REVISED ASSIGNMENT OF OLEFINIC PROTON SIGNALS IN THE ¹H-NMR SPECTRA OF DIENOID-TYPE ERYTHRINAN ALKALOIDS¹

Yoshisuke Tsuda,*a Shinzo Hosoi,a Takehiro Sano,*b Hideki Suzuki,b and Jun Todab

Faculty of Pharmaceutical Sciences,^a Kanazawa University, 13-1 Takara-machi, Kanazawa 920, Japan and Showa College of Pharmaceutical Sciences,^b 3-3365 Higashi-tamagawagakuen, Machida-shi, Tokyo 194, Japan

<u>Abstract</u> — Previous assignment of the olefinic proton signals (H-1 and H-2) in the ¹H-nmr spectra of dienoid-type erythrinan alkaloids was interchanged on the basis of the synthesis of the stereoisomers, nOe experiments, and theoretical calculations.

Dienoid-type erythrinan alkaloids are known more than 40 species in the plants of Genus *Erythrina* (Leguminosae) and *Cocculus* (Menispermaceae). All of them bear 3α -methoxy (or hydroxy) group and exhibit three olefinic proton signals in the ¹H-nmr spectra at around δ 5.8, 6.0, and 6.5 (in CDCl₃) with the multiplicities

of broad singlet (s), doublet (d, J=10 Hz), and doublet-doublet (dd, J=10 and 2 Hz), respectively. The corresponding signals in the 8-oxo alkaloids appear at δ 6.0, 6.3, and 6.9 with similar multiplicities. These proton signals have been assigned as those of H-7, H-1, and H-

2, respectively, assuming that the vicinal coupling between Previous assignment

H-2 and H-3 β is ca. 2 Hz.^{3,4} However, recent synthesis of the various 3 β -isomers and 3,8-dioxo derivatives⁵⁻⁸ throw a doubt on the previous assignment, suggesting that the previous assignment for H-1 and H-2 has to be interchanged.

Olefinic Proton Signals of 3,8-Diones 3,8-Dioxo derivatives show the signals of H-7, H-1, and H-2 at ca. δ 6.4, 7.7, and 6.4 as s, d (J=10 Hz), and d (J=10 Hz), respectively. This assignment was supported by AM1 calculations⁹ of the electron densities of the corresponding positions and proved by observation of nOe's for 40: irradiations of the singlet at δ 6.26 and the doublet at δ 6.39 gave 4.7% and 10% enhancements of the intensity on the doublet signal at δ 7.56, respectively, while irradiation of the doublet at δ 7.56 produced 17% and 4% enhancements of the two protons at δ 6.26 (s) and 6.39 (d). The dimethoxy derivative (37) gave similar results.

Olefinic Proton Signals of 3β -Substituted Alkaloids All synthetic 8-oxo- 3β -methoxy (or 3β -hydroxy) alkaloids showed olefinic protons at similar positions with the corresponding 3α -isomers ($ca. \delta 5.9$, 6.3, and 6.8), but with different multiplicities of s, dd (J=10, 5 Hz), and d (J=10 Hz). Supposing the previous assignment is correct and the chemical shifts are comparable with those of 3α -isomers, the coupling constant of 5 Hz for H-1 is too large to assign as an allylic coupling with H-3 α , instead it is rather the value of a vicinal coupling, suggesting that this proton should be attributed to H-2. Thus olefinic protons should be assigned as shown in Figure 1. Removal of 8-oxo group from these compounds produced up-field shifts on the above protons by 0.1-0.2, 0.1-0.2, and 0.2 ppm as expected. Thus they are assigned as H-7, H-2, and H-1, respectively.

Olefinic Proton Signals of 3α -Isomers Since the chemical shifts of olefinic protons should not be much affected by the stereochemistry of the 3-OR substituents, the above evidence suggests that the olefinic proton signals at δ 5.8, 6.0, and 6.5 (for the natural alkaloids) should be assigned to H-7, H-2, and H-1, respectively. The corresponding signals for 8-oxo derivatives are at δ 6.0, 6.3, and 6.9. Comparing the latter values with those of 3,8-diones, the shift values are -0.4, -0.1, and -0.8 ppm, respectively, being compatible to the common shift rule. If the previous assignment was taken, those values were -0.4, +0.5, and -1.5 ppm, respectively, violating the common shift rule at H-2. Therefore, the small coupling (2-2.5 Hz) for H-1 is attributed to an allylic coupling between H-1 and H-3 β , and the vicinal coupling constant between H-2 and H-3 β is 0 Hz, suggesting the dihedral angle between H-3 β and H-1 (and H-2) is ca. 90°. In contrast, $J_{2,3\alpha}$ =4-5 Hz and $J_{1,3\alpha}$ (allylic)=0 Hz for 3 β -isomers.

