SUPPLEMENTARY MATERIAL

CHARACTERIZATION OF TEAGHRELIN-LIKE COMPOUNDS FROM TEA CULTIVARS IN THAILAND AND *IN SILICO* STUDY OF THEIR BIOACTIVITY

Patcharee Pripdeevech,^{a,b,c} Sarunpron Khruengsai,^{a Δ} Yue-Chiun Li,^{d Δ} Chia-Hao Wang,^e Ping-Chung Kuo,^{d,*} and Jason T. C. Tzen^{e,*}

^a School of Science, Mae Fah Luang University, Chiang Rai, Thailand

- ^b Center of Chemical Innovation for Sustainability (CIS), Mae Fah Luang University, Chiang Rai, Thailand
- ^c Tea and Coffee Institute of Mae Fah Luang University, Mae Fah Luang University, Chiang Rai, Thailand
- ^d School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- ^e Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan

* Corresponding authors. Ping-Chung Kuo, E-mail: z10502016@ncku.edu.tw; Jason T.-C. Tzen, E-mail: tctzen@dragon.nchu.edu.tw

 $^{\Delta}$ Both authors contributed equally to this work.

Abstract: In the present research, four tea cultivars in Thailand were screening to search for the teaghrelin-like compounds and totally six components were identified. Among these, one new constituent isolated form Assam tea varieties was assigned as quercetin $3-O-[2-O-(E)-p-coumaroyl][\alpha-L-rhamnopyranosyl(1\rightarrow 6)]-\beta-D-glucoside 4'-\alpha-L-rhamnoside (1) through the comprehensive 1D- and 2D-NMR and mass spectrometric analysis. The isolated compounds were examined for their ghrelin receptor binding affinity$ *in silico*and antioxidant bioactivity by free radical scavenging model. However, no significant bioactivity was observed according to the experimental results.

Contents

Figure S1. MS/HRMS spectra of 1.

- Figure S2. ¹H NMR spectrum of 1.
- Figure S3. ¹³C and DEPT NMR spectrum of 1.
- Figure S4. HMBC spectrum of 1.
- Figure S5. COSY spectrum of 1.
- Figure S6. HSQC spectrum of 1.
- Figure S7. NOESY spectrum of 1.

Figure S8. In silico modeling of (A) 1, (B) 2, and (C) 6 docking into the ghrelin receptor.

Figure S1. MS/HRMS spectra of 1.

Figure S2. ¹H NMR spectrum of 1.

Figure S4. HMBC spectrum of 1.

Figure S5. COSY spectrum of 1.

Figure S6. HSQC spectrum of 1.

Figure S7. NOESY spectrum of 1.

Figure S8. In silico modeling of (A) 1, (B) 2, and (C) 6 docking into the ghrelin receptor.