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Background. Clinical research in mood disorders increasingly involves advanced neuroimaging techniques. The
encompassing aim of this review is to provide the mental health care practitioner with a pragmatic understanding of
neuroimaging approaches and their possible clinical application.
Methods. We conducted a literature search of English-language articles using the search terms, major depressive disorder
and bipolar disorder, cross-referenced with available neuroimaging technologies and analytical approaches, The search
was supplemented with a manual review of relevant references. We organize the review by reviewing frequently asked
questions on the topic of neuroimaging by mental health-care providers.
Results. Magnetic resonance (MR) approaches provide information on white and gray matter pathology (segmentation),
cellular metabolism (MRS), oxygen consumption (BOLD), and neurocircuitry (DTI). Radionuclide-based neuroimaging
methodologies provide quantitative estimates of brain glucose metabolism, regional blood flow, and ligand-receptor/
transporter binding. Clinical implications of neuroimaging methodologies are reviewed.
Conclusions. Advances in neuroimaging technology have refined models of disease pathophysiology in mood disorders
and the mechanistic basis of antidepressant action. Multivariate analysis of functional and structural neuroimaging data,
longitudinal analysis in the depressed and remitted states, and inclusion of representative patients with medical and
psychiatric comorbidities will enhance the clinical translation of future research findings.
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INTRODUCTION

Mood disorders are highly prevalent, chronic medical disor-
ders largely diagnosed and treated in primary-care settings (1).
Currently, mood disorders are a leading cause of disability

globally and an important risk factor for the development of
major medical disorders such as coronary artery disease (CAD)
(2,3). The development of more effective therapeutic regimens
for major depressive disorder has been identified as a national
health priority in the United States and elsewhere (4).

Mood disorders are complex conditions of multifactorial
etiology. Regional alterations in regional brain structure and
function, as indexed by neuroimaging abnormalities, are
hypothesized to subserve the symptomatic expression of mood
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disorders (5–10). Refining the pathophysiological model of
mood disorders may provide novel (preferably disease modify-
ing), treatment approaches. For example, deep brain stimula-
tion (DBS) arises from a hypothesis that anterior limbic
networks are awry in mood disorders (11).

The role of neuroimaging in the diagnosis and treatment
selection in mood disorders is currently limited to secondary
mood disorders (e.g., mood disorders secondary to organic
brain syndrome) (12). Nevertheless, it remains uncertain how
neuroimaging approaches may inform the diagnostic process
or treatment decisions in individuals with primary mood disor-
ders (i.e., major depressive disorder, bipolar disorder).

The encompassing aim of this review is to provide the men-
tal health care practitioner with a pragmatic understanding of
neuroimaging approaches and their possible clinical applica-
tion. Toward this aim, we review frequently asked questions on
the topic of neuroimaging by mental health-care providers.

METHODS

We conducted a literature search of English-language arti-
cles published between January 1964 and September 2006. The
search terms were major depressive disorder, and bipolar disor-
der cross-referenced with functional magnetic resonance imag-
ing (fMRI), single-photon-emission computed tomography
(SPECT), computerized tomography (CT), positron emission
tomography (PET), voxel-based morphometry (VBM), region
of interest (ROI), blood-oxygen-level-dependent (BOLD),
glucose metabolism, statistical parametric mapping (SPM),
magnetic resonance spectroscopy (MRS), and diffusion-tensor
imaging (DTI). The search was supplemented with a manual
review of relevant references. Articles selected for inclusion
were determined by author consensus. The authors organize
the review by reviewing frequently asked questions on the
topic of neuroimaging by mental health-care providers.

Evaluating the Hypothesis: Are Mood Disorders 
Associated with Quantifiable Changes in Global
or Regional Neuroanatomy?

Volumetric investigations evaluating patients with mood
disorders have consistently identified several anatomical
abnormalities in brain neurocircuits that putatively subserve
affect regulation and emotional expression (13). The advent of
computed tomography (CT) allowed researchers to quantita-
tively document volumetric and morphological (i.e., variations
in shape) changes in brain structures. Increased ventricular
size, ventricular-brain ratios, and smaller cerebellar volumes
(14,15) were reported in bipolar subjects with CT imaging.