This revised assignment (listed in Table I) was proved by nOe experiments for 16 and 31, although decoupling experiments did not give a definite conclusion. For 16, irradiation of the proton at δ 6.69 produced 4.4% and 9.5% enhancements on the signals at δ 5.86 and 6.31, while irradiation of either proton at δ 5.86 or 6.31 resulted in an nOe enhancement only on the poton at δ 6.69 by 3.7% or 11%. For 31, nOe enhancements between H-7 at

Table I. Revised Assignment of Olefinic Protons for Dienoid-type Erythrinan Alkaloids (in CDCl3)

 N	Vame@ I	 []-[1	3-OR			 [-H		7-н		 <i>L</i> •Н	.ləı
	R Series	•	,								-
	Erysotrine Erybraline	a.	ω-OMe			,bb)82.8		,b)89.2		(2 1d)07.c	(51
	Erythraline Coccuvinine	C B	11 44			,bb)26.8 ,bb)82.8		5.99(d,		(a 1d)£7.č (a)\$7.č	(9 (11
, t	ATTITUDE A PARAGO	Œ	**			,bb)&&.0		,b)76.8		(s)27.č (s)17.č	(9 (0
	anibioutly13-10	4	10 10				(5.2,01,	,b)88.č		(s 1d)č7.č	(†I
-	\$-Erythroidine	Ð	н н			,bb)44.8		,b)09.č		(s)17.č	[7]
	Erythravine	¥	α-OH			'PP)/2:9		(b)20.8		(a 1d)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(71
	Erythristemine	٧		11B-OMe		,bb)82.8		±d)89.≿		(a 1d)80.č	
-	AIIIII		ature =	aruso de s		6.32(dd,		,b)88.č		#(a 1d)86.6	(٤
9 E	Етуthтатіле	٧	aMO-x	HO-q11			, 10, 2.5)	td)90.6		(a 1d)08.č	(† (c
-	Erythrascine	A	** **	5ΑΟ-811			, 10, 2.5)	1d)26.č		(2 1d)80.c	(9 I
	Егу thrinine	В		HO-811			, 10, 2.5)	1d)00.8		(2 1d)27.č	11)
	Erysotramidine	٧	ω-OMe		O=8	'PP)06'9		1d)\$£.8		(s)20.9	(† (**
	8-Oxocrythraline	В	H H		O=8	,bb)68.8		1d)2C.0		(s)00.0	(ç (+-
	Coccolinine	õ	* *		O=8	,bb) 68.8		rd)0£.8		(a)£0.6	(9 (c
S		D			O=8	,bb)88.a		,b)0£.8		(a)\$0.8	(9
91		E	п н		O=8	'pp)69'9		,b)1£.6	(01	(s)98.č	(8
8 L	8-Oxo-α-erythroidine	ь	61 61		O=8	'PP) <i>†L</i> '9	(2 '01 '	6.25(d,	(01	(s)20.9	14)
_	9-Охо-В-егуплоідіпе				O=8		15, 2.5)	,b)22.6		(2)96.5	14)
6		Ĥ			O=8	,bb)£7.8		P)0E.9		(s)20.8	(8
0		1			O=8	,bb)86.6		,b)&2.6		(s)26.c	(8
Į.		Ā	HO-20		O=8	,bb)19.6		1d)0£.8		(8)00.0	(5
	8-Oxoerythrinine	B		HO-qu	O=8	,bb)&8.8		1d)4E.3	-	(a)£0.8	13)
	Erytharbine	٧	aMO-x		O=8	'pp)96 [.] 9	(5.2 ,01 ,	1d)č£.3	(OT 'P	(s)80.0	(†
O #	Crystamidine	В	α-OMe		O=8	,bb)£9.8	(5.2,01,	1d)\\\ £.\\	(OT 'P	(s)70.8	13)
S		٧	α-ОН	01₽	O=8	,bb)86.6	(2,01,	6.32(d,	(01	(s)60.9	(L
9		В	м-ОН	010	O=8	(pp)16.9	(2,01,	(a,29(d,	(01	(s)70.8	(L
ЯO-	Series									•	
L		٧	9∙OMe			b)07.8	(01	,bb)&1.8	(2,01,	(a)08.č	(ç
8		В				(b)76.8			(2,01,	(2 rd) \$8.5	(ç
6		¥	11 11		O=8	6.92(br	(OI 'P	,55(dd,	(\$ '01 '	(s)46.c	(ç
Ô		B	14 14		O=8	(b)68.8			(\$ '01 '	(s)36.c	(ς
Z		H	D 10		O=8 O=8	(P)0L'9		,bb)&&.3		(a)08.č	(8
£		I			O=8	(p) <i>LL</i> '9		,bb)&&.8 ,bb)&%.6dd,	(7'01'	(s)89.č (s)č8.č	(8 (8
Þ		α	HO-8		O=8	(p)£6'9			(2,01,	(2)20.9	(9
S		Ε			O=8	(p)07.3			(10,4)		(8
9		٧	∍MO-8	014	O=8	(b)26.9				(z)00.8	(L
	oxo Derivatives:		=8 ,O:	-							
Ľ		Ā				(b)&T.T		(b)[4.6		(s)9£.9	(ç (ç
8		Я				b)2 <i>L'L</i>		(b)25.8		(8)86.8	(¢
0 6		EC				['p)9 <i>5".L</i> ['p)9 <i>5".L</i>		.5)8£.8 ,5)6£.8		(s)8£.ð (s)62.6	(9 (8
I		H				(p)£9.7		(b)\46.8		(8)[4](9)	(8
Z		I				(p)\$\$'L		,b)££.8		(s)2E.3	(8
		A		01∆		'PP)\$8'L	(1 01	'p)/E.3	(0)	(s)94.9	(L

