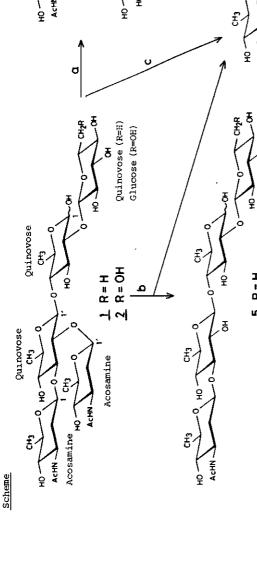
STRUCTURAL INVESTIGATION OF AN ANTIBIOTIC SPORAVIRIDIN ${\rm III}^1$. STRUCTURES OF VIRIDOPENTAOSE A AND C

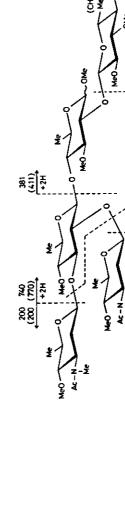

Ken-ichi Harada, Susumu Ito, Toshiaki Murase, and Makoto Suzuki*
Faculty of Pharmacy, Meijo University, Tempaku, Nagoya 468, JAPAN

Abstract — Viridopentaose A $(\underline{1})$ and C $(\underline{2})$ are new heteropenta-saccharides, degradation products of sporaviridin. These structures were established by chemical degradative reactions, mass spectrometry, and 13 C-NMR spectroscopy.

In the course of structural investigation of an antibiotic sporaviridin (SVD) 2 , we obtained three heteropentasaccharides, viridopentaose A, B, and C on hydrolysis of N-acetylsporaviridin with aqueous ammonia. The structure of viridopentaose B has been determined with the detailed analysis of 13 C-NMR spectra 1 . The present communication deals with structural characterization of the remaining two pentasaccharides, viridopentaose A and C.

Viridopentaose A ($\underline{1}$), mp 198-201°(dec.), $C_{34}H_{58}N_{2}O_{19}\cdot 3H_{2}O$, [α] $_{D}^{20}$ -45.7°(c 0.3, MeOH), IR(KBr): 3500-3200 cm⁻¹(OH/NH), 1650 cm⁻¹(CO), 1 H-NMR(CD $_{3}$ OD): δ 1.98 (NHCOCH $_{3}$), was a faintly hygroscopic white powder. Acidic methanolysis of $\underline{1}$ with methanolic hydrogen chloride (1.6%, reflux, 8hr), followed by neutralization and evaporation gave a mixture which was fractionated chromatographically yielding each anomeric pair of methyl 3-acetamido-2,3,6-trideoxy- \underline{p} -arabino-hexopyranoside (methyl N-acetyl- \underline{p} -acosaminide, $\underline{3}$) and methyl 6-deoxy- \underline{p} -glucopyranoside (methyl \underline{p} -quinovoside, $\underline{4}$) in 2:3 moler proportions.

Field desorption (FD) mass spectrum of $\underline{1}$ showed a protonated ion peak (MH⁺) at m/z 799 and a cluster ion peak (M+Na)⁺ at m/z 821, which indicated the molecular weight of $\underline{1}$. Furthermore, chemical ionization (CI) mass spectra of the permethylated viridopentaose A using isobutane and ammonia as reagent gas gave the useful structural informations. Thus a protonated molecular ion peak (MH⁺) was observed at m/z 939 and the fragment ion peaks at m/z 740, 541, and 381 were consistent with tetra-, tri-, and di-saccharide ions, respectively, which were available for the determination of the sequence of the monosaccharide units mentioned above (Figure).



<u>6</u> R=H 9 R=0H

4hr

20°C

c: 4.5% HCl (aqueous) -MeOH

Sequence ions in chemical ionization mass spectra of permethylated viridopentaose A and $\ensuremath{\mathsf{C}}$ Figure

189 (219)

± (§§§

200 740 (770)

The degradative reactions of $\underline{1}$ by use of the condition(b) and (c) gave tetrasaccharide 5, mp $207-209^{\circ}$ (dec.) and trisaccharide 6, mp $235-238^{\circ}$ (dec.) (Scheme).

Viridopentaose C (2), mp 191-193°(dec.), $C_{34}H_{58}N_2O_{20}\cdot 3H_2O$, [α] $_D^{20}$ -31.0(c 0.3, MeOH), IR(KBr): 3500-3200 cm $^{-1}$ (OH/NH), 1660-1620 cm $^{-1}$ (CO), 1 H-NMR(CD $_3$ OD): δ 1.98 (NHCOCH $_3$), was a faintly hygroscopic white powder. Acidic methanolysis of $\underline{2}$ using the condition(a) gave each anomeric pair of $\underline{3}$, $\underline{4}$, and methyl \underline{p} -glucopyranoside $\underline{7}$ in 2:2:1 moler proportions.