The advance offered by computed tomography (CT) versus
conventional radiological techniques was largely due to improved
spatial resolution (2-dimensional x-rays) and accessibility to deep
brain structures (e.g., basal ganglia). Methodologically, the CT

scanner contains a rotating gantry equipped with an x-ray tube and
arc-shaped detector encircling the patient (Figure 1a). For each
complete rotation, a thin section (slice) of brain structure is
acquired. Successive sections are later reconstructed by a dedi-
cated computer into two-dimensional representations of the
scanned region with a resolution approaching 2 × 2 mm (15,16).

The major limitations of CT technology included exposure to
ionizing radiation, spatial resolution, and a reduced sensitivity to
distinguish white and gray matter (17). For example, a human sub-
ject is capable of receiving 3 röntgen equivalents in men (rem) per
single administration and 5 rem per year (2–4 CT scans) (18). Over
the past decade, computed tomography (CT) approaches have been
largely supplanted by magnetic resonance imaging (MRI) as the
structural neuroimaging modality of choice on the grounds of
improved operating characteristics and safety indices (19).

Magnetic resonance imaging (MRI) is based on the principle
that differential magnetic properties exist amongst hydrogen

Figure 1 Structural Imaging Apparatus (a) CT Scanner (b) MRI Scanner.

a)

b)
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atoms across different biological tissues (20) (Figure 1b).
Current MRI techniques offer a spatial resolution exceeding 1
mm3 affording the possibility of visualizing and quantifying
smaller brain structures. Additional advantages over CT
include the absence of ionizing radiation, and with three-
dimensional MRI acquisition technology, the opportunity for
more refined perspective of brain regions of interest (21). A
limitation however, of MRI is the elucidation of anatomical
boundaries of brain regions that are not well circumscribed
(e.g., lateral thalamus) (13).

Disparate abnormalities have been reported in subjects with
mood disorders evaluated with volumetric neuroimaging tech-
nique (13,15,22). Preliminarily volumetric differences in sub-
cortical regions have been reported between MDD and BD
(13,15). For example, relative reduction (versus healthy con-
trols) in basal ganglia volume are reported in MDD subgroups
(23–29), while increased striatal volumes have been reported in
BD populations (30–33). Decreased prefrontal cortex volumes,
on the other hand, have been reported in both BD and MDD
cohorts (34,35).

The majority of investigators have report decreased hippoc-
ampal volume in MDD populations (36–48). Two independent
meta-analyses provide further corroborative evidence, con-
cluding that the pooled effect size of hippocampal volume loss
is significant in both hemispheres for subjects with MDD
(49,50).

By contrast, there is less support altered hippocampal vol-
ume in BD. Only four investigations in the last two decades
(51–54) while others have failed to find a smaller hippocampus
in BD (31,32,52,55–66).

Using a meta-regression analysis, it was further determined
that the total number of depressive episodes significantly cor-
related with decreases in right hippocampal volume in subjects
with MDD (36). Other analyses have also revealed a signifi-
cant logarithmic association between illness duration and hip-
pocampal volume (49,50). These results suggest that repeated
glucocorticoid-mediated stress during recurrent depressive epi-
sodes may result in cumulative hippocampal injury as reflected
in volume loss (67).

On the other hand, the thalamus has been a region of partic-
ular interest in BD as it is an integral component of the dys-
functional limbic-cortical-striatal-pallidal-thalamic circuit.
Investigations evaluating thalamic volumes in BD have
reported larger (31,68), smaller (69–72), and unchanged
(53,57,63,73–75) thalami compared to healthy control groups.
This heterogeneity in observations may be partially accounted
for by the technical limitations of MRI in the delineation of the
lateral edge of this structure (13).

