys., 2003, 119, 11475.
CrossRef
A. Meller and D. Branton, Single molecule measurements of DNA transport through a nanopore, Electrophoresis, 2002, 23, 2583.
CrossRef
J. J. Kasianowicz, S. E. Henrickson, H. H. Weetall, and B. Robertson, Simultaneous Multianalyte Detection with a Nanometer-Scale Pore, Anal. Chem., 2001, 73, 2268.
CrossRef
O. V. Krasilnikov, C. G. Rodrigues, and S. M. Bezrukov, Single Polymer Molecules in a Protein Nanopore in the Limit of a Strong Polymer-Pore Attraction, Phys. Rev. Lett., 2006, 97, 018301.
CrossRef
S. M. Iqbal, D. Akin, and R. Bashir, Solid-state nanopore channels with DNA selectivity, Nat. Nanotech., 2007, 2, 243-248.
CrossRef
H. Yan and B. Xu, Towards rapid DNA sequencing: detecting single-stranded DNA with a solid-state nanopore, Small, 2006, 2, 310-312.
CrossRef
J. Lagerqvist, M. Zwolak, and M. Di Ventra, Fast DNA sequencing via transverse electronic transport, Nano Lett., 2006, 6, 779-782.
CrossRef
Q. Zhao, G. Sigalov, V. Dimitrov, B. Dorvel, U. Mirsaidov, S. Sligar, A. Aksimentiev, and G. Timp, Detecting SNPs using a synthetic nanopore, Nano Lett., 2007, 7, 1680-1685.
CrossRef
X. Liang and S. Y. Chou, Nanogap detector inside nanofluidic channel for fast real-time label-free DNA analysis, Nano Lett., 2008, 8, 1472-1476.
CrossRef
J. Clarke, H. C. Wu, L. Jayasinghe, A. Patel, S. Reid, and H. Bayley, Continuous base identification for single-molecule nanopore DNA sequencing, Nat. Nanotech., 2009, 4, 265-270.
CrossRef
O. B. Bakajin, T. A. J. Duke, C. F. Chou, S. S. Chan, R. H. Austin, and E. C. Cox, Electrohydrodynamic stretching of DNA in confined environments, Phys. Rev. Lett., 1998, 80, 2737-2740.
CrossRef
N. Laachi, J. Cho, and K. D. Dorfman, DNA unhooking from a single post as a deterministic process: Insights from translocation modeling, Phys. Rev. E, 2009, 79, 031928 (1-9).
CrossRef
S. W. P. Turner, M. Cabodi, and H. G. Craighead, Confinement-induced entropic recoil of single DNA molecules in a nanofluidic structure, Phys. Rev. Lett., 2002, 88, 128103 (1-4).
CrossRef
C. Forrey and M. Muthukumar, Langevin dynamics simulations of ds-DNA translocation through synthetic nanopores, J. Chem. Phys., 2007, 127, 015102 (1-10).
CrossRef
A. Mohan, A. B. Kolomeisky, and M. Pasquali, Effect of charge distribution on the translocation of an inhomogeneously charged polymer through a nanopore, J. Chem. Phys., 2008, 128, 125104 (1-7).
CrossRef
J. Han and H. G. Craighead, Separation of long DNA molecules in a microfabricated entropic trap array, Science, 2000, 288, 1026-1029.
CrossRef
J. Han and H. G. Craighead, Characterization and optimization of an entropic trap for DNA separation, Anal. Chem., 2002, 74, 394-401.
CrossRef
Y. Zeng and D. J. Harrison, Confinement effects on electromigration of long DNA molecules in an ordered cavity array, Electrophoresis, 2006, 27, 3747-3752.
CrossRef
Z. R. Li, G. R. Liu, Y. Z. Chen, J. S. Wang, H. Bow, Y. Cheng, and J. Han, Continuum transport model of Ogston sieving in patterned nanofilter arrays for separation of rod-like biomolecules, Electrophoresis, 2008, 29, 329-339.
CrossRef
Z. R. Li, G. R. Liu, J. Han, Y. Z. Chen, J. S. Wang, and N. G. Hadjiconstantinou, Transport of biomolecules in asymmetric nanofilter arrays, Anal. Bioanal. Chem., 2009, 394, 427-435.
CrossRef
D. Fologea, J. Uplinger, B. Thomas, D. S. McNabb, and J. Li, Slowing DNA translocation in a solid-state nanopore, Nano Lett., 2005, 5, 1734-1737.
CrossRef
R. Riehn, M. Lu, Y.-M. Wang, S. F. Lim, E. C. Cox, and R. H. Austin, Restriction mapping in nanofluidic devices, Proc. Nat. Acad. Sci. U. S. A., 2005, 102, 10012-10016.
