
Annals of Clinical Psychiatry, 18[1]:33–42, 2006
Copyright © American Academy of Clinical Psychiatrists 
ISSN: 1040-1237 print / 1547-3325 online 
DOI: 10.1080/10401230500464661

33

UACPUsing Neuroimaging to Predict 
Treatment Response in Mood 
and Anxiety Disorders

USING NEUROIMAGING TO PREDICT TREATMENT RESPONSEKARLEYTON C. EVANS, MD, DARIN D. DOUGHERTY, MD, MARK H. POLLACK, MD, 
and SCOTT L. RAUCH, MD
Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA

Background. Functional neuroimaging has begun to show promise as a clinical tool in the prediction of treatment response
in mood and anxiety disorders. Given the variance in patient responses to psychiatric treatments, the use of such predictive
tools could be tremendously valuable, especially in situations where treatments carry substantial risks or costs.
Methods. A literature search was conducted in December 2004 to identify published neuroimaging treatment prediction
papers. “Neuroimaging,” “treatment,” and “depression or anxiety” were used as keywords. Studies of treatment
prediction were complemented by studies of treatment effects to provide context.
Results. Fifteen original published papers were identified as investigations of treatment prediction in mood and anxiety
disorders. These studies have predominantly been conducted in patients with major depression (MDD) and obsessive-
compulsive disorder (OCD). We review this literature and provide a discussion of design considerations in psychiatric
neuroimaging studies of treatment response prediction.
Conclusions. The neuroimaging literature pertaining to treatment response prediction is largely limited to studies of MDD
and OCD. While these initial reports are preliminary, the findings reviewed suggest that treatment outcome may be
predicted by patterns of pre-treatment brain activity in psychiatric patients. However, the actual clinical utility of such tests
remains to be shown.
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INTRODUCTION

For more than a decade, structural and functional neuroim-
aging methods have provided powerful tools for advancing
pathophysiological models of psychiatric disorders. As investi-
gators make progress in delineating the underlying neural phe-
notypes of various psychiatric illnesses, an important goal for
continued work in this field is to determine whether measures
of brain activity might assist in predicting subsequent response
to treatment. The ultimate goal, in this regard, is to provide
information that will guide clinical decision-making and result
in improved patient care. However, to date, relatively few neu-
roimaging studies have focused on issues relating to treatment
response. This area of research has held a fairly narrow scope,
largely limited to studies of major depression (MDD) and

obsessive-compulsive disorder (OCD). In the current article,
neuroimaging treatment studies in patients with mood and anx-
iety disorders will be reviewed with particular emphasis on the
studies that have identified brain activity patterns that may
serve as potential predictors of treatment response. In addition,
study design considerations for psychiatric neuroimaging stud-
ies of treatment response will be addressed.

STUDY DESIGN CONSIDERATIONS FOR 
IDENTIFYING NEUROIMAGING PREDICTORS OF 
TREATMENT RESPONSE

General Considerations in Subject Selection

The central objective of neuroimaging predictor studies is to
identify common patterns of pre-treatment brain activity in
patients who respond to a specific treatment. In the best of
circumstances, inferences from such data could be generalized

Address correspondence to Scott L. Rauch, MD, Psychiatric Neuroscience
Division, Massachusetts General Hospital-East, 13th Street, Building 149, 2nd

Floor, Charlestown, MA 02129, USA. E-mail: rauch@psych.mgh.harvard.edu



34 K.C. EVANS ET AL.

annals of clinical psychiatry vol. 18 no. 1 2006

from the study group to a population of patients. Subject
exclusion criteria for the typical neuroimaging treatment
predictors study are often more liberal than those employed
in neuroimaging studies designed to identify structural or func-
tional abnormalities underlying the pathophysiology common
to individuals in a specific diagnostic category. Considerations
regarding diagnostic subtypes, symptom severity and comorbid
illness are critical in avoiding type II error in studies of patho-
physiology, whereas these sources of variance can enhance the
clinical utility of neuroimaging treatment predictor findings. For
example the differentiation of clinical subgroups showing good
response from those showing poor response, can identify and
account for the meaningful variance in the broader population of
subjects within a specific diagnostic category. Given this empha-
sis on heterogeneity within neuroimaging treatment predictor
study groups, we do nonetheless stress the necessity of proper
clinical characterization of subjects at the time of enrollment.
Indeed, the accurate categorization of subjects by diagnoses,
subtypes, and symptom severity remains critical to interpreta-
tions of their contributions to variance in treatment response.

