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Abstract – The Sonogashira coupling reaction of the diiodide 6 of 

1,2-[4,5-bis(butylthio)tetrathiafulvalenyl]ethyne with 4,5-bis(ethynyl)-4’,5’-bis- 

(butylthio)tetrathiafulvanene 5 produced the corresponding tris(tetrathiaful- 

valeno)hexadehydro[12]annulene 1 in moderate yield. The [12]annulene 1 

exhibits multi-redox behavior and solvatochromism in the neutral state. 

INTRODUCTION 

Hexadehydro[12]annulene has received considerable attention, because its tribenzo-analogue is regarded 

as a structural unit of graphyne,1 and because various unique transition-metal complexes have been 

constructed using the [12]annulene frame.2,3 Furthermore, tribenzohexadehydro[12]annulene (TBA) has 

been employed as a starting material for the synthesis of cage molecules and polyethers.4,5 Recently, we 

have reported the synthesis and -amphoteric properties of bis(tetrathiafulvaleno)hexadehydro[12]- 

annulene 2 and related compounds based on the tetrathiafulvalene (TTF) and [12]annulene moieties.6,7 

The annulene 2 exhibited multi-redox potentials, solvatochromism, and the formation of a large sandwich 

complex. Based on these results, we next synthesized tris(tetrathiafulvaleno)hexadehydro[12]annulene 1. 

We report here the synthesis, unique redox behavior, and solvatochromic properties of 1. 

 

RESULTS AND DISCUSSION 

The synthesis of 1 is summarized in Scheme 1. Although various synthetic methods of accessing 

hexadehydro[12]annulenes have been reported to date,8,9 we employed the Sonogashira coupling of the 

bis(ethynyl)-TTF 5 with the diiodo-bi-TTF 6 similar to our previously reported procedure6 owing to the 

instability of 1 to light, atmospheric oxygen, and acidic condition. Thus, the reaction of the diiodo-TTF 3 

with trimethylsilylacetylene (4 equiv) in the presence of Pd(PPh3)4 (15 mol%), CuI (30 mol%), and Et3N 
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in benzene at 50 °C for 12 h produced the bis(trimethylsilylethynyl)-TTF 4 in 74% yield. The treatment 

of 4 with KOH (excess) in THF-methanol (1:1) at room temperature for 3 min yielded 5 to remove the 

trimethylsilyl groups. Since 5 was unstable and readily polymerized after removal of the solvent, a 

solution of 5 in benzene was employed for the following reaction without further purification. The 

Sonogashira coupling of 6 with 5 (1.65 equiv based on 100% conversion of 4) in the presence of 

Pd(PPh3)4 (50 mol%) and CuI (100 mol%) in benzene-triethylamine (10:3) at room temperature for 5 h 

produced the desired 1 in 36% yield based on 6.10 For the synthesis of 1, almost stoichiometric amounts 

of Pd(PPh3)4 and CuI were required to complete the reaction. 
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Scheme 1. Synthesis of tris(TTF)[12]annulene 1 

 

Interestingly, the tris(TTF)annulene 1 shows solvatochromism, and a solution of 1 is deep green in CS2 

but bright green in CH2Cl2. As shown in Figure 1, the UV-Vis-NIR spectrum of 1 shows strong (322 nm, 

 = 90,000) and weak (623-656 nm,  = 3500-4000) absorptions. The strong absorption is unchanged with 

the type of solvent, whereas the weak absorption varies with the type of solvent used [max (CS2) 656 nm 

and max (CH2Cl2) 623 nm]. Since the longest absorption is assigned to the charge-transfer (CT) band 

from the TTF (-donor) to [12]annulene (-acceptor) moieties, this transition is sensitive to the polarity 

of the solvent. 

S

SS

S
BunS

BunS

S

S

S

S
SBun

SBun1

SS

S S

SBunBunS

S

SS

S
BunS

BunS

S

S

S

S
SBun

SBun

2

910 HETEROCYCLES, Vol. 80, No. 2, 2010



 

 

0

20,000

40,000

60,000

80,000

100,000



1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000



0
300 400 500 600 700 800

 / nm
400 500 600 700 800 900 1,000 1,100

 / nm

322

623
656

CH2Cl2
CS2

CH2Cl2

(a) (b)

 

Figure 1. UV-Vis-NIR spectra of 1. (a) Entire spectrum in CH2Cl2. (b) Expansion of 

the weak absorptions in CH2Cl2 and CS2. 

