REACTION OF PYRIDINE 1-OXIDE WITH METHYL PROPIOLATE: A PYRIDO-OXEPINE AND OTHER NOVEL PRODUCTS $^{\mathrm{+}}$

Rudolph A. Abramovitch, Dharma Kishore, Marek Konieczny, and Zbigniew Dauter[#] Department of Chemistry, Clemson University, Clemson, SC 29634-1905 U.S.A. #Department of Physics, University of York, York YO1 5DD, England <u>Abstract</u>- The title reaction is much more complex than those of pyridine 1oxides with other activated acetylenes. Eight products have been isolated and five characterized: $\frac{4}{2}$. The most interesting is a pyrido-oxepin & whose structure has been firmly established by single crystal X-ray analysis. The main products thus result from reaction of 3 moles of methyl propiolate with one mole of pyridine 1-oxide. The 1:1 ($\frac{6}{2}$) and 1:2 ($\frac{7}{2}$) adducts are very minor products.

The alkylation of pyridine 1-oxides and related compounds with activated acetylenes has uncovered a number of novel rearrangements of heteroaromatic <u>N</u>-oxides, ¹ including 1,3-, 1,5-, 3,5- and consecutive 3,5-shifts. The latter resulted in the formation of furo[3,2-<u>c</u>]pyridines.² A 1,2adduct was obtained as a minor product from the reaction with phenylcyanoacetylene and a 3-pyridyl divinyl ether structure ($\frac{1}{2}$) assigned to it. As far as we know the reaction of pyridine 1-oxide ($\frac{2}{3}$) with activated acetylenes bearing only one substituent has not been reported³ and we now describe its behavior towards methyl propiolate ($\frac{2}{3}$) and the unusual results obtained.

When equimolar amounts of 2 and 3 were first boiled under reflux in benzene for 30h two products, 4 and 5, were isolated in approximately 20% total yield. Both had molecular formulae corresponding to the addition of 3 molecules of 3 to one of 2, with loss of a CHO fragment. Heating 2 and 3 (1:3 molar ratio) in DMF at 90°C gave 4 (17.9%) and 5 (22.6%). Subsequent repetition of the benzene solution work by a different coworker showed that actually five compounds could be isolated and characterized; three more were formed but in amounts too small to permit identification. Table 1 summarizes the results.

The simplest product (§)(2.3%), mp 145-146°C, was obtained when a 3-fold excess of $\frac{2}{c}$ relative to $\frac{3}{c}$ was used. It was readily characterized on the basis of its analysis and spectral data (mass, ¹H and ¹³C NMR, IR)[δ 17.5 (br s, NH), 9.66 (s, CHO), 8.66 (J = 8.8 Hz), 7.91 (m), 7.88 (dd, J = 7.1, 1.7 Hz), 7.02 (dt, J = 7.1, 1.2 Hz)(ring protons); $v_{C=0}$ 1710, 1645 cm⁻¹], the latter suggesting

+Dedicated to Prof. Gilbert Stork in honor of his 65th birthday.

-13 -

Molar ratio 2:3	°C	time h	products % ^a						
			4	ź	<u>ر</u>	λ	8	ર	not
1:1	ref1.	30	14.8	6.0					
1:3	refl.	30	2.1	6.0			2.5	4	
1:3 ^b	90	10	17.9	22.6					
3:1	refl.	43	1.6	3.6	2.3	8.0	2.6	1.6	
3:1	45	69	1.2	5.0			5.4		yellow solid, mp 184-185°C, <u>m/e</u> 347, C ₁₇ H ₁₇ NO ₇ , (0.5%)
1:3	50	88	3.3	4.0			1.6		pink solid, mp 170-172°C, <u>m/e</u> 261, C ₁₃ H ₁₁ NO ₅ , (0.08%)

TABLE 1. Reaction of pyridine 1-oxide (2) with methyl propiolate (3) in benzene

 $\frac{a}{2}$ Yields calculated on basis of reactant present in smallest amount.

b In DMF solution.

some contribution of the dipolar aromatic form to the structure:

Under these conditions, the main product (8.0%) isolated was 7, mp 142-143°C, a 1:2 adduct. In principle, two structures could fit the data: 7 (analogous to 1 above) and 7a. Structure 7 is preferred on the basis of the NMR data [δ 8.58 (br, H₂, H₆), 7.68 (dt, J_{4,5} = 7.9 Hz, J_{4,6} = J_{2,4} = 2Hz, H₄), 7.32 (dd, J_{4,5} = 7.9 Hz, J_{5,6} = 5.0 Hz, H₅) which indicate a pyridine rather than a pyridinium structure (see also ref. 6 below).