In addition to diagnostic heterogeneity, the presence of concur-
rent pharmacotherapy, psychotherapy or other therapeutic inter-
ventions should also be considered during subject selection. Such
treatments in addition to the treatment of interest/study are likely
to have an additive biological effect. Again, this type of diversity
among study subjects may prove favorable in generalizing infer-
ences of treatment response to real clinical populations. However,
to afford the optimal interpretation of study results, such patients
should be on a stable regimen of the other treatment(s).

General Considerations in Clinical Trial Designs

As with any clinical research trial that involves patients and
a treatment intervention, decisions regarding placebo control,
blinding, treatment response measures and adequate trial
length, should be considered in trial design. Given the inher-
ent costs associated with neuroimaging and the potential for
placebos to substantially degrade signal to noise in psychiatric
trials, the majority of published neuroimaging treatment pre-
dictor studies have been open trials, as randomized placebo
controlled trials have been often considered impractical. Neu-
roimaging treatment predictor hypotheses have been typically
constructed to test between-group differences in baseline brain
activity related to subsequent treatment response. The mea-
sures of treatment response in published treatment predictor
studies of MDD have included; the Beck Depression Inventory
(BDI) (1), the Hamilton Depression Rating Scale (HAM-D) (2),
Clinical Global Assessment Scale (GAS) (3) and Clinical
Global Impression Scale (CGIS) (4). Similarly, standardized
rating scales such as the Yale-Brown Obsessive-Compulsive
Scale (Y-BOCS) (5), and Hamilton Anxiety Rating Scale
(HAM-A) (6) have been used in treatment predictor studies of
OCD. Non-standard assessments of treatment response have
also been employed, such as chart reviews (e.g., assessing

hospital re-admission, and physician notes). Like measures of
treatment response, trial lengths have significantly varied
across the published neuroimaging treatment predictor stud-
ies. Neuroimaging medication trials reporting significant
results have been as short as six weeks (7,8) and as long as
twelve (9) to sixteen weeks (10). Trial lengths have also var-
ied across patients within individual studies (10). Studies
designed to employ uniform trial length across subjects tend
to yield results that are more readily interpreted. Yet with all
clinical trials, subjects can and do drop-out prior to complet-
ing the intended length of treatment. Data management strate-
gies for such subjects should be considered. As the salient
neuroimaging data is collected at the beginning of treatment
predictor studies (prior to the treatment trial), variable trial
lengths across the subjects in any particular study could still
contribute informative data. To the extent that dropping out of
treatment represents one type of poor outcome, response pre-
diction studies should seek to capture this aspect of treatment
response. However, the issue of how to operationally accom-
modate drop-outs is unclear; simply carrying forward the last
data point may have the unintended consequence of represent-
ing such subjects as fair or even good responders. Therefore,
reasonable strategies include: 1) excluding drop-outs from
further analysis; 2) performing separate analyses to predict
drop-outs as a categorical type of outcome; 3) employing last
time point carried forward; 4) assigning all drop-outs a pre-
determined response value (e.g., 0% change); or 5) in categor-
ical analyses simply considering drop-outs among the group
of non-responders.

Neuroimaging Treatment Predictor Study Paradigms

Neuroimaging paradigms can be categorized based upon the
type of state manipulations employed by investigators. The
most common paradigm used in treatment predictor studies is
the neutral state paradigm where subjects are studied during a
nominal “resting” state, or while performing a non-specific
continuous performance task. Thus, hypotheses regarding dif-
ferences in treatment response associated with regional brain
activity are tested, without particular attention to momentary
state variables. This approach has been used in most typical
neuroimaging treatment predictor studies by measuring resting
or neutral state cerebral metabolism during brain images
acquired by fluoro-deoxyglucose positron emission tomogra-
phy (FDG-PET). FDG-PET is particularly sensitive for detect-
ing regional differences in cerebral glucose metabolism (11).
Several other scanning modalities could be employed (e.g.,
structural, receptor-ligand, spectroscopy), however the scope
of this review is limited to the functional approaches that
directly assess indices of regional brain activity (e.g., metabo-
lism or blood flow).