CrossRef
E. H. Trepagnier, A. Radenovic, D. Sivak, P. Geissler, and J. Liphardt, Controlling DNA capture and propagation through artificial nanopores, Nano Lett., 2007, 7, 2824-2830.
CrossRef
C. Y. Kong and M. Muthukumar, Simulations of stochastic sensing of proteins, J. Am. Chem. Soc., 2005, 127, 12852-12861.
S. Kotsev and A. B. Kolomeisky, Effect of orientation in translocation of polymers through nanopores, J. Chem. Phys., 2006, 125, 084906 (1-7).
CrossRef
R. Randel, H. C. Loebl, and C. C. Matthai, Molecular Dynamics Simulations of polymer translocations, Macromol. Theor. Simul., 2004, 13, 387-391.
CrossRef
Q. Zhao, J. Comer, V. Dimitrov, S. Yemenicioglu, A. Aksimentiev, and G. Timp, Stretching and unzipping nucleic acid hairpins using a synthetic nanopore, Nucl. Acid. Res., 2008, 1532-1541.
U. Bockelmann and V. Viasnoff, Theoretical study of sequence-dependent nanopore unzipping of DNA, Biophys. J., 2008, 94, 2716-2724.
CrossRef
V. Viasnoff, N. Chiaruttini, and U. Bockelmann, Probing DNA base pairing energy profiles using a nanopore, Euro. Biophys. J., 2009, 38, 263-269.
CrossRef
M. Wanunu, B. Chakrabarti, J. Mathe, D. R. Nelson, and A. Meller, Orientation-dependent interactions of DNA with an alpha-hemolysin channel, Phys. Rev. E, 2008, 77, 031904.
CrossRef
J. Mathe, A, Aksimentiev, D. R. Nelson, K. Schulten, and A. Meller, Orientation discrimination of single-stranded DNA inside the α-hemolysin membrane channel, Proc. Nat. Acad. Sci. U. S. A., 2005, 102, 12377-12382.
CrossRef
J. T. Mannion, C. H. Reccius, J. D. Cross, and H. G. Craighead, Conformational analysis of single DNA molecules undergoing entropically induced motion in nanochannels, Biophys. J., 2006, 90, 4538-4545.
CrossRef
S. Benner, R. J. Chen, N. A. Wilson, R. Abu-Shumays, N. Hurt, K. R. Lieberman, D. W. Deamer, W. B. Dunbar, and M. Akeson, Sequence-specific detection of individual DNA polymerase complexes in real time using a nanopore, Nat. Nanotech., 2007, 2, 718-724.
CrossRef
C. H. Reccius, S. M. Stavis, J. T. Mannion, L. P. Walker, and H. G. Craighead, Conformation, length, and speed measurements of electrodynamically stretched DNA in nanochannels, Biophys. J., 2008, 95, 273-286.
CrossRef
A. F. Sauer-Budge, J. A. Nyamwanda, D. K. Lubensky, and D. Branton, Unzipping kinetics of double-stranded DNA in a nanopore, Phys. Rev. Lett., 2003, 90, 238101 (1-4).
CrossRef
J. Mathe, H. Visram, V. Viasnoff, Y. Rabin, and Amit Meller, Nanopore unzipping of individual DNA hairpin molecules, Biophys. J., 2004, 87, 3205-3212.
CrossRef
J. Mathe, A. Arinstein, Y. Rabin, and Amit Meller, Equilibrium and irreversible unzipping of DNA in a nanopore, Europhys. Lett., 2006, 73, 128-134.
CrossRef
O. K. Dudko, J. Mathe, A. Szabo, A. Meller, and G. Hummer, Extracting kinetics from single-molecule force spectroscopy: Nanopore unzipping of DNA hairpins, Biophys. J., 2007, 92, 4188-4195.
CrossRef
O. Dudko, G. Hummer, and A. Szabo, Theory, analysis and interpretation of single-molecule force spectroscopy experiments, 2008 Proc. Natl. Acad. Sci. U. S. A., 105, 15755-760.
CrossRef
Y. Kafri, D. K. Lubensky, and D. R. Nelson, Dynamics of molecular motors and polymer translocation with sequence heterogeneity, Biophys. J., 2004, 86, 3373-3391.
CrossRef
U. F. Keyser, B. N. Koeleman, S. van Dorp, D. Krapf, R. M. M. Smeets, S. G. Lemay, N. H. Dekker and C, Dekker, Direct force measurements on DNA in a solid-state nanopore, Nat. Phys., 2006, 2, 473-477.