Limitations of MRI include the incompatibility of the pro-
cedure with intra-cranial or intra-abdominal metallic implants,
devices, clips, and other monitoring equipment (e.g., pace-
maker) (76,77). Moreover, the single unit of MRI resolution
(1 mm3) encompasses a large cell number (>10,000 neurons)
rendering the detection of a smaller, yet clinically significant,
cellular loss difficult.

Evaluating the Hypothesis: Are Mood Disorders Associated 
with Changes in Brain Function?

In contradistinctions to structural neuroimaging techniques,
functional neuroimaging offers a dynamic composite of brain
activity in contrast to the static snapshot of neuroanatomy
afforded by volumetric investigations. Broadly speaking, brain
function can be evaluated at the regional level through blood
perfusion analyses, at the cellular level through indices of
metabolism, and at the intracellular level through ligand-occu-
pancy studies. A constellation of perfusion, metabolic, and
cell-surface abnormalities have been documented in limbic and
prefrontal structures in mood disorders with radionuclide-
based (PET, SPECT) and magnet-based (fMRI) neuroimaging
techniques.

In a recent meta-analysis of 55 investigations of emo-
tional processing in healthy subjects, Phan et al. divided the
brain into 20 non-overlapping regions, and characterized
each region by its responsiveness across individual emotions
and to different stimuli presentation techniques. According
to the mood induction paradigm employed, different brain
regions were activated; occipital cortex and the amygdala for
visual stimuli and anterior cingulate and insula for emotional
recall (78). The investigators concluded that while the
medial prefrontal cortex had a general role in emotional
processing fear activated the amygdala, while sadness was
associated activation of the subcallosal cingulate. The sub-
callosal cingulate corresponds to Brodmann area 25 (BA 25),
the anatomical target of deep brain stimulation for treatment
resistant depression (11).

It has been proposed that affective processing, a core dys-
function in mood disorders, is modulated by the intersection
of two neural systems: a ventral and a dorsal system (79). The
amygdala, insula, ventral striatum, and ventral regions of the
anterior cingulate and prefrontal cortex comprise the ventral
system which identifies the emotional significance of envi-
ronmental stimuli, prepares subsequent affective states, and
regulates appropriate autonomic responses (80). The effort-
ful, or conscious, regulation of affective states is accom-
plished by the dorsal system (hippocampus and dorsal
regions of the anterior cingulate and prefrontal cortex).
Affective processing is further influenced by other brain cir-
cuits that are responsible for executive function, selective
attention, and future planning (79).

Hyperactivity in the amygdala, subgenual cingulate, ventral
striatum, and prefrontal cortex in BD may subserve an oversen-
sitive but dysfunctional system in the identification of emotional
significance and the production of affective states. Alteration in
the aforementioned dorsal system may also impair the effortful
regulation of emotional behavior. In contrast to the lowered
threshold in the attachment of emotional salience and production
of affective states in BD, subjects with MDD may experience an
increased tendency to identify stimuli as emotional and experi-
ence affective states, but within a predominantly negative con-
text. Decreased activity in the dorsal components may be
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responsible for the associated impairments in executive function
and effortful regulation of affective processing (79,81).

Radionuclide Neuroimaging Techniques: Metabolism 
and Blood Flow

The localization of an injected radioactive neurotransmitter-
derivative serves as the mechanisms by which PET and SPECT
produce three-dimensional images of the brain. With PET,
these synthetic ligands are labeled with a rapidly decaying
radioactive atom, usually Carbon-11, Fluorine-18, Oxygen-15,
or Nitrogen-13. Single-photon emission computerized tomog-
raphy (SPECT) is a technique similar to PET, with radioactive
nuclei that have a longer half-life than those used in PET, and
emit single, instead of double, gamma rays (Xenon-133,
Technetium-99, Iodine-123) (82).

A subject, in the supine position, is injected with a radioac-
tive tracer that incrementally progresses through the PET or
SPECT camera. A gamma ray detector array captures the
gamma rays that are produced at the collision site between a
positron emitted from the radioactive substance and an electron
in the tissue (in PET), or directly from the radionuclide (in the
case of SPECT). As in CT scanning, the process is repeated,
producing a series of two-dimensional thin slices of the brain
that are later converted to a three-dimensional representation.