While neuroimaging treatment predictor studies may even-
tually serve as a tool for clinical decision-making, their value
for illuminating pathophysiology or mechanism of disease is
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quite limited. Symptom provocation is a type of neuroimaging
paradigm that has been used in treatment prediction that also
confers the potential to address hypotheses related to patho-
physiology. In a symptom provocation paradigm subjects are
scanned during a symptomatic state as well as during neutral or
control conditions. Analyses of these data test hypotheses
regarding anticipated treatment related changes in functional
anatomy during the symptomatic state (see,12). Still another
neuroimaging paradigm that may inform questions related to
pathophysiology is a pre-treatment/post-treatment study. As
the name implies, in pre-treatment/post-treatment studies, a
baseline acquisition of neuroimaging data is followed by a
treatment intervention and one or more follow-up imaging
acquisitions. Comparisons of pre-treatment with post-treatment
scans are performed to identify changes in regional brain activ-
ity that are associated with the therapeutic mechanisms related
to the intervention.

The various paradigm types are mentioned to provide a
comprehensive overview. Again, the focus of this review is on
neuroimaging treatment predictor studies that may ultimately
serve as clinical tools. In this regard, the best replicated find-
ings to date, with respect to treatment effects and predictors of
treatment response in the mood and anxiety disorders have
been garnered using FDG-PET acquired in the context of a
neutral state (7,13–19).

General Analytic Approaches to Neuroimaging Data

Two general approaches to image analysis have been com-
monly used in treatment predictor studies: 1) region-of-interest
(ROI)-based, and 2) voxel-wise. The ROI-based approach
requires testing hypotheses regarding pre-specified anatomi-
cally defined ROIs, typically via co-registration of PET data
with high-resolution magnetic resonance images (MRIs). The
ROI approach conveys the advantage of precision in anato-
mical definition. However the ROI approach is particularly
vulnerable to Type II errors, since treatment effects in regions
other than those driven by a priori hypothesis may be
neglected, and treatment effects within sub-territories of a
given ROI may be overlooked due to dilution that occurs from
averaging across the entire ROI. The voxel-wise approach typ-
ically employs statistical parametric mapping (SPM) methods.
This method requires the transformation of each subject’s brain
data into a common anatomical space via rescaling and/or
warping. This brain space is then searched voxel-by-voxel.
Given that voxel-wise (voxel-by-voxel) SPM searches for
associated treatment effects can be performed on either the
whole brain or a priori search territories of interest, this method
is inherently no less hypothesis-driven than ROI-based meth-
ods. In contrast to ROI-only approaches, SPM based
approaches have the advantage of being data driven, and facili-
tate the ability to search salient sub-territories for relevant
treatment responses. However, SPM based approaches are sub-
ject to errors related to imprecision in the procedure whereby

the brain data from various subjects are transformed into a
common space.

Beyond the standard analytic approaches, “connectivity”
approaches represent advances in neuroimaging data analysis
that convey the ability to investigate the interaction of regional
brain activity within large-scale neural networks (see, 20, 21–
23). More specifically, in contrast to ROI approaches that
solely rely on a model of causal relation between a priori
ROIs and covariance data (treatment response), connectivity
approaches have the potential to consider inter-related brain
activity via several different functional anatomic models for
the same covariance data. Given that connectivity approaches
are still in development and not in universal use, their utility in
treatment predictor studies has yet to be established. Once
refined and validated, connectivity approaches may serve as
valuable analytic tools to test pathophysiological models of
anxiety and depression in neuroimaging treatment predictor
studies.

Approaches to Identify Treatment Responders

Neuroimaging treatment response predictor studies have
typically employed two different approaches to identifying
treatment responders. Investigators often make their decisions
on one of these two approaches in tandem with the image
analysis considerations discussed in the previous section. The
categorical approach of treatment responder identification cat-
egorizes subjects as either responders or non-responders based
on distinct post-treatment end-points (often via a threshold set
on a standard rating scale). Group image analyses are typically
performed to identify differences in baseline brain activity
indices between the clinically defined responder and non-
responder groups. By its nature the strict binary categorization
(e.g., responders or non-responders) of outcome can possibly
neglect subtle predictors of response. Another limitation of the
categorical approach is the requirement for a sufficient sample
size (adequate numbers of both responders and non-respond-
ers) to enable meaningful interpretation of the data. The other
approach, the continuous variable approach, obviates the need
for an operationalized definition of “responder.” The continu-
ous variable method employs covariate analyses of continu-
ously changing clinical variables with neuroimaging data. This
approach has been used in the majority of recent neuroimaging
treatment predictors studies (9,18,19,24,25). Of note, the con-
tinuous variable method tends to involve use of the general lin-
ear model, or simple Pearson product moment tests of
correlation. In this context, tests of covariance can be per-
formed to account for the contribution of nuisance variables
(sources of variance that may confound main effects). One
limitation of using the general linear model or Pearson correla-
tions is that they do not accommodate the possibility of a non-
linear relationship between brain imaging indices and clinical
outcomes. To obviate this limitation, use of non-parametric
tests of correlation may also be considered.
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TREATMENT PREDICTOR STUDIES IN AFFECTIVE 
DISORDERS

