A NEW ROUTE TO 8-SUBSTITUTED PYRROLIZIDINES

Seiji Miyano,* Osamu Yamashita, Shinichiro Fujii, Takao Somehara, and Kunihiro Sumoto Faculty of Pharmaceutical Sciences, Fukuoka University, Nanakuma, Nishi-Ku, Fukuoka 814, Japan

Fumio Satoh and Toru Masuda

Laboratory of Chemistry, Suntory Institute for Biomedical Research, Shimamoto-Cho, Mishima-Gun, Osaka 618, Japan

Abstract - A new route to 8-substituted pyrrolizidines starting with $\Delta^{4\,(8)}$ -dehydropyrrolizidinium perchlorate is described.

Whereas one route to 8-substituted pyrrolizidines has been known, it suffered from disadvantages particularly of limited scope of the reaction, low overall yields, and use of high pressure hydrogenation devices^{2,3}. Starting with $\Delta^{4(8)}$ -dehydropyrrolizidinium perchlorate ($\underline{1}$) which is now available in this laboratory⁴, we have successfully developed a new general route to 8-substituted pyrrolizidines.

Thus, 8-cyanopyrrolizidine $(2)^4$, easily prepared from 1 and KCN in water, was converted to a new pyrrolizidinecarboxylate $(3)^5$, bp 106-110° C/ 22 mmHg, by refluxing in 20 % hydrogen chloride in ethanol containing 1 equiv. of water for 13 h. The yield was 82 %. Treatment of the carboxylate (3) with LiAlH4 in anhydrous ether afforded 8-hydroxymethylpyrrolizidine $(4)^2$ in 75 % yield as a colorless oil. The direct reduction of the compound (2) with LiAlH4 in anhydrous ether gave a new diamine; 8-aminomethylpyrrolizidine (5) in good yield. In these results, it is noteworthy that the reduction of 2 with LiAlH4 gave the diamine (5) in contrast to the fact that the reduction of the higher congeners, 10-cyanoquinolizidine and 9-cyanoindolizidine (6), only resulted

in the formation of quinolizidine and indolizidine, respectively, with splitting of the cyano group. The Grignard reaction of the iminium perchlorate ($\underline{1}$) with benzylmagnesium bromide gave 8-benzylpyrrolizidine (6) in 83 % yield.

Scheme 1

Table. 8-Substituted Pyrrolizidines.

Compound	R	Yield (%) ^a	Bp (°C)[mmHg]	Mp (°C)
2	CNp	83 (<u>1</u>)	93-94 [5]	225-226 (dec.) ^d
<u>3</u>	COOEt	82 (<u>2</u>)	106-110 [22]	
4	СН ₂ ОН ^С	75 (<u>3</u>)	76-77 [3]	249-253 (dec.) ^e
<u>.5</u>	CH ₂ NH ₂	76 (<u>2</u>)	103-104 [30]	216-218 (dec.) ^f
<u>6</u>	CH ₂ Ph	83 (<u>1</u>)	172 [43]	171-172 ^e
<u>8</u>	CH ₂ CN	65 (<u>7</u>)	143-144 [32]	227-231 ^e
<u>9</u>	CH ₂ COOMe	80 (<u>8</u>)	92-93 [7]	100-103 ^g
<u>10</u>	CH ₂ CH ₂ OH	88 (<u>9</u>)	93.5-94.5 [5]	208-211 ^e
11	CH ₂ CH ₂ NH ₂	84 (<u>8</u>)	87-88 [6]	200 ^{h,1}

a Yields were based on the compounds in brackets.

- b Values are from Ref. 4.
- c Known compound, see Ref. 2 .
- d As methiodide.
- e As picrate.
- f As dipicrate.
- g As hydrochloride.
- h As dihydrochloride.
- i With sublimation.

On the other hand, $\triangle^{1(8)}$ -dehydropyrrolizidine $(\underline{7})^{4,8}$ liberated on treatment of the iminium perchlorate $(\underline{1})$ with sodium hydroxide in ether is of potential reactivity. Refluxing the enamine $(\underline{7})$ with cyanoacetic acid in dioxane afforded 8-cyanomethylpyrrolizidine $(\underline{8})$ in 65 % yield, which in turn gave $\underline{9}$, $\underline{10}$, and $\underline{11}$ according to the conventional processes as shown in Scheme 2.

$$(3) \xrightarrow{\text{COOH}} (3) \xrightarrow{\text{MeOH/H}_2\text{SO}_4} (9) \xrightarrow{\text{LiAlH}_4} (10)$$

$$(11)$$

Scheme 2

Thus, in terms of easily available starting materials, high overall yields, and Variety of substituents, a convenient route to various 8-substituted pyrrolizations is now provided.

References and Notes

- Part IV in the series of studies on pyrrolizidines and related compounds. For Part III, see
 Miyano, S. Fujii, O. Yamashita, N. Toraishi, K. Sumoto, F. Satoh, and T. Masuda, <u>J. Org. Chem.</u>, in press.
- 2. N.J. Leonard and G.L. Shoemaker, J. Am. Chem. Soc., 71, 1762 (1949).
- N.J. Leonard and K.M. Beck, <u>J. Am. Chem. Soc.</u>, <u>70</u>, 2504 (1948); N.J. Leonard, L.R. Hruda, and
 F.W. Long, <u>1bid.</u>, <u>69</u>, 690 (1947).
- S. Miyano, T. Somehara, M. Nakao, and K. Sumoto, Synthesis, 701 (1978); K. Sumoto, S. Fujii,
 Yamashita, T. Somehara, and S. Miyano, J. Het. Chem., in press.
- 5. I.R. (liq. film): 1740 cm⁻¹ (ester C=O), N.M.R. (CDCl₃, TMS as an internal standard): 64.18 (q, 2H, J=7.0 Hz, -OCH₂CH₃), 1.26 (t, 3H, J=7.0 Hz, -OCH₂CH₃), and 1.4-3.3 ppm (m, 12H, pyrrolizidine ring protons), Mass (m/e) 183 (M⁺), Anal. Calcd. for Cl₀H₁₇NO₂: C,65.54; H,9.35; N,7.64. Found: C,65.35; H,9.43; N,7.89.
 - The other new products listed in Table were adequately characterized by elemental analysis and spectroscopic methods.
- N.J. Leonard and R.R. Sauers, <u>J. Am. Chem. Soc.</u>, <u>79</u>, 6210 (1957); N.J. Leonard and A.S. Hay, <u>1bid.</u>, <u>78</u>, 1984 (1956).
- 7. M.G. Reinecke and R.G. Daubert, <u>J. Org. Chem.</u>, <u>38</u>, 3281 (1973); M.G. Reinecke and R.F. Francis, <u>ibid.</u>, <u>37</u>, 3494 (1972), and also see reference 4. The reduction of 9-cyanoindolizidine with

 \mbox{LiAlH}_4 in anhydrous ether gives indolizidine in quantitative yield (unpublished work in this laboratory).

8. Y. Arata, K. Tanaka, S. Yoshifuji, and S. Kanatomo, <u>Chem. Pharm. Bull.</u>, <u>27</u>, 981 (1979).

Received, 7th February, 1981