Although, SPECT is relatively less expensive than PET, its
sensitivity and spatial resolution are inferior. A pragmatic
advantage of SPECT scanners is that they do not require juxta-
position to a particle accelerator center. Analysis of regional
blood flow with SPECT has generally been replaced by 15O-
H2O-PET or functional MRI (see below). Early investigations
employing SPECT technology analyses reported correlations
between depression severity and frontal hypoactivity in
depressed subjects (83).

Positron emission tomography can provide data on blood
flow (i.e., hypo/hyperperfusions) or other biochemical func-
tions, depending on the identity of the radioactively tagged
molecule. Group differences in neuronal glucose metabolism
can be evaluated via injection of a fluorine-tagged, non-
hydrolyzable form of glucose, 18F-2-fluoro-2-deoxyglucose
(FDG) to depressed and non-depressed cohorts. Early FDG
investigations in mood disorder subjects examined brain activ-
ity with a basic neuropsychological attention task (84–86).
Although challenge studies utilizing blood flow as an outcome
measure have greater temporal sensitivity, FDG has the advantage
of being decoupled from the direct effects of pharmacological
agents on cerebral circulation (87).

Decreased regional cerebral metabolic glucose rates in the
prefrontal cortex (PFC) of depressed subjects have been a con-
sistent finding in mood disorders, although relative hyperme-
tabolism in distinct regions of the PFC has also been reported
(88–93). Preclinical animal models and case reports also impli-
cate PFC dysfunction with impairments in emotional percep-
tion and experience (94,95).

The subgenual region of the anterior cingulate cortex has been
associated with hypoactivity relative to healthy controls (34,96),
although if this is corrected for reduction in grey matter volume
(97), the actual metabolic activity may be elevated, as opposed to
reduced (5). This interpretation is also consistent with a coupling
between metabolic activity in the subgenual ACC and depression
severity (93,98). Available evidence suggests that metabolic
hyperactivity in the amygdala may be also be a state-dependent
phenomenon (99,100). Differential metabolism in the pregenual,
or rostral, anterior cingulate may predict response to various
modalities of antidepressant treatment (7,101).

Radioactively labeled water (15O-H2O) provides an elegant
technique for evaluating regional brain differences in cerebral
blood flow (CBF). The relatively short half-life of 15O (~2
min) provides an opportunity to administer a new bolus every
12–15 minutes and to acquire a new snapshot of blood flow
within the same scanning session. Soon after the tracer enters
the smaller vessels in the brain, data acquisition can begin and
usually lasts 60–90 seconds. The acquisition of multiple data
points during a single scanning session allows the possibility of
provocation paradigms, and the exposition of aberrant neurocir-
cuitry underlying dysfunctional attitudes that may not be appar-
ent under resting baseline conditions.

Changes in glucose metabolism and blood flow comprise an
aggregate of chemical and hemodynamic processes involved in
neural activity putatively representing the neurobiological sig-
nature of terminal field synaptic transmission. In a representa-
tive provocation paradigm, changes in CBF or glucose
metabolism data acquired during the execution of a neuropsy-
chological task are compared with images obtained within the
subject during a control condition. Regional increases in CBF
or glucose metabolism are conceptualized as a proxy of
increased synaptic transmission (5).

Test-retest investigations suggest that relative hypometabo-
lism normalizes with effective antidepressant treatment in a
patient’s self-reported mood. Major depressive disorder has
also been associated with abnormal activation of key limbic
and paralimbic structures, including regionally distinct frontal
and temporal lobes, the amygdala-hippocampus complex, and
the cingulate gyrus.