Neuroimaging Support for a Pathophysiological
Model of MDD

The prevailing pathophysiological model for MDD is
based on dysfunction within cortical-limbic networks. The
model is supported by an impressive convergence of data
from several lines of research including human neuroimag-
ing, lesion, deep-brain stimulation, post-mortem, and animal
studies. While there is considerable variability in the MDD
neuroimaging literature with respect to regions of interest,
laterality, and direction of change in brain activity, the most
consistent findings (7,8,26–33) support the model of primary
cortical-limbic dysfunction. The model describes the
depressed state as characterized by relative decreases in fron-
tal activity within the territories of the dorsolateral and ven-
tral prefrontal cortices. Concurrent increases in amygdalar,
orbitofrontal and mediodorsal thalamic activity have also
been associated with the depressed state. Aberrant interac-
tions among functionally and anatomically differentiated
circuits (e.g., limbic-thalamic-cortical and limbic-cortical-
striatal-pallidal-thalmic circuits) have been proposed to medi-
ate the depressed state (34–37). Structural neuroimaging
provides further support for this model of MDD, as focal
white matter lesions as well as decreased volumes of the fron-
tal cortex hippocampus, amygdala and basal ganglia in
depressed patients have been reported (33,38–41). In func-
tional neuroimaging studies, aberrant neutral-state activity in
the amygdala, basal ganglia, prefrontal and cingulate cortices
have been common findings in patients with affective disor-
ders (37,42,43). Interestingly some of the same regions impli-
cated in neutral state studies of MDD patients have also been
identified during functional imaging studies that used emo-
tion-induction paradigms (e.g., sad or depressed mood) in
healthy control subjects (44–49). Imaging studies of treat-
ment in MDD patients have demonstrated attenuation of
abnormalities in the amygdala, cingulate and prefrontal areas
following treatment (7,29,30,43,50–53). Taken together, the
findings from neuroimaging studies of brain structure, neutral
state activity, symptom provocation and treatment all merge
to support the pathophysiological model of cortical-limbic
network dysfunction in MDD.

Neuroimaging Treatment Response Predictor
Studies in MDD

The findings from neuroimaging treatment response predic-
tor studies in MDD have been consistent with the working
pathophysiological model for MDD. Several pharmacologic
treatment studies have demonstrated differences in neutral
state prefrontal and anterior cingulate activity to be associated
with clinical response. One early treatment predictor study of

MDD compared pre-treatment neutral state FDG-PET scans in
11 unipolar depressed outpatients with neutral state scans of 33
matched healthy control subjects (10). Six of the patients ran-
domized to venlafaxine or bupropion in a double-blind proto-
col were categorically identified as responders (defined by
“marked to moderate response” assessed by CGIS). Compared
to scans of healthy controls, voxel-wise analyses of responder
pre-treatment scans demonstrated responders to have lower
activity in bilateral temporal regions and broad regions of the
prefrontal cortex including the left middle frontal gyrus, both
pregenual and subgenual anterior cingulate cortex as well as
the orbitofrontal cortex. This pattern of lower pretreatment
activity was unique to the responders as it was absent in similar
analyses conducted in the non-responders (where the cerebel-
lum was the only region to exhibit lower pre-treatment activ-
ity). A finding of lower pre-treatment anterior cingulate
activity was also reported as predictive of efficacious treatment
response by Brody and colleagues (24). After treatment with
paroxetine (40 mg/day) 9 of 16 depressed outpatients were
categorized as responders (>50% improvement in HAM-D
and CGIS much or very much improved). Both SPM and
MRI-based ROI analyses were performed on neutral state
pre-treatment and post-treatment FDG-PET data. Lower
pre-treatment left ventral anterior cingulate activity was corre-
lated with greater improvement of HAM-D scores via SPM
analyses. In addition, ROI analyses demonstrated responders
to have greater change (reduction) in ventral lateral prefrontal
and orbitofrontal activity from pre-treatment to post-treatment
scans.