CrossRef
C. Dekker, Solid-state nanopores, Nat. Nanotech., 2007, 2, 209-215.
CrossRef
K. Luo, I. Huopaniemi, T. Ala-Nissila, and S.-C. Ying, Polymer translocation through a nanopore under an applied external field, J. Chem. Phys., 2006, 124, 114704 (1-7).
CrossRef
I. Huopaniemi, K. Luo, T. Ala-Nissila, and S.-C. Ying, Langevin dynamics simulations of polymer translocation through nanopores, J. Chem. Phys., 2006, 125, 124901 (1-8).
CrossRef
J. L. A. Dubbeldam, A. Milchev, V. G. Rostiashvili, and T. A. Vilgis, Driven polymer translocation through a nanopore: A manifestation of anomalous diffusion, Europhys. Lett., 2007, 79, 18002 (1-6).
CrossRef
D. Panja and G. T. Barkema, Passage times for polymer translocation pulled through a narrow pore, Biophys. J., 2008, 94, 1630-1637.
CrossRef
H. C. Loebl, R. Randel, S. P. Goodwin, and C. C. Matthai, Simulation studies of polymer translocation through a channel, Phys. Rev. E, 2003, 67, 041913 (1-5).
CrossRef
K. Luo, T. Ala-Nissila, S.-C. Ying, and A. Bhattacharya, Heteropolymer translocation through nanopores, J. Chem. Phys., 2007, 126, 145101 (1-7).
CrossRef
K. Luo, T. Ala-Nissila, S.-C. Ying, and A. Bhattacharya, Influence of polymer-pore interactions on translocation, Phys. Rev. Lett., 2007, 99, 148102 (1-4).
CrossRef
K. Luo, T. Ala-Nissila, S.-C. Ying, and A. Bhattacharya, Dynamics of DNA translocation through an attractive nanopore, Phys. Rev. E, 2008, 78, 061911 (1-6).
CrossRef
W. Sung and P. J. Park, Polymer Translocation through a Pore in a Membrane, Phys. Rev. Lett., 1996, 77, 783-786.
CrossRef
M. Muthukumar, Polymer translocation through a hole, J. Chem. Phys., 1999, 111, 10371-10374.
CrossRef
Y.-C. Chen, C. Wang, and M.-B. Luo, Simulation study on the translocation of polymer chains through nanopores, J. Chem. Phys., 2007, 127, 044904 (1-6).
CrossRef
Y. Xie, H. Yang, H. Yu, Q. Shi, X. Wang, and J. Chen, Excluded volume effect on confined polymer translocation through a short nanochannel, J. Chem. Phys., 2006, 124, 174906 (1-4).
CrossRef
M.-B. Luo, Translocation of polymer chains through interacting nanopores, Polymer, 2007, 48, 7679-7686.
CrossRef
P. J. Park and W. Sung, Polymer translocation induced by adsorption, J. Chem. Phys., 1998, 108, 3013-3018.
CrossRef
A. Milchev, K. Binder, and A. Bhattacharya, Polymer translocation through a nanopore induced by adsorption: Monte Carlo simulation of a coarse-grained model, J. Chem. Phys., 2004, 121, 6042-6051.
CrossRef
J. K. Wolterink. G. T. Barkema, and D. Panja, Passage Times for Unbiased Polymer Translocation through a Narrow Pore, Phys. Rev. Lett., 2006, 96, 208301.
CrossRef
D. Panja, G. T. Barkema, and R. C. Ball, Anomalous dynamics of unbiased polymer translocation through a narrow pore, J. Phys.: Condens. Matt., 2007, 19, 432202 (1-8).
CrossRef
D. Panja, G. T. Barkema, and R. C. Ball, Polymer translocation out of planar confinements, J. Phys.: Condens. Matt., 2008, 20, 075101 (1-9).
CrossRef
J. L. A. Dubbeldam, A. Milchev, V. G. Rostiashvili, and T. A. Vilgis, Polymer translocation through a nanopore: A showcase of anomalous diffusion, Phys. Rev. E, 2007, 76, 010801 (R) (1-4).
CrossRef
K. Luo, T. Ala-Nissila, and S.-C. Ying, Polymer translocation through a nanopore: A two-dimensional Monte Carlo study, J. Chem. Phys., 2006, 124, 034714 (1-5).
CrossRef
S. Guillouzic and G. W. Slater, Polymer translocation in the presence of excluded volume and explicit hydrodynamic interactions Phys. Lett. A, 2006, 359, 261-264.
CrossRef
R. Gasparac, D. T. Mitchell and C. R. Martin, Electrokinetic DNA transport in a nanopore membrane, Electrchim. Acta, 2004, 49, 847-850.
