THE ABSOLUTE CONFIGURATION OF (+)-THALICTRICAVINE

Kinuko Iwasa and Mark Cushman*

Department of Medicinal Chemistry and Pharmacognosy, School of Pharmacy and Pharmacal Sciences, Purdue University, West Lafayette, Indiana 47907

Abstract. (+)-Thalictricavine (7) and (+)-canadine (1) have been synthesized from an optically resolved (+)-13-carboxy-7,8,13,14-tetrahydro-8-oxoprotoberberine 15. This establishes the absolute configuration of (+)-thalictricavine (7) as 13S, 14R.

The absolute configurations of the tetrahydroprotoberberines 1 [e.g. (+)-canadine (1)], 13-hydroxy-tetrahydroprotoberberines 2 [e.g. (-)-ophiocarpine (2) and (-)-epiophiocarpine (3)], and 8-methyl-tetrahydroprotoberberines 3 [(+)-coralydine (4) and (+)-0-methylcorytenchirine (5)] are known from chemical correlations, rotational data, or x-ray crystallography. The naturally occurring (+)- 15 -13-methyltetrahydroprotoberberines (6 -14) are believed to have the absolute configurations portrayed here on the basis of rotational data 4 or circular dichroism 5 with the assumption that the axial 13-methyl groups do not make a significant contribution to the molecular rotation. We recently executed a total synthesis of (1)-thalictricavine (7) and (1)-canadine (1) from a common intermediate (1)- 15 . This work suggests that the absolute configuration of (+)-thalictricavine (7) could be determined by correlation with (+)-canadine (1) of known absolute configuration provided the intermediate 15 could be resolved and methods could be found for its conversion to optically active compounds 7 and 1 .

The (\pm) -13-carboxy-8-oxotetrahydroprotoberberine $\underline{15}$ afforded a crystalline salt, mp 164-171°C, $[\alpha]_D$ +168° (c = 0.11, CHC13) when treated with (-)-strychnine in acetone. One recrystallization from acetone afforded optically pure material, $[\alpha]_D$ +174° (c = 0.086, CHCl3). The free acid (+)- $\underline{15}$, mp 242-243°C, $[\alpha]_D$ +412° (c = 0.08, CHCl3) yielded an optically impure (+)-lactam $\underline{16}$, mp 214-215°C, $[\alpha]_D$ +48° (c = 0.11, CHCl3) when heated at 240-244°C for 5 min. Lithium aluminum hydride reduction of $\underline{16}$ gave (\pm)-canadine ($\underline{1}$), mp 167-168°C, and optically impure (+)-canadine of mp 118-157°C, $[\alpha]_D$ +86° (c = 0.086, CHCl3). This established the absolute configuration of (+)- $\underline{15}$. The (+)-methyl ester $\underline{17}$, mp 176-177°C, $[\alpha]_D$ +398° (c = 0.082, CHCl3) was obtained by treatment of (+)- $\underline{15}$ with diazomethane. Lithium aluminum hydride reduction of (+)- $\underline{17}$ provided the amino alcohol (+)- $\underline{18}$, mp 199-200°C, $[\alpha]_D$ +278° (c = 0.07, CHCl3). Reduction of the mesylate of (+)- $\underline{18}$ with lithium aluminum hydride afforded (+)-thalictricavine ($\underline{7}$), mp 149-150°C, $[\alpha]_D$ +312° (c = 0.056, CHCl3), lit.8 $[\alpha]_D^{23}$ +291.9° (c = 0.555, CHCl3), whose infrared spectrum (CHCl3) was identical with that of authentic (\pm)-thalictricavine. The absolute configuration of (+)-thalictricavine is therefore 135, 14R as shown in structure $\underline{7}$.

Certain <u>cis-</u> and <u>trans-13-methyltetrahydroprotoberberines</u> are converted to $benzo[\underline{c}]phenanthridines [e.g. (+)-corynoline ([19]) and (+)-14-epicorynoline ([20])] <u>via</u> the protopines [e.g. corycavine ([21])] in the plant and the tissue culture. ⁹ Elucidation of the stereochemistry of (+)-<u>cis-</u>tetrahydroprotoberberines is important in considering the mechanisms of this biosynthetic conversion.$

Acknowledgment. This investigation was supported by Grant CA19204, awarded by the National Cancer Institute, NIH.

REFERENCES

- 1. H. Corrodiand and E. Hardegger, Helv. Chim. Acta., 1956, 39, 889.
- 2. M. Ohta, H. Tani, and S. Morozumi, Chem. Pharm. Bull., 1964, 12, 1072.
- 3. H. Bruderer, J. Metzger, and A. Brossi, Helv. Chim. Acta., 1975, 58, 1719; H. Bruderer,
 - J. Metzger, A. Brossi, and J.J. Daly, <u>Helv. Chim. Acta.</u>, 1976, 59, 2793.
- 4. P.W. Jeffs, Experientia, 1965, 21, 690.
- 5. G. Snatzke, J. Hrbek, Jr., L. Hruban, A. Horeau, and F. Šantavy, Tetrahedron, 1970, 26, 5013.
- 6. M. Cushman and F.W. Dekow, <u>J. Org. Chem.</u>, 1979, 44, 407.
- 7. M. Cushman, J. Gentry, and F.W. Dekow, <u>J</u>. <u>Org</u>. <u>Chem.</u>, 1977, 42, 1111.
- 8. R.H.F. Manske, J. Amer. Chem. Soc., 1953, 75, 4928.
- 9. N. Takao, K. Iwasa, M. Kamigauchi, and M. Sugiura, Chem. Pharm. Bull. (Tokyo), 1976, 24, 2859.

Received, 17th February, 1981