In contrast to lower pre-treatment anterior cingulate
activity as reported by Little et al. (10), and Brody et al.
(24), a principal finding of higher pre-treatment anterior
cingulate activity being predictive of pharmacologic response
in MDD inpatients was reported by Mayberg et al. (7). In that
study, responders (8 of 18 inpatients) were assessed by chart
review after six weeks of treatment. Antidepressant therapy
varied across subjects (e.g., bupropion, serotonin or tricy-
clic agents). Both SPM and MRI-based ROI analyses of
neutral state FDG-PET scans demonstrated greater pre-
treatment rostral (pregenual) anterior cingulate activity as
predictive of treatment response in responders compared to
healthy control subjects. The directional differences (higher
vs. lower pre-treatment activity) in the common regional
finding of the anterior cingulate cortex across these treat-
ment response predictor studies have been attributed to
methodological differences including sample types (inpa-
tient vs. outpatients), medications and rating instruments
used.

Sleep deprivation has been known to provide transient
relief from depressive symptoms in 30–60% of treatments
(54,55). Two neuroimaging response predictor studies by
Wu and colleagues have implicated the anterior cingulate
cortex with reduction in depressive symptoms after sleep
deprivation. In the first study, 15 unmedicated depressed
patients and 15 control patients were studied with FDG-PET
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scans during a continuous performance task before and
after a 30 – 35 hour period of sleep deprivation. Categorical,
ROI analyses of baseline scans demonstrated higher pre-
treatment amygdalar and anterior cingulate cortex activity in
the responders (n = 4; >40% improvement in HAM-D) when
compared to either normal controls or non-responders (56).
In the subsequent study by Wu and colleagues (55), 21 addi-
tional depressed patients and 11 additional healthy controls
underwent FDG-PET scans before and after sleep depriva-
tion, during an experimental protocol identical to the first
study. The two data sets were merged to yield a total of
12 sleep deprivation responders. Between-group compari-
sons of the merged data set were conducted with voxel-wise
SPM analyses. When compared to baseline scans of healthy
controls and non-responders, responders exhibited higher
pre-treatment activity in medial prefrontal, pregenual anterior
cingulate and subcallosal (subgenual) cortices. The anterior
cingulate findings are consistent with those reported by
Mayberg and colleagues (7).

The predictive value of pre-treatment anterior cingulate
activity has been extended to the surgical intervention of
severe treatment-refractory MDD. Dougherty and colleagues
conducted pre-surgical resting PET-FDG scans in patients
with treatment-refractory MDD before anterior cingulotomy
(19). On follow-up (12 month average) the surgical interven-
tion was associated with statistically significant changes in
BDI scores for the group, however only 4 of the 13 patients
exhibited a robust post-operative response (>50% improve-
ment in BDI). SPM based continuous variable regression
analyses were performed to test the relationship between
pre-treatment neuroimaging data and improvement in BDI
scores. Greater pre-treatment activity in the left subgenual
anterior cingulate cortex and left thalamus was correlated
with enhanced postoperative outcome. The subgenual
anterior cingulate finding is consistent with the findings of
Mayberg et al. (7) and Wu et al. (55), however the locus
identified in the surgical study was more ventral than the
loci reported to predict response to medication or sleep dep-
rivation. While differences in localization may be attributed
to the surgical subjects’ resistance to standard treatments
and other methodological differences, the pre-treatment
subgenual cingulate predictor in this neurosurgical study is
consistent with the cortical-limbic network model for MDD
proposed by Mayberg (57) and others (35,37). The predic-
tive thalamic locus observed in this neurosurgical study is
also consistent with the cortical-limbic network model, as
thalamic involvement in MDD has been reviewed elsewhere
(35,37,42,57), and changes in thalamic metabolism have
been reported in the pharmacologic treatment of MDD
(8,27,58). Despite strong concordance with other studies
and the prevailing model of MDD, the findings of this
initial MDD neurosurgical treatment response predictor
study should be considered as strictly preliminary, particu-
larly given the limited number and heterogeneity of patients
studied.