The most interesting product proved to be $\frac{8}{2}$, yellow crystals, mp 148°C, "best" formed (5.4%) from 2:3 = 3:1 in benzene at 45°C for 69h. Its molecular formula corresponded to a 3:1 adduct of acetylene to N-oxide. When it was heated in the presence of pyridine l-oxide it gave small amounts of $\frac{4}{2}$ and $\frac{5}{2}$ with loss of CHO fragment. The same result (but with lower yields) was obtained without addition of $\frac{2}{2}$. NMR spectroscopy indicated the absence of a formyl group in $\frac{8}{2}$. The structure was unambiguosly established by single crystal X-ray analysis and one view is given

in Fig. 1. 5 This seems to be the first recorded example of a pyrido-oxepin derivative.

Figure 1. ORTEP diagram of 1:3 adduct 8.

The structure proposed for 4 (orange-red solid, mp 199-200°C), is based on its microanalysis and spectral properties. Aromatic canonical forms may be major contributors since the pyridine α -proton appears at lower field (δ 8.89, dd, $\underline{J}_{2,3}$ = 7.6, 0.7 Hz) than expected for a neutral pyridine, indicating a pyridinium ion. Also, the acrylate proton β - to the carbonyl appears at lower field (δ 9.69, $\underline{J}_{\alpha,\beta}$ = 13.7 Hz) than calculated⁶ for the corresponding acrylate proton at a carbon bearing an NR_{conj} group (δ_{calc} 8.73). It seems more likely, however, that the ester at C₇ plays the major role here by deshieding H₈ appreciably (see 5 below). The other spectral data also fit this structure [δ 8.38 (s, 1H, H₆), 7.90 (d, 1H, $\underline{J}_{3,4}$ = 6.4 Hz, H₄), 7.12 (t. 1H, $\underline{J}_{2,3}$ = 7.3 Hz, $\underline{J}_{3,4}$ = 6.4 Hz, H₃); IR (KBr) 1740, 1715, 1685, 1670, 1630 cm⁻¹; mass spectrum (70eV) m/e (rel. intensity) 317 (M[‡], 100), 288 (80), 259 (10)].

On a similar basis, ' compound 5 (yellow solid, mp 206-207°C) was also assigned the structure shown (note that H_{β} is not subject to deshielding by CO_2 Me and resonates near the calculated value).

The formation of products 4, 5, 6, 7, and 8 may be tentatively accounted for as in the Scheme. Benzo-oxepin is known^{8a} to undergo acid-catalyzed isomerization to indene-3-carboxaldehyde, while dihydro-oxepin gives cyclopentene-1-carboxaldehyde.^{8b} Alternative mechanisms are clearly possible e.g. involving the addition of 2 to 8 followed by ring-opening and recyclization with or without migration. Further work is necessary to establish the mechanism(s), and the structure of 2 ($C_{25}H_{24}N_2O_6$, mp 248°C), corresponding to the addition of 4 molecules of 3 to 2 of 2 with elimination of (CH202), as well as of the two other uncharacterized products mentioned in Table 1.

SCHEME

ACKNOWLEDGEMENTS

The work was supported by grants (to R. A. A.) #GM25242 from the National Institutes of Health and by Diamond Shamrock Corp.