S. Ghosal, Electrophoresis of a polyelectrolyte through a nanopore, Phys. Rev. E, 2006, 74, 041901 (1-5).
CrossRef
S. Ghosal, Effect of Salt Concentration on the Electrophoretic Speed of a Polyelectrolyte through a Nanopore, Phys. Rev. Lett., 2007, 98, 238104 (1-4).
CrossRef
S. Ghosal, Electrokinetic-flow-induced viscous drag on a tethered DNA inside a nanopore, Phys. Rev. E, 2007, 061916 (1-3).
C. T. A. Wong and M. Muthukuamr, Polymer capture by electro-osmotic flow of oppositely charged nanopores, J. Chem. Phys., 2007, 126, 164903 (1-6).
CrossRef
S. Pennathur, F. Baldessari, J. G. Santiago, M. G. Kattah, J. B. Steinman, and P. J. Utz, Free-Solution Oligonucleotide Separation in Nanoscale Channels, Anal. Chem., 2007, 79, 8316-8322.
CrossRef
X. Liang, K. J. Morton, R. H. Austin, and S. Y. Chou, Single Sub-20 nm Wide, Centimeter-Long Nanofluidic Channel Fabricated by Novel Nanoimprint Mold Fabrication and Direct Imprinting, Nano Lett., 2007, 7, 3774-3780.
CrossRef
B. Luan and A. Aleksei, Electro-osmotic screening of the DNA charge in a nanopore, Phys. Rev. E, 2008, 78, 021912.
CrossRef
S. van Dorp, U. F. Keyser, N. H. Dekker, C. Dekker, S. G. Lemay, Origin of the electrophoretic force on DNA in solid-state nanopores, Nat. Phys., 2009, 5, 347-351.
CrossRef
M. A. Webster and J. M. Yeomans, Modeling a tethered polymer in Poiseuille flow, J. Chem. Phys., 2005, 122, 164903 (1-6).
CrossRef
D. Stein, F. H. J. van der Heyden, W. J. A. Koopmans, and C. Dekker, Pressure-driven transport of confined DNA polymers in fluidic channels, Proc. Nat. Acad. Sci. U. S. A., 2006, 103, 15853-15858.
CrossRef
J. Zhang, J. S. Hansen, B. D. Todd, and P. J. Daivis, Structural and dynamical properties for confined polymers undergoing planar Poiseuille flow, J. Chem. Phys., 2007, 126, 144907 (1-14).
CrossRef
R. B. Schoch, L. F. Cheow, and J. Han, Electrical detection of fast reaction kinetics in nanochannels with an induced flow, Nano Lett., 2007, 7, 3895-3900.
CrossRef
P. Abgrall and N. T. Nguyen, Nanofluidic Devices and Their Applications, Anal. Chem., 2008, 80, 2326-2341.
CrossRef
Y.-D. He, H.-J. Qian, Z.-Y. Lu, and Z.-S. Li, Polymer translocation through a nanopore in mesoscopic simulations, Polymer, 2007, 48, 3601-3606.
CrossRef
G. M. Wang and W. C. Sandberg, Non-equilibrium all-atom molecular dynamics simulations of free and tethered DNA molecules in nanochannel shear flows, Nanotech., 2007, 18, 135702 (1-9).
CrossRef
W. C. Sandberg and G. M. Wang, Atomic hydrodynamics of DNA: Coil-uncoil-coil transitions in a wall-bounded shear flow, Phys. Rev. E, 2008, 78, 061910 (1-12).
CrossRef
S. C. Kohale and R. Khare, Cross stream chain migration in nanofluidic channels: Effects of chain length, channel height, and chain concentration, J. Chem. Phys., 2009, 130, 104904 (1-8).
CrossRef
K.-G. Wang, S. Yue, L. Wang, A. Jin, C. Gu, P.-Ye Wang, Y. Feng, Y. Wang, and H. Niu, Manipulating DNA molecules in nanofluidic channels, Microfluid. Nanofluid., 2006, 2, 85-88.
CrossRef
K. Wang, S. Yue, L. Wang, A. Jin, C. Gu, P. Wang, H. Wang, X. Xu, Y. Wang, and H. Niu, Nanofluidic channels fabrication and manipulation of DNA molecules, IEE Proc.-Nanobiotechnol., 2006, 153, 11-15.
CrossRef
H. T. Hoang, I. M. Segers-Nolten, J. W. Berenschot, M. J. de Boer, N. R. Tas, J. Haneveld, and M. C. Elwenspoek, Fabrication and interfacing of nanochannel devices for single-molecule studies, J. Micromech. Microeng., 2009, 19, 065017 (1-10).
CrossRef