Neuroimaging Treatment Predictor Studies 
in Bipolar Disorder

While there are only a few published neuroimaging
treatment predictor studies in unipolar depression, there are
even fewer such reports in bipolar disorder. One study by
Ketter and colleagues (59) evaluated neutral state pre-/post-
treatment FDG-PET scans in a mixed group of patients
(bipolar I, bipolar II, and unipolar depression) who under-
went placebo-controlled trials of carbamazepine, nimodipine
or separate trials of both agents. Seven of 26 patients were
categorized as carbamazepine responders based on much or
very improved CGIS ratings. Compared to non-responders,
carbamazepine responders were shown to have greater pre-
treatment activity in the left insular cortex in between-group
voxel-wise SPM analyses. In contrast, relatively lower
pre-treatment insular cortical activity was associated with
superior nimodipine response. Interestingly, while a hetero-
geneous group of affective disordered patients was studied,
only bipolar patients (not unipolar depressed patients) dem-
onstrated the positive insular correlation to carbamazepine
response, suggesting disorder specific neural correlates of
treatment response in this instance.

TREATMENT RESPONSE PREDICTOR 
STUDIES IN OCD

Neuroimaging Support for a Pathophysiological
Model of OCD

One pathophysiological model of OCD describes
dysfunction in cortico-striato-thalamo-cortical (CSTC) circuitry
(60,61). In this model, OCD symptoms are hypothesized to
be mediated by dysfunctional interactions among compo-
nents within the CSTC circuit (e.g., caudate nuclei, thala-
mus, orbitofrontal and cingulate cortices). The findings
from several different neuroimaging modalities support the
model. For example, compared to healthy controls, OCD
patients have consistently demonstrated abnormal baseline
orbitofrontal, anterior cingulate and caudate metabolism
during PET and SPECT scans (62–65). Several morpho-
metric-MRI studies have identified volumetric abnormali-
ties in OCD patients involving the striatum, orbitofrontal
cortex and amygdala (66–70). Evidence from magnetic
resonance spectroscopy also points to relative deficiencies
of striatal and thalamic N-acetyl aspartate (a marker for
neuronal health) in patients with OCD (71–73). Moreover,
functional imaging studies employing symptom provoca-
tion and cognitive activation protocols have provided fur-
ther support for the CSTC model by revealing dynamic
activation or deficits in the striatum (particularly the cau-
date nuclei), thalamus, anterior cingulate and orbitofrontal
cortices (74–78).



38 K.C. EVANS ET AL.

annals of clinical psychiatry vol. 18 no. 1 2006

Neuroimaging Treatment Response Predictor
Studies in OCD

Consistent with the proposed CSTC model, several prospec-
tive neuroimaging studies of OCD patients have reported
significant inverse correlations between pre-treatment orbito-
frontal activity and subsequent response to serotonergic
reuptake inhibitors (12–14,16,17). Saxena and colleagues (17)
conducted FDG-PET scans in 20 OCD outpatients before and
after 8–12 weeks of paroxetine treatment (40 mg/day) with the
primary objective of identifying pharmacologic treatment asso-
ciated changes in regional brain activity. Eleven of the patients
met criteria for response (>25% Y-BOCS improvement).
Group (responders vs. non-responders) by condition (post-
treatment vs. pre-treatment) ROI analyses demonstrated
responders to have significantly lower activity, on post-
treatment scans in the right anterolateral orbitofrontal cortex
and the right caudate nucleus. While the authors were cautious
to report their findings related to treatment prediction as
“secondary, exploratory analyses,” their data set represents one
of the largest published in OCD neuroimaging. Consistent with
their a priori hypotheses, lower pre-treatment activity in both
the right and left orbitofrontal cortices was correlated with
greater improvement in Y-BOCS scores.

More recently, Rauch et al., (12) employed OCD symptom
provocation in parallel with a treatment predictors paradigm.
In this study, symptom provocation techniques (75) were
employed pre-/post-fluvoxamine treatment (300 mg/day)
during oxygen-15 (O-15) PET scans of four men and five
women with contamination-related OCD. Using Y-BOCS as a
continuous variable in voxel-wise SPM regression analyses,
the finding of lower orbitofrontal activity as a treatment predic-
tor was confirmed and extended as this inverse correlation was
observed in both neutral and provoked pre-treatment states.
This study additionally revealed bilateral pre-treatment activity
in the posterior cingulate cortex (PCC) to be positively corre-
lated with pharmacologic treatment response.