FD mass spectrum of $\underline{2}$ provided a cationised cluster ion peak $(M+Na)^+$ at m/z 837 and in CI mass spectra of permethylated $\underline{2}$, a protonated molecular ion (m/z 969) was observed and the fragment ion peaks appeared at m/z 770 and 571 which corresponded to tetra- and tri-saccharide ions, respectively (Figure).

The partial methanolysis of $\underline{2}$ with the conditions described above yielded two products, 8, mp $213-215^{\circ}$ (dec.) and 9, mp $168-169^{\circ}$ (dec.).

The structures of viridopentaose A ($\underline{1}$) and C ($\underline{2}$) were established mainly on the basis of $^{13}\text{C-NMR}$ spectroscopic evidence as follows. The $^{13}\text{C-NMR}$ chemical shifts of $\underline{1}$ could be assigned by comparison with those of $\underline{3}$, $\underline{4}$, $\underline{5}$, $\underline{6}$, and $\underline{10}$ (Table). The $^{13}\text{C-NMR}$ spectrum of $\underline{1}$ showed five signals due to anomeric carbons. The resonance at 93.2 ppm represented an anomeric carbon of the reducing $\underline{0}$ -quinovosyl residue (α -configuration). Three (105.4, 101.7, 101.3 ppm) of the four remaining signals, except for that of the non-reducing $\underline{0}$ -quinovose moiety, were assignable to the anomeric carbon in a β -configuration as compared with the chemical shifts of the corresponding methyl glycosides. The last signal at 100.9 ppm suggested the presence of the anomeric carbon in an α -configuration. However, the 3.5 ppm downfield shifts were observed at C-1' of non-reducing $\underline{0}$ -quinovosyl residue in $\underline{5}$ and $\underline{6}$, when the acosamines were removed from $\underline{1}$ by selective methanolysis $\underline{5}$. Accordingly, the anomeric carbon of the non-reducing $\underline{0}$ -quinovosyl residue should be also in a β -configuration.

By considering glycosidation shift⁶ (82.9 ppm at C-2 and 85.8 ppm at C-4 in the reducing \underline{p} -quinovose moiety), the sterically hindered adjacent diglycosidation⁵ (75.7 and 76.0 ppm at C-2' and C-3' in the non-reducing \underline{p} -quinovose moiety), and the structure of viridopentaose \underline{B}^1 , the four glycosidic linkages in $\underline{1}$ were determined at C-2 and C-4 positions of the reducing \underline{p} -quinovose and at C-2' and C-3' positions of the non-reducing \underline{p} -quinovose moiety. Consequently, it is proved that viridopentaose A ($\underline{1}$) is an O-(N-acety1- β - \underline{p} -acosaminopyranosy1-(1+2)-O-(N-acety1- β -acosaminopyranosy1-(1+3)]-O- β - \underline{p} -quinovopyranosy1-(1+4)-O-(β - \underline{p} -quinovopyranosy1-