REFERENCES AND NOTES

- R. A. Abramovitch, G. Grins, R. B. Rogers, J. L. Atwood, M. D. Williams, and S. Crider, J. Org. <u>Chem. 1972</u>, <u>37</u>, 3383. R. A. Abramovitch and I. Shinkai, J. <u>Chem. Soc.</u>, <u>Chem. Commun</u>, <u>1973</u>, 569. R. A. Abramovitch, G. Grins, R. B. Rogers, and I. Shinkai. <u>J. Am. Chem. Soc.</u> <u>1976</u>, <u>98</u>, 5671. P. Canonne, G. Lemay, and R. A. Abramovitch, <u>Heterocycles</u> <u>1978</u>, <u>9</u>, 1217.
- 2. R. A. Abramovitch and I. Shinkai, J. Am. Chem. Soc. 1975, 97, 3227.
- 3. The reaction of isoquinoline-N-oxide with 3 (1:1 molar ratio) has been reported to give a good yield of the N-ylide (A) (R. Huisgen, H. Seidl, and J. Wulff, <u>Chem. Ber. 1969</u>, <u>102</u>, 915) and this has been confirmed (R. A. Abramovitch and I. Shinkai, unpublished results and present work). When three equivalents of 3 are used a 1:3 adduct (microanalysis) can also be isolated in low yield as a red solid, mp 193-194°C, whose NMR spectrum indicates the presence of an acrylate function (δ 6.91, 5.37, <u>J</u> = 14 Hz).

- 4. §: ¹H NMR (CDCl₃) δ 7.49 (s, 1H), 7.43 (d, 1H, $\underline{J}_{\alpha,\beta}$ = 13.8 Hz H_β), 7.31 (d, 1H, \underline{J} = 2Hz), 6.40 (d, 1H, \underline{J} = 6.1), 6.34 (d, 1H, \underline{J} = 7.0 Hz), 5.44 (brd, 1H, \underline{J} = 2 Hz), 5.36 (dd, 1H, \underline{J} = 6.1, 7.3 Hz), 4.98 (dd, 1H, $\underline{J}_{\alpha,\beta}$ = 13.6 Hz, \underline{J} = 0.65, H_α), 3.78 (s, 3H), 3.70 (s, 3H), 3.69 (s, 3H); <u>m/e</u> (rel. int.) 347 (M[±], 82), 330 (100), 318 (15), 316 (25), 302 (13), 288 (68).
- 5. $C_{17}H_{17}NO_7$, MW 347.32, F(000) = 728. Triclinic, <u>a</u> = 13.064(3), <u>b</u> = 12.262(3), <u>c</u> = 11.183(3), $\alpha = 93.06(2)$, $\beta = 78.99(2)$, $\delta = 110.71(2)$, $V = 1645Å^3$, space group PT, z = 4. D_m = 1.42 g.cm⁻³, D_x = 1.402 g.cm⁻³. 20- ω scan was used with 40 steps of 0.03°. Three standard reflections were measured every 50 reflections and not significant drop in intensity was observed. 4813 intensities were measured for $\theta \leq 56°$, from which 1993 unique intensities were obtained after Lorenz and polarization corrections and merging. 234 reflections with I<2. σ (I) were considered as unobserved. The final R value for 1759 observed reflection was 6.0%.
- 6. F. Scheinmann, Ed., "An Introduction to Spectroscopic Methods for the Identification of Organic Compounds", Vol 1. Pergamon Press, Oxford, 1970, p. 64. The values calculated for OR 5.47 H H 7.57 also support proposed structure ζ over ζα (Found: 67.67 (H_β), 5.63 (H_α), J_{α,β} = 12.3 Hz).
- 7. $5: {}^{1}$ H NMR (DMSO- \underline{d}_{6}) 69.34 (br s, 1H, H₂), 8.54 (d, 1H, $\underline{J}_{\alpha,\beta} = 14.4$ Hz, H_β), 8.50 (dd, 1H $\underline{J}_{6,7} = 6.3$ Hz, $\underline{J}_{2,7} = 1.5$ Hz, H₇), 8.08 (d, $\underline{J}_{6,7} = 6.3$ Hz, H₆, deshielded by CO₂Me at C₅), 8.04 (s, 1H, H₄), 6.88 (d, 1H, $\underline{J}_{\alpha,\beta} = 14.4$ Hz H_α); IR (KBr) 1740, 1695,1670, 1620 cm⁻¹; mass spectrum (70eV) <u>m/e</u> (rel. intensity) 317 (M⁺, 89), 286 (100).
- 8. (a) K. Dimroth, G. Pohl, and H. Follman, <u>Chem. Ber.</u> 1966, <u>99</u>, 634.
 (b) G. Pohl, Dissertation, University of Marburg, 1961 (quoted in "Houben-Weyl Methoden der organischen Chemie", (E. Mueller, Ed.), Vol. 6/4, Georg Thieme Verlag, Stuttgart, <u>1966</u>, p. 466).

Received, 5th February, 1986