In addition to phramacotherapy, cognitive-behavioral ther-
apy (CBT) has been demonstrated as effective in the treatment
of OCD (79), in fact expert consensus has suggested CBT be
used as first-line treatment in most cases (80). Brody, Baxter
and colleagues have conducted several imaging studies to iden-
tify the neural predictors for CBT in OCD patients (13,15,16).
Their most recent study (16) compared outcome measures and
pretreatment FDG-PET scans in a cohort of OCD patients who
received CBT (10 weeks, n = 18) to a cohort of patients treated
with fluoxetine (60 mg/day, 10 weeks, n = 9). Following
treatment, mean symptom improvement as measured on
Y-BOCS, HAM-A and Ham-D was similar for both groups,
however the correlation of pre-treatment PET data with
symptom improvement demonstrated an inverse relationship
between groups. A priori ROIs (including caudate nuclei,
orbitofrontal and anterior cingulate cortices) were evaluated
with a multiple regression approach that demonstrated higher
pre-treatment activity in the left orbitofrontal cortex to be

correlated with improvement in Y-BOCS scores for patients
treated with CBT. A subsequent rank-order Kendall’s tau
correlation confirmed the association of higher pre-treatment
left orbital frontal activity with Y-BOCS improvement in the
CBT group and revealed lower pre-treatment left orbital frontal
activity associated with Y-BOCS improvement in the paroxet-
ine group. In addition to replicating the previous findings
of lower orbitofrontal pre-treatment activity predicting phar-
macologic response in OCD, the work of Brody et al. (16)
reveals an inverse relationship of higher pre-treatment orbito-
frontal activity predicting response to CBT.

Lastly, as in the treatment of MDD, surgical interventions
have been used in severe, otherwise treatment refractory cases of
OCD. Interestingly, in a neuroimaging response predictor study
of anterior cingulotomy for OCD, the predictive brain regions
were similar to those identified in pharmacologic trials. Rauch
and colleagues (18) acquired pre-surgical FDG-PET scans in
a cohort of 11 treatment-refractory OCD patients before anterior
cingulotomy. More than one third of the cases received signi-
ficant reduction in their symptoms (>25% improvement in
Y-BOCS) 6 months after anterior cingulotomy. Voxel-wise
SPM regression analyses using % change in Y-BOCS as a con-
tinuous variable, determined outcome to be positively correlated
with pre-operative activity in the right PCC. The stereotaxic
coordinates of the surgical PCC predictor locus were similar to
those observed for pharmacologic treatment (12). Similar to the
surgical findings in MDD, here again, we wish to emphasize that
the surgical findings in OCD should be treated as preliminary.

Neuroimaging Treatment Response Prediction; 
Differentiating MDD and OCD Phenotypes

This review has focused on neuroimaging studies that have
identified unique patterns of pre-treatment brain activity
thought to be predictive of treatment response in specific
diagnostic groups (e.g., MDD, OCD). A recent study by
Saxena et al. (25) sought to confirm differentiation in predictive
pre-treatment brain activity patterns between different diagnostic
groups (MDD and OCD) for the same medication. Both MRI-
based ROI and SPM approaches were used to evaluate pre-/
post-paroxetine treatment brain scans in 27 patients with OCD,
27 patients with MDD and 17 patients with comorbid OCD +
MDD. Pre-treatment activity in the right caudate nucleus was
uniquely correlated with symptom improvement in OCD
responders. In contrast to the findings in the OCD cohort,
symptom improvement in the MDD cohort was correlated with
higher pre-treatment activity in the midline prefrontal cortex,
extending to the rostral (pregenual) anterior cingulate and
lower pre-treatment activity in the right amygdala and thala-
mus. The correlation of the right caudate as predictive of treat-
ment response in OCD was novel, however consistent with the
CSTC model, as the caudate nuclei have been demonstrated as
having increased resting baseline activity in OCD patients
compared to controls and MDD patients (62,63). Moreover, the
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right caudate in particular, has been demonstrated to be active
during symptom provocation in OCD patients (74–76). The
anterior cingulate finding in the MDD cohort was consistent
with that reported by Mayberg et al. (7). Taken together, the
disorder-specific predictive data of Saxena et al. (25) provide
further evidence that MDD and OCD have different underlying
pathophysiology despite patients from the two different
diagnostic categories sharing therapeutic benefits from the
same pharmacologic agent.

SUMMARY AND FUTURE DIRECTIONS IN 
TREATMENT RESPONSE PREDICTOR STUDIES

The use of neuroimaging in the prediction of treatment
outcome is an exciting and evolving science. The results from
several of the studies in this review suggest that treatment
efficacy may be predicted by patterns of pre-treatment brain
activity. We wish to emphasize that our current state of knowl-
edge regarding the predictive value of the neuroimaging stud-
ies is however limited. As there are relatively few published
studies, most with small sample sizes, the findings reviewed
here should be considered as preliminary.