The assignment in the references must be revised as those shown in this Table.

* The assignment in the references must be revised as those shown in this Table.

The values in benzene- d_6 .

 δ 5.80 and H-1 at δ 6.70 (4.4%) and between H-1 and H-2 at δ 6.33 (11-13%) were observed. Theoretical calculations also supported the above assignment: the electron densities calculated by AM19 for a model compound of 3-OR structure revealed that the order is C-7>C-2>C-1.

The above assignment is applicable not only to aromatic alkaloids but also to non-aromatic ones such as erythroidines, in which H-1 and H-2 appeared at slightly higher field than those of aromatic alkaloids.

Atom electron density

For homoerythrinan alkaloids of dienoid-type, Johns and co-workers¹⁰ assgined the olefinic protons of H-1, H-2, and H-7 at ca. δ 6.2, 5.8, and 5.5 (in benzene-d6), based on detailed decoupling experiments of the 3 α - and 3 β -isomers. This is in agreement with our revised assignment for erythrinan alkaloids.

$$H^3$$
 L^2 H^7 L^7 L^7

Figure 1

REFERENCES

- Part XXXVIII of Synthesis of Erythrina and Related Alkaloids. Part XXXVII: S. Hosoi, K. Ishida, M. Sangai, and Y. Tsuda, Chem. Pharm. Bull., 40, in press.
- S. F. Dyke and S. N. Quessy, "Erythrina and Related Alkaloids", in "The Alkaloids" ed. by R. G. A. Rodrigo, Vol. 18, p. 1, 1981, Academic Press., New York.
- D. H. R. Barton, P. N. Jenkins, R. Letcher, and D. W. Widdowson, J. Chem. Soc. Chem. Commun., 1970, 391.
- 4. K. Ito, H. Furukawa, and M. Haruna, Yakugaku Zasshi, 1973, 93, 1617.
- 5. T. Sano, J. Toda, N. Kashiwaba, T. Ohshima, and Y. Tsuda, Chem. Pharm. Bull., 1987, 35, 479.
- 6. T. Sano, J. Toda, N. Maehara, and Y. Tsuda, Can. J. Chem., 1987, 65, 94.
- 7. Y. Tsuda, S. Hosoi, F. Kiuchi, T. Sano, J. Toda, and R. Yamamoto, Heterocycles, 1984, 22, 2255.
- 8. T. Sano, J. Toda, M. Shoda, R. Yamamoto, H. Ando, K. Isobe, S. Hosoi, and Y. Tsuda, *Chem. Pharm. Bull.*, 1992, 40, 3145.
- 9. MOPAC Ver. 5.00 (QCPE No. 445), J. J. P. Stewart, QCPE Bull. 1989, 9, 10; Tsuneo Hirano, JCPE

News letter, 1989, 1, 36; Revised as Ver. 5.01 by Jiro Toyoda, for Apple Macintosh.

- a) J. S. Fitzgerald, S. R. Johns, J. A. Lamberton, and A. A. Sioumis, Aust. J. Chem., 1969, 22, 2187; b)
 S. R. Johns, J. A. Lamberton, and A. A. Sioumis, ibid., 1969, 22, 2219.
- 11. K. Ito, H. Furukawa, and M. Haruna, Yakugaku Zasshi, 1973, 93, 1211.
- 12. K. Ito, M. Haruna, Y. Jinno, and H. Furukawa, Chem. Pharm. Bull., 1976, 24, 52.
- 13. E. Dagne and W. Steglich, Phytochemistry, 1984, 23, 449.
- 14. A. S. Chawla, A. H. Jackson, and P. Ludgate, J. Chem. Soc., Perkin Trans. I, 1982, 2903.
- 15. K. Ito, H. Furukawa, and M. Haruna, Yakugaku Zasshi, 1973, 93, 1611.
- 16. S. Ghosal, A. Chakraborti, and R. S. Srivastava, Phytochemistry, 1972, 11, 2101.
- 17. D. S. Millington, D. H. Steinman, and K. L. Rinehart. Jr., J. Am. Chem. Soc., 1974, 96, 1909.

Received, 27th October, 1992