Radionuclide Neuroimaging Techniques: Ligand Studies

A ligand is a molecule with an affinity for a unique biologi-
cal target, most often a protein receptor or transporter. Devel-
opments in PET and SPECT methodologies incorporating
ligands provide an opportunity to carefully scrutinize the cellu-
lar pharmacodynamics of psychotropic medications (104–106).
Ligands provide a surrogate of drug activity by measuring the
ratio of ligand-receptor occupancy, versus drug occupancy.
Several radiotracers have been developed for human imaging
studies, targeting disparate neurotransmitters (e.g., acetylcholine
(107–109), glutamate (110), dopamine (111,112) and serotonin
(113–118)).



NEUROIMAGING IN MOOD DISORDERS 269

annals of clinical psychiatry vol. 19 no. 4 2007

Both pre-synaptic and post-synaptic neuronal sites can be
labeled with a radiotracer. Pre-synaptic sites can be involved in
the regulation of neurotransmitter release from nerve terminals,
while post-synaptic sites are at the beginning of the cascade of
molecular events that will lead to the biological response
(119). Therefore, the binding of different radiotracers pre- or
post-synaptically may reveal different stages in diseases
involving these systems.

Magnet Based Neuroimaging of Brain Function: 
Functional Magnetic Resonance Imaging

Through a modification of conventional MRI scanning
characteristics, it is possible to study the dynamics of brain
function. Functional Magnetic Resonance Imaging (fMRI)
subsumes several related techniques. For example, the Blood-
Oxygen-Level-Dependent (BOLD) technique relies on the
ratio of deoxygenated to oxygenated blood. An area with less
oxygenated blood will have more of the ferromagnetic deoxy-
hemoglobin and hence, a higher magnetic susceptibility. When
a particular brain region is activated, arterial oxygenated blood
will redistribute in this area. The activated area subsequently
exhibits a decrease in oxygenated blood as oxygen is extracted
by the active regional neurons (source of the fMRI signal).
Afterward, the amount of blood flowing to the area far out-
weighs the amount of oxygen that is extracted, so that oxygen-
ated blood is now higher (120).

Changes in blood oxygenation with impressive spatial
(3–4 mm) and temporal resolution (<1s) allow the imaging of
transient cognitive events and their impact on relatively
smaller brain structures (e.g., amygdala). Moreover, unlike
PET and SPECT, most fMRI techniques are noninvasive and
radiation-free, enabling repeat scans through different disease

states (e.g., imaging a bipolar patient in manic, depressive, and
euthymic states) (121).

Sequential BOLD fMRI evaluations may be used to com-
pare regional brain activity between symptomatic and asymp-
tomatic states (122–124). BOLD-fMRI paradigms generally
have several periods of rest alternating with several periods of
activation. The images collected during the active phase are
then compared with the periods at rest (Figure 2). With current
technology, fMRI-BOLD is most applicable for processes that
can be subjectively modulated (e.g., language, vision, move-
ment, hearing, and memory) (125).

Limitations of the BOLD-fMRI technique include its sensi-
tivity to movement, partially limiting the available tasks to those
without head movement (e.g., speaking). Moreover, artifacts in
neighboring air (i.e., sinuses) may distort the results, potentially
complicating the examination of regions at the base of the brain
such as the orbitofrontal and medial temporal cortices.

Magnet Based Neuroimaging of Brain Function: MRS

While the MRI technique provides cross-sectional anatomic
images based on the tissue water content, magnetic resonance
spectroscopy (MRS) is a technique that measures the concen-
tration of in-vivo brain biochemical metabolites. MRS employs
a magnetic field and a resonant radio-frequency (RF) pulse to
observe the signal from a specific nucleus (e.g., proton [1H] or
phosphorus [31P]) in the sample of interest) (126).

The MRS technique can be optimized to evaluate disparate
intracellular hypotheses through the selection of a particular
nucleus of interest, specific MR field strength, and select data-
acquisition parameters. The MR signal sensitivity of the more
frequently employed 1H spectroscopy is about 15 times greater
than that of 31P spectroscopy (Figure 3).