Some authors have speculated that this sort of data may
provide insight into the underlying pathophysiology of the
particular disorders being studied. For example we discussed
Mayberg’s association of treatment response to elevated
pre-treatment pregenual anterior cingulate activity (7). We
further discussed how such findings, when considered in the
context of converging lines of other evidence, might support
the prevailing cortical-limbic network model for MDD (81).
While the empirically derived associations between pre-
treatment brain imaging data and subsequent treatment
response may be of clinical value, it remains unclear as to what
these associations actually represent. One possibility is that
these patterns of brain activity serve to differentiate subtypes/
phenotypes within a diagnostic group that are more or less
responsive to a specific treatment. Yet another explanation
could be that the neuroimaging results represent otherwise
“healthy” regions serving in the capacity of compensatory or
surrogate role to support treatment efficacy. We hold optimism
that the use of connectivity analyses in future studies could
further elucidate the differential contribution of individual
brain regions within patterns of gross network activity.

Proceeding under the assumption that neuroimaging studies
can indeed identify patterns of brain activity that are predictive
of subsequent treatment response, to date, few disorders and
few treatments have been studied. Thus far, neuroimaging
treatment response predictor studies have been generally lim-
ited to the investigation of two diagnostic groups, MDD, the
most prevalent psychiatric disorder (82) and OCD, a disorder
with high rates of relapse (79). Future neuroimaging treatment
predictor studies would have great utility in diagnostic groups
where numerous treatment options exist and the costs (or risks)
of sub-optimal treatments are high. For instance, in the case of

post-traumatic stress disorder, there is a broad array of pharma-
cologic options, each of limited efficacy, and little basis for
choosing among the various treatment options for a given
patient. Hence, it would be of great value if a neuroimaging
test could provide predictive information that would guide
treatment selection from among the available options in a
given case. Beyond the exploration of neuroimaging treatment
predictor studies in various diagnostic groups, other clinical
considerations are likely to influence this line of research. For
example, neuroimaging predictor response studies could also
be of substantial utility in cases when a particular treatment has
relatively high associated risks and/or costs (e.g., psychiatric
neurosurgery, ECT). However, given the high cost of neuroim-
aging studies, it may be unrealistic to use neuroimaging predic-
tor response studies for less expensive, low risk treatments
such as medications. In addition, it is possible that clinical pre-
dictors of response may ultimately be a more cost effective
manner of choosing appropriate treatments.

In addition to potentially serving as a stand-alone or supple-
mentary clinical test, new neuroimaging paradigms are likely
to evolve to address further questions about how the brain
responds to psychiatric treatments. The current review has
summarized studies that followed ‘classic’ experimental para-
digms of comparing treatment outcome measures with pre-
treatment neuroimaging data subsequent to brief 6–12 week
treatment trials. Furmark and colleagues (83) recently con-
ducted a pre-/post-treatment O-15 PET study in patients with
social phobia that correlated acute treatment related changes in
regional brain activity to long-term (one year) clinical out-
come. A wide range of outcome predictor paradigms could
emerge in the spirit of Furmark and colleagues’ novel
approach. If characteristic post-treatment changes in brain
activity can be systematically correlated to symptom remission
after acute treatments, future neuroimaging studies could pos-
sibly address the prediction of symptom remission or relapse
on or off treatment. Still other paradigms that could provide
significant clinical value would be neuroimaging studies
designed to investigate acute brain changes related to treatment
outcome after a very brief treatment exposure (e.g., test dose of
medication, initial session of ECT, or CBT).

While replication has been imperfect among the initial stud-
ies of MDD and OCD comprising the neuroimaging treatment
response predictor literature, disorder specific trends of pre-
treatment brain activity associated with treatment response
have emerged. Future studies will be necessary to determine if
these findings can be reproduced and generalized. Moreover,
given the great costs associated with neuroimaging, clinical
neuroimaging tests will have to demonstrate some superiority
over other standard clinical tests and assessments if neuroim-
aging is to achieve genuine clinical utility in the treatment of
psychiatric illnesses. Lastly, further studies are needed to
determine whether the use of neuroimaging in the identifica-
tion of predictors of other aspects of outcome (e.g., adverse
effects, sustained remission, subsequent relapse, etc.) may
have broader clinical utility.
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