N,N'-DIALKYL-PYRAZINIUM AND QUINOXALINIUM SALTS. N-HETEROCYCLIC
REDOX SYSTEMS WITH THE RADICAL CATION INTERMEDIATE AS MOST PERSISTENT
OXIDATION STATE

Wolfgang Kaim

Institut für Anorganische Chemie, Niederurseler Hang, D-6000 Frankfurt am Main 50, Federal Republic of Germany

<u>Abstract</u> - Two-step redox systems with the cation radical intermediate as most persistent oxidation state were found in electrochemical and ESR studies of the title compounds. The potentials measured in $\rm H_2O$ and DMF range from -0.7 V to +0.7 V vs. saturated calomel electrode.

N-Heterocyclic two-step redox systems 1 M⁺⁺ $\stackrel{E_1}{=}$ M⁺ $\stackrel{E_2}{=}$ M with potentials in the range between -1 V and +1 V are being widely used as herbicides, 2 in bioelectrochemistry, 3 or in solar energy conversion research, 4 two of the most prominent examples are the N,N'-dimethyl-4,4'-bipyridinium (methylviologen, paraquat) salts ($\underline{1}$) and the phenazinium systems ($\underline{2}$).

$$Me - N$$

$$(\underline{\underline{1}})$$

$$(\underline{\underline{1}})$$

$$(\underline{\underline{2}})$$

$$(\underline{\underline{2}})$$

We have now studied the redox behaviour of N,N'-diethylpyrazinium $(\underline{3})^{5a}$ and of some N,N'-dialkylquinoxalinium systems $(\underline{3}-\underline{6})$ in water and in an aprotic medium (dimethylformamide, DMF); the dication salts were obtained as tetra-fluoroborates from trialkyloxonium alkylation. 5b

$$(\underline{3}) \qquad (\text{oxidized forms})$$

$$(\underline{4}), R^{1} = \text{Me}, R^{2} = \text{He}$$

$$(\underline{5}), R^{1} = \text{Et}, R^{2} = \text{He}$$

$$(\underline{6}), R^{1} = R^{2} = \text{Me}$$

Cyclic voltammetry reveals that, in some instances, the paramagnetic openshell "intermediates" $M^{\frac{1}{2}}$ are the only persistent species in these redox systems:

Figure 1. Cyclovoltammogram of system (3) in water, 100 mV/s scan rate.

This unusual situation is a result of the lability of the diamagnetic oxidation states: Whereas the dications with their positive charges concentrated in one six-membered ring may undergo a facile nucleophilic attack by the solvent, the neutral 1,4-dihydro species are destabilized by cyclic 8 π electron conjugation ("antiaromaticity"). Table 1 shows how potentials and reversibility depend on the solvent and on the substitution.

In agreement with the electrochemical results the solutions of the systems $(\frac{3}{2})$ - $(\frac{5}{2})$ e.g. in water are strongly paramagnetic. Well resolved ESR spectra were obtained upon dilution, and analysis by computer simulation gave the following hyperfine coupling constants (in μ T): $(\frac{3}{2})$ a(2N) 850, a(4H) 540, a(4H) 290, a(6H) 23; $(\frac{4}{2})$ a(2N) 742, a(6H) 690, a(2H) 370, a(2H) 142, a(2H) 92; $(\frac{5}{2})$ a(2N) 763, a(4H) 407, a(2H) 360, a(2H) 136, a(2H) 99.

Table 1. Peak	potentíals ^a E ^{pa}	(anodic)	and Epc	(cathodic)	of r	edox	systems
(<u>3</u>)	- (6) from cyclic	voltamm	etry ^b				

redox system	solvent	E ^{pa}	E ^{pc} ₂
(<u>3</u>)	DMF H ₂ O	+0.35 ir. +0.15 ir.	-0.50 gr.
(<u>4</u>)	DMF H ₂ O	+0.62 r. +0.47 qr.	-0.25 qr. -0.42 ir.
(<u>5</u>)	DMF	+0.58 r.	-0.29 r.
(<u>6</u>)	D MF Н ₂ О	+0.01 ir.	-0.40 r.

^a Volts vs. SCE; processes are characterized as reversible (r.), quasi-reversible (qr.), or irreversible (ir.). ^b Glassy carbon working electrode, scan rate 100 mV/s, concentration of substrate ca. 10^{-4} M in DMF/0.1 M Bu₄N⁺ClO₄ or H₂O/O.1 M KCl.

The radical cations of systems $(\underline{3})$ - $(\underline{5})$ absorb at higher energies than the violenes, i.e. the radical cations of system $(\underline{1})$; first absorption maxima were found at 350 nm $(\underline{3})$ and at 415 nm $(\underline{4},\underline{5})$.

Methyl substitution in $(\underline{6})$ alters the redox behaviour considerably: Steric interference of four vicinal methyl groups in the structurally flexible 7,8 1,4-diazine system leads to a stabilization of the reduced 1,4-dihydro form and to a decreasing potential range for the radical intermediate, similar effects were observed for the flavin redox system 9 which contains a quinoxalinium moiety. We are currently investigating the application potential of these redox systems, including their use as positively charged spin labels.

ACKNOWLEDGEMENTS

Support from Deutsche Forschungsgemeinschaft (DFG), Fonds der Chemischen Industrie, FAG Frankfurt/Main and a Karl Winnacker Fellowship are gratefully acknowledged. For electrochemical measurements and helpful discussions I would like to thank Dr. U. Lechner-Knoblauch.

REFERENCES

- 1. S. Hünig and H. Berneth, Top. Curr. Chem., 1980, 92, 1.
- 2. L. A. Summers, "The Bipyridinium Herbicides", Academic Press, New York, 1980.
- R. F. Nelson, D. W. Leedy, E. T. Seo, and R. N. Adams, Z. Anal. Chem., 1967, 224, 184; R. C. Prince, S. J. G. Linkletter, and P. L. Dutton, Biochim. Biophys. Acta, 1981, 635, 132.
- M. Kirch, J. M. Lehn, and J. P. Sauvage, <u>Helv. Chim. Acta</u>, 1979, 62, 1345;
 M. Grätzel, <u>Acc. Chem. Res.</u>, 1981, 14, 376.
- 5. (a) T. J. Curphey and K. S. Prasad, J. Org. Chem., 1972, 37, 2259.
 - (b) 1 H-NMR (CF₃COOD): (4) δ 5.15 (s, 6H), 8.85 (m, 4H), 10.07 (s, 2H);
 - (5) & 2.04 (t, 6H), 5.60 (q, 4H), 8.87 (m, 4H), 10.10 (s, 2H);
 - $(\underline{6})$ δ 3.53 (s, 6H), 5.02 (s, 6H), 8.70 (m, 4H).
- 6. J. E. Dickeson, I. F. Eckhard, R. Fielden, and L. A. Summers, <u>J. Chem. Soc.</u>,

 Perkin Trans. 1, 1973, 2885.
- 7. W. Kaim, J. Am. Chem. Soc., 1983, 105, 707.
- W. Kaim, <u>Angew. Chem.</u>, 1983, 95, 201; <u>Angew. Chem. Int. Ed. Engl.</u>, 1983,
 22, 171; <u>J. Mol. Struct. (Theochem)</u>, 1984, 109, 277.
- 9. F. Müller, Top. Curr. Chem., 1983, 108, 71.

Received, 4th February, 1985