Figure 2 Block Design.
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With 1H spectroscopy, one can assess the viability of neurons,
glutamate-glutamine-γ-aminobutyric acid (GABA) neurotransmit-
ter cycling, and the second messenger system by evaluating
metabolite levels of N-acetylaspartate (NAA), glutamate,
glutamine, GABA, and myo-inositol respectively. Spectroscopy
employing 31P nuclei yields metabolite levels of adenosine triph-
osphate (ATP), phosphocreatinine (PCr), and inorganic ortho-
phosphate (Pi), molecules associated with high-energy phosphate
metabolism. Membrane phospholipid (MPL) synthesis and mem-
brane degradation can also be assessed by measuring the freely
mobile, water-soluble phosphomonoesters (free-PME, PC, PE)
and phosphodiesters (free-PDE, GPC, GPE).

A survey of MRS studies in bipolar disorder supports fron-
totemporal abnormalities, with additional abnormalities noted
in the basal ganglia and thalamus (127). MRS technology can
be used to evaluate the pharmacokinetics of psychotropic
agents. For example, brain lithium levels have been determined
to be approximately half of peripheral plasma levels and may
be a superior correlate of lithium efficacy (128).

Magnet Based Neuroimaging of Brain Function: 
Diffusion Tensor Imaging

Aberrant neurocircuitry has been postulated to underlie the
pathophysiology of MDD (10) and BD (129). The break-
down, or loss of myelin (demyelination), such as seen in sev-
eral neurodegenerative diseases (e.g., multiple sclerosis),
results in impaired nerve impulse transmission. Higher rates
of white matter hyperintensities (WMHs) in patients with
mood disorders, particularly late-life or treatment-resistant
disorders, also implicate white matter abnormalities in mood
disorder etiology (130).

Diffusion tensor imaging (DTI) measures the microscopic
diffusion of water. White matter exhibits remarkable differ-
ences in diffusion, depending on which direction the diffusion
sensitizing gradients are applied allowing for the detection of
white matter tracts (131). Diffusion tensor imaging measures
are thought to be representative of brain tissue microstructure
and are particularly useful for examining organized brain
regions, such as white matter tract bundles.

Preliminary DTI investigations have confirmed impairment
in neural connectivity in schizophrenia. Regions specifically
identified as having diffusion abnormalities include the corpus
callosum and distinct regions of the frontal cortex supporting
theories of frontotemporal and frontoparietal disconnectivity in
schizophrenia. Investigators are also beginning to examine DTI
alterations in late-life depression, a diagnostic entity compli-
cated by its association with cerebrovascular disease and other
neurodegenerative processes (132). With advances in magnet
strength and pulse sequences, DTI holds promise for connec-
tivity analyses of neurocircuitry in mood disorders.

Analysis of Neuroimaging Data: Regional Differences

The choice of image analysis technique employed is influenced
by the investigators’ specific questions and preferences; sensitivity
to detect small differences in a specific locus, or the ability to sur-
vey the entire brain volume for statistically significant differences.
The smallest unit of neuroimaging resolution is called a voxel, or
volume element, and represent a distinct location on a three-
dimensional (-x -y -z) coordinate system (Figure 4).

When an affected brain region can be unambiguously delim-
ited, region of interest (ROI) analyses offer the greatest sensitiv-
ity for detecting abnormalities. Most, ROI approaches involve
overlaying the PET/SPECT/fMRI functional data on an ana-
tomic MRI image, and manually demarcating the region. The
inherent variability in ROI criteria between studies, however,
and the absence of ROI validation, provide the impetus for an
approach that avoids the problems of unvalidated ROIs through
an unbiased survey of the entire brain at the voxel level.

Statistical parametric mapping (SPM) is a technique that evalu-
ates the whole brain volume independent of distinct neuroanatomi-
cal regions and produces a parametric map containing an average
value for each voxel. The statistical value, usually a derivative of the
t-test, evaluates the hypothesis that a particular voxel is differentially
activated between the two groups or conditions (133). Before analy-
sis, all brains are “transformed” to fit into a standardized template
and smoothed to minimize the impact of misalignment error and
anatomical differences This loss of spatial resolution, however,
offers relatively decreased sensitivity for detecting abnormalities in
small structures (e.g.,, amygdala) or areas characterized by high
anatomic variability (e.g.,, orbital cortex). This decrease in sensitiv-
ity, however, is offset by the confidence that activations in brain
regions outside an ROI are not ignored.