Table	13 _{C-NMR}	chemical	shifts	of	compounds	1	~	10 ª

	1	<u>5</u>	<u>6</u>			<u>2</u>	8	9
Quinovos	se				Glucose			
C-1"	105.	4 105.3	105.2		C-1	105.6	105.4	105.4
C~2"	75.		75.3		C-2	74.9	74.8	74.8
C-3"	77.		77.2		C-3	78.1	77.6	77.5 <i>9</i>
C-4"	76.		76.6		C-4	71,1	71.2	71.2
C~5"	73.		73.0		C-5	77.7	77.6	77.5 <i>9</i>
C-6"	18.			7	C-6	62.5	62.4	62.4
Quinovos	se				Quinovose	2		
C-1	93.	2 92.9	92.9		C-1	93.2	92.7	92.7
C-2	82.	9 81.9	81.8		C-2	83.3	82.1	82.1
C-3	73.	0 71.8	71.7		C-3	73.2	71.7	71.7
C-4	85.	8 87.1 f	87.0		C-4	85.9	87.0	87.0
C-5	67.	6 66.4	66.4		C-5	67.8	66.4	66.4
C-6	18.	3 ^b 18.1°	18.19	7	C-6	18.2 b	18.0	17.9
Quinovos	se				Quinovose			
C-1'	100.	9 104.4	104.4		c-1'	101.0	104.4	104.4
C-2'	75.		74.8		C-2'	76.20	74.0	75.0
C-3'	76.	0¢ 86.9∫	77.2		C-3'	76.7°	86.8	77.2 ^g
C-41	74.	7 74.8	76.4		C-4'	74.9	75.0	76.4
C-5'	73.	0 73.0	73.3		C-5'	73.4	72.9	73.3
C-6'	18.	1 ^b 18.0 ^e	18.0	g.	C-6'	18.3 <i>b</i>	18.0	17.9
Acosami	ne				Acosamine	2		
C-1	101.				C-1	101.5 d	102.1	
C-2	37.				C-2	38.1	37.8	
C-3	52.	4 52.2			C-3	52.3 €	52.2	
C-4	75.	0 75.4			C-4	75.3 <i>5</i>	75.4	
C-5	74.	7 74.8			C-5	74.9	74.8	
C-6	18.	3b 18.2e			C-6	18.3 b	18.2	
Acosami	ne				Acosamine	9		
C-1'	101.	3 d			C-1'	101.7 d		
C-2'	37.				C-2'	38.1		
C-3'	52.				C-3'	52,6 e		
C-4'	75.				C-41	75.9 <i>f</i>		
C-5'	74.				C-51	74.9		
¢-6'	18.	_			C-6'	19.0 b		
,	Methyl N-ac	no+srl = 1	Methyl		Methyl			
	acosamini			side (4)		side (7)	Quinovo	ose (<u>10</u>)
	acosamini o	.αe (<u>s</u> / β	α	β β	α	β	α	β
C-1	98.7 1	.02.0	100.9	105.0	100.6	105.1	93.6	97.7
C-2	36.9	38.1	73.5	75.0	72.9	74.8	73.9	76.3
C-3	49.7	52.4	74.7	77.6	74.6	77.8	74.5	77.6
C-4	76.5	75.9	77.1	76.8	71.1	71.4	77.3	76.9
C-5	69.5	74.6	68.4	73.1	72.9	77.6	68.1	73.1
C-6	18.3	18.3	18.0	18.0	62.1	62.5	18.1	18.1

 $[\]alpha^{-13}{\rm C-NMR}$ spectra were recorded on a JEOL JNM-FX100 NMR spectrometer at 25.05MHz in CD $_3{\rm OD}$ with TMS as an internal reference.

b,c,d,e,f,g Assignments may be reversed in each vertical column.

 $(1\rightarrow 2)$]- α -D-quinovopyranose.

In the same manner, we could also assign the $^{13}\text{C-NMR}$ chemical shifts of $\underline{2}$ (Table), which were compatible with those of $\underline{1}$, except for those of C-4, 5, and 6 of the \underline{p} -glucose moiety. These results pointed out that viridopentaose C ($\underline{2}$) had a \underline{p} -glucose moiety in the place of a terminal \underline{p} -quinovose moiety in viridopentaose A (1).

Therefore, it is concluded that viridopentaose C is an O-(N-acetyl- β - \underline{p} -acosaminopyranosyl)-(1+2)-O-[N-acetyl- β - \underline{p} -acosaminopyranosyl-(1+3)]-O- β - \underline{p} -quinovo-pyranosyl-(1+4)-O-[β - \underline{p} -glucopyranosyl-(1+2)]- α - \underline{p} -quinovopyranose.

References

- 1. Part II. "Application of 13C-NMR to the structural elucidation of viridopenta-ose B", K. I. Harada, S. Ito, and M. Suzuki, Tetrahedron Lett., in press.
- 2. T. Okuda, Y. Ito, T. Yamaguchi, T. Furumai, M. Suzuki, and M. Tsuruoka, J. Antibiotics, Ser. A, 1966, 19, 85.
- 3. K. I. Harada, S. Ito, and M. Suzuki, Carbohyd. Res., 1979, 75, C17.
- 4. M. E. Evans, L. Long, Jr., and F. W. Parrish, J. Org. Chem., 1968, 33, 1074.
- 5. a) N. Yamaoka, T. Usui, H. Sugiyama, and S. Seto, <u>Chem. Pharm. Bull. (Tokyo)</u>, 1974, 22, 2196.
 - b) R. U. Lemieux and H. Driquez, J. Am. Chem. Soc., 1975, 97, 4063.
- a) T. Usui, N. Yamaoka, K. Matsuda, K. Tuzimura, H. Sugiyama, and S. Seto,
 J. Chem. Soc. Perkin I, 1973, 2425.
 - b) P. A. J. Gorin, Carbohyd. Res., 1975, 39, 3.
 - c) K. Tori, S. Seo, Y. Yoshimura, M. Nakamura, Y. Tomita, and H. Ishii.
 Tetrahedron Lett., 1976, 4163.
 - d) R. Kasai, M. Suzuo, J. Asakawa, and O. Tanaka, Tetrahedron Lett., 1977, 175.

Received, 17th September, 1979