Supporting information

SYNTHESIS AND RADICAL SCAVENGING ACTIVITIES OF TOCOPHEROL ANALOGS CONTAINING HETEROCYCLIC RINGS

Yuta Okayama, ¹ Masataka Mochizuki,¹ and Keiko Inami ¹*

¹ Division of Pharmaceutical Organic Chemistry, Faculty of Pharmaceutical Science, Sanyo-Onoda City University, 1-1-1 Daigakudori, Sanyo-Onoda-shi, Yamaguchi 756-0884, Japan. Email: <u>inami@rs.socu.ac.jp</u>

Contents

Plot of pseudo-first order rate constant versus concentration of 6	S 1
Plot of pseudo-first order rate constant versus concentration of 1, 2, 3, 4, 5, and 7	S2
Inhibition (%) of DMPO-OH adduct formation by 1	S2
Inhibition (%) of DMPO-OH adduct formation by 3	S3
Inhibition (%) of DMPO-OH adduct formation by 2, 4, 5, 6, and 7	S3
CBS-4M Gibbs free energies of 2, 3, 4, 5, 6, 7, and their anions	S4
Solvation energies of 2, 3, 4, 5, 6, 7, and their anions	S4
Plot of pseudo-first order rate constant versus concentration of 5 in aqueous solution	S5
¹ H and ¹³ C spectra of 2,2-dimethyl-3,4-dihydro-2 <i>H</i> -pyrano[3,2- <i>h</i>]quinolin-6-ol (5)	S6
¹ H and ¹³ C spectra of 2,2-dimethyl-2,3,4,9-tetrahydropyrano[3,2-g]indol-6-ol (6)	S7
¹ H and ¹³ C spectra of 8,8-dimethyl-1,6,7,8-tetrahydrochromeno[7,8-d]imidazol-4-ol (7)	S8
¹ H and ¹³ C spectra of 6-methoxy-2,2-dimethyl-8-nitrochromane (8)	S9
¹ H and ¹³ C spectra of 8-amino-6-methoxy-2,2-dimethylchroman (9)	S10
¹ H and ¹³ C spectra of 6-methoxy-2,2-dimethyl-3,4-dihydro-2 <i>H</i> -pyrano[3,2- <i>h</i>]quinoline (10)	S11
¹ H and ¹³ C spectra of 6-benzyloxy-2,2,7-trimethylchromane (11)	S12
¹ H and ¹³ C spectra of 6-benzyloxy-2,2,7-trimethyl-8-nitrochromane (12)	S13

¹ H and ¹³ C spectra of 6-benzyloxy-2,2-dimethyl-2,3,4,9-tetrahydropyrano[3,2-g]indole (13)	S14
¹ H and ¹³ C spectra of 6-benzyloxy-2,2-dimethyl-7-nitrochromane (14)	S15
¹ H and ¹³ C spectra of 6-benzyloxy-2,2-dimethyl-7,8-dinitrochromane (15)	S16
¹ H and ¹³ C spectra of 4-benzyloxy-8,8-dimethyl-1,6,7,8-	
tetrahydrochromeno[7,8-d]imidazole (16)	S17

Figure S1 Plot of pseudo-first order rate constant versus concentration of $\mathbf{6}$ (\circ)

Figure S2 Plot of pseudo-first order rate constant versus concentration of $1 (\blacktriangle), 2 (\boxtimes), 3 (\blacksquare), 4 (\Box), 5 (\diamondsuit)$, and $7 (\bullet)$

Figure S3 Inhibition (%) of DMPO-OH adduct formation by $1 (\blacktriangle)$

Figure S5 Inhibition (%) of DMPO-OH adduct formation by $2 (\boxtimes), 4 (\Box), 5, (\diamondsuit), 6 (\circ)$, and $7 (\bullet)$

	acid	anion
2	-694.934063	-694.378896
3	-577.201734	-576.642827
4	-730.597809	-730.04982
5 (conjugated acid)	-747.011213	-746.630624
5 (hydroxyl group)	-747.011213	-746.087657
6	-708.58983	-708.029482
7 (conjugated acid)	-725.009191	-724.641506
7 (hydroxyl group)	-724.641506	-724.077053

Table S1 CBS-4M Gibbs free energies (in Hartree^{*a*})

_

a: optimization with B3LYP/6-31G(d)

Table S2 Solvation energies of acids and their anions (in kcal/mol^{*a*})

	acid	anion
2	-10.81	-72.97
3	-8.40	-78.22
4	-13.85	-72.72
5	67.83	-20.83
(conjugated acid)	-02.05	-20.85
5	-20.83	-76.01
(hydroxyl group)	-20.03	/0.01
6	-18.42	-83.23
7 (conjugated acid)	-77.93	-22.07
(bydroxyl group)	-22.07	-92.57

a: optimization with HF/6-31G(d) using SMD

Figure S6 Plot of pseudo-first order rate constant versus concentration of 5 in aqueous solution

¹H and ¹³C spectra of 2,2-dimethyl-3,4-dihydro-2*H*-

¹H and ¹³C spectra of 2,2-dimethyl-2,3,4,9-tetrahydropyrano[3,2-g]indol-6-ol (6)

¹H and ¹³C spectra of 8,8-dimethyl-1,6,7,8-

tetrahydrochromeno[7,8-d]imidazol-4-ol (7)

¹H and ¹³C spectra of 6-methoxy-2,2-dimethyl-3,4-dihydro-2*H*-pyrano[3,2-*h*]quinoline (10) [ŝ 10.0 6.0 18 8.0 1.95 1.97 7.0 0.0 5.0 40 3.0 50 9 *ibundance* 2918 2906 2805 2805 2.0 8.0 6.0 5.0 1.0 7.0 4.0 9.0 3.943 6.556 7352 7345 7315 7315 7315 X : pa

MeO

Ме

ме

O

∕∕Ń

0

Ph 、

0

Ph 、

0

¹H and ¹³C spectra of 6-benzyloxy-2,2-dimethyl-7-nitrochromane (14)

¹H and ¹³C spectra of 4-benzyloxy-8,8-dimethyl-1,6,7,8-