Voxel-based morphometry (VBM) is an adaptation of the
SPM technique that permits an evaluation of segmented grey
and white matter voxel concentrations or volumes (134,135).
As in SPM, macroscopic within-group differences are mini-
mized, allowing between-group differences in local tissue
composition to be explored without employing invalidated
regions of interest (136). Abnormalities in gray matter distribu-
tion have been reported with VBM in subjects with MDD
(37,40,76,137,138) and in other mood disorders, particularly
BD (69,70,136,139–141).

Figure 3 Magnetic Resonance Spectroscopy.
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Effects of Treatment

Several longitudinal investigations have sought to char-
acterize the effect of sychotropic administration on volu-
metric changes. For example, paroxetine treatment of
OCD has been associated with a normalization (reduction)

of amygdala (142) and thalamic volumes (143). Cross sec-
tional investigation evaluating unmedicated BD patients
and their chronically medicated counterparts revealed a
larger SGPFC volume (144) and an increase in prefrontal
grey matter volume (145) associated with mood stabilizer
use.

Figure 4 Neuroimaging Analyses: Coordinate System.
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Investigations of volumetric changes following non-
pharmacological interventions, including repetitive transcranial
magnetic stimulation (146) and cognitive behavioral therapy
(147) have not confirmed statistically significant changes fol-
lowing the intervention.

Decreases in glucose metabolism in ventral regions of the
prefrontal cortex (103,148) and increases in the temporal cor-
tex (96,149) have been previously associated with response to
SSRIs. Additional pre-post changes in the subgenual cingulate
(BA25), ventrolateral prefrontal and temporal cortex, posterior
cingulate (BA29) and putamen have also been reported with
non-SSRI antidepressant pharmacotherapy (150–153).
Response to cognitive behavioral therapy (CBT) has been
associated with metabolic increases in hippocampus and dorsal
cingulate (BA24) and decreases in dorsal (BA 9/46), ventral
(BA 47/11), and medial (BA 9/10/11) frontal cortex (151).

The co-localization of common regional brain metabolic
changes associated with response to either psychotherapy or
pharmacotherapy may represent treatment-independent effects of
clinical response. In a randomized controlled trial of venlafaxine
versus CBT, response to either treatment modality was associated
with decreased glucose metabolism bilaterally in the orbitofrontal
cortex and left medial prefrontal cortex, along with increased
metabolism in the right occipital-temporal cortex (154).

CONCLUSIONS

Currently, there are no clinical indications for functional
neuroimaging methodologies in clinical psychiatry, although
this technique holds considerable promise for unraveling the
neuroanatomical basis of psychiatric disease. Structural imag-
ing techniques are indicated to rule out organic pathologies
associated with mental status disturbances.

Neuroscientists use fMRI clinically to noninvasively map
language, motor, and memory function in patients undergoing
neurosurgery. Researchers in mood disorders are currently
combining neuroimaging approaches with clinically relevant
cognitive measures (41), genotyping (155), neuroendocrinol-
ogy (156), and surgical interventions (11).

If receptor occupancy is integral to the pharmacotherapy of
mood disorders, then PET ligand studies could possibly guide
medication dosing (157). Over the past decade there has been
an accumulation of PET and SPECT radiotracers, which are
currently being used to investigate numerous neurological tar-
gets in psychiatric disorders. As PET technology becomes
more widely available, there is potential for growth in the field,
with more radiotracers becoming available, targeting a variety
of biological sites.

In parallel, future neuroimaging investigations will also
benefit from methodological advances in MR magnet strength,
and tissue segmentation techniques (69) and diffusion tensor
imaging (158). Moreover, simultaneous analyses of functional
and structural neuroimaging findings, longitudinal analysis in
the depressed and remitted states, and inclusion of representative

patients with medical and psychiatric comorbidities, represent
other promising research vistas.
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