 

The cyclic voltammetric (CV) analysis of 1 shows unique redox properties owing to the -amphoteric 

nature of 1. As shown in Table 1, 1 and 2 indicated 4-step redox processes; namely, the formation of 12-, 

1-, 13+, and 16+, or 22-, 2-, 22+, and 24+. Since tribenzohexadehydro[12]annulene (TBA) shows two 

reduction waves at -2.50 and -2.19 V vs Fc/Fc+ under the same conditions, the reduction potential of the 

[12]annulene unit increases in the order 1 > 2 > TBA, reflecting the increase in the degree of cyclic 

conjugation.11 In contrast, the oxidation potentials of 1 and 2 seemed to be similar. However, the first 

oxidation potential of 1 was split into two (Eox1
1/2(1) = 0.12 V; Eox1

1/2(2) = 0.26 V vs Fc/Fc+) when 

measured at a very slow rate (3 mV s-1), while the first oxidation potential of 2 showed a broad oxidation 

even when measured at a very low rate.12 Consequently, the oxidation potential of the TTF units 

decreases in the order 2  1 > TTF, reflecting the increase in donor ability. 

 

Table 1. Redox potentials of 1, 2, and TTF vs Fc/Fc+ at room temperature.a 

Compound Eox1
1/2 Eox2

1/2Ered1
1/2Ered2

1/2

TTF -0.08 0.30
1 -1.78 -1.41 0.21 0.49
2 -1.87 -1.50 0.19 0.46

aReduction potential was measured in THF using nBu4NClO4 (0.1 M), glassy carbon (working electrode), Pt (counter electrode), and  

 100 mVs-1, whereas oxidation potential was measured in benzonitrile using nBu4NClO4 (0.1 M), Pt (working and counter electrodes)

 and 100 mV s-1. The potential was measured against a Ag/Ag+ reference electrode and converted to the value vs Fc/Fc+. 
bMeasured at 3 mV s-1.

(0.12, 0.26)b
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The CV analysis of 1 showed three oxidation potentials (Table 1). Accordingly, the chemical oxidation of 

1 with Fe(ClO4)3 revealed characteristic changes in color and electronic spectra.13 As shown in Figure 2, 

the oxidation of 1 with 1, 2, 3, and 6 equiv of Fe(ClO4)3 in CH2Cl2‒CH3CN (v/v 4:1) resulted in the 

formation of 1+· (859 and ca. 2000 nm), 12+ (872 nm), 13+ (860 nm), and 16+ (694 nm), respectively. The 

solutions changed from green (1) to dark orange (1+·), greenish orange (12+), dark green (13+), and blue 

(16+). The cation radical 1+· shows a very broad absorption at approximately 2000 nm probably owing to 

the strong intermolecular interaction between the TTF and TTF+· units. However, the possible formation 

of a mixed valence dimer (12
3+) was ruled out, because 12

3+ (i.e., 11.5+ in Figure 2)14 exhibited a weak 

absorption at approximately 2000 nm as shown in Figure 2. Regarding 13+, no -dimer formation was 

observed based on its electronic spectra, and the absorption of 13+ (860 nm) appeared almost the same as 

that of 1+· (859 nm).15 However, the absorption of 12+ (872 nm) showed a red shift corresponding to the 

intramolecular head-to-tail interaction of two TTF+· units.16 In contrast to the preferable -dimer 

formation of tris(TTF)[18]annulene trications,17 the absence of the-dimer formation of 13+ might have 

been due to the difficulty in stacking the [4n] -electron system.18 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. UV-Vis-NIR spectra of cationic species derived from 1 in CH2Cl2‒CH3CN (4:1) 

 

In summary, the synthesis of the tris(TTF)[12]annulene 1 was successfully carried out using the nearly 

stoichiometric Sonogashira coupling of the diiodo-biTTF 6 with the diethynyl-TTF 5. The TTF-annulene 

1 exhibits solvatochromism, electrochromism, and multi-redox behavior owing to the -amphoteric 

nature of 1. Although 1 is unstable in the solid state, presumably owing to the combination of the [4n] 

-electron system with -donors, the introduction of electron-withdrawing groups into the TTF units in 1 

0

10000

20000

30000

40000

400 800 1200 1600 2000 2400



nm

859nm

876nm

872nm

860nm

694nm

- - - - 1

1+.

11.5+.......
12+

13+

16+

912 HETEROCYCLES, Vol. 80, No. 2, 2010



 

can stabilize the molecule. 
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