HETEROCYCLES, Vol. 80, No. 2, 2010, pp. 903 - 907. © The Japan Institute of Heterocyclic Chemistry Received, 29th August, 2009, Accepted, 6th November, 2009, Published online, 9th November, 2009 DOI: 10.3987/COM-09-S(S)121

SYNTHETIC STUDIES TOWARD ANTITUMOR SESQUITERPENOID QUADRONE

Akihiro Ishihata,^a Megumi Saeki,^b Masaru Watanabe,^b Masataka Ihara,^c and Masahiro Toyota^{*b}

^aDrug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
^bDepartment of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
^cResearch Centre of Medicinal Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa, Tokyo 142-8501, Japan
E-mail: toyota@c.s.osakafu-u.ac.jp

#Dedicated to Professor Emeritus Akira Suzuki on the occasion of his 80th birthday.

Abstract – A palladium-catalyzed cycloalkenylation and an acid-promoted intramolecular Michael reaction were utilized as the key steps in a synthetic approach to sesquiterpene quadrone **1**. This route capitalizes upon the ability of the above reactions to stereoselectively assemble tricyclic core **15** of quadrone **1**.

Due to the challenging molecular architecture and antitumor activity of sesquiterpene quadrone **1**, it has been an interest to synthetic organic chemists, and various approaches to **1** have been reported.¹ We first became interested in **1** during our studies on whether our palladium-catalyzed cycloalkenylation² could effectively construct highly strained tricyclic core **2**, which is found in **1**. As shown in **Scheme 1**, we envisaged our retrosynthesis of **1** as follows: palladium-catalyzed cycloalkenylation of silyl enol ether **3** could provide tricyclic compound **2**, which could be converted into **1** by functional group manipulations. Compound **3** could be synthesized from acetal **4** via an acid-promoted intramolecular Michael reaction.³ Finally, substrate **4** could be prepared from cyclohexene **5**, which could be constructed by an intermolecular Diels–Alder reaction of 1,3-butadiene and (*E*)-methyl 6-*tert*-butyldimethylsiloxyhex-2-enoate.

Olefin metathesis between olefin 6 and methyl acrylate in the presence of Grubbs second generation

Scheme 1. Retrosynthetic Analysis of the Tricyclic Core of Quadrone (1)

catalyst afforded (*E*)-methyl 6-*tert*-butyldimethylsiloxyhex-2-enoate in 78% yield, which was subsequently subjected to an intermolecular Diels–Alder reaction with 1,3-butadiene to give rise to cyclohexene derivative 5 (88%). Hydrolysis of 5 was accompanied by deprotection of the hydroxyl group to provide the corresponding hydroxyl acid, which was then transformed into unsaturated lactone 7^4 through iodolactonization followed by elimination. Reduction of 7 with DIBALH (1 equiv.) furnished the corresponding hydroxyl aldehyde, which was treated with acetic anhydride. The resulting aldehyde was reduced with NaBH₄ to give alcohol 8. Ozonolysis of 8 and subsequent reductive treatment produced aldehyde 9,

Scheme 2. *Reagents and conditions*: (a) methyl acrylate, Grubbs catalyst (0.05 mol %), reflux, 78%; (b) 1,3-butadiene, hydroquinone, toluene, 220 °C, 88%; (c) LiOH, 1,4-dioxne-H₂O, reflux, 91%; (d) I₂, KI, NaHCO₃, CH₂CI₂-H₂O; (e) 'BuPh₂SiCl, imidazole, DMF; (f) DBU, THF, reflux, 70% for 3 steps; (g) DIBAL-H, CH₂Cl₂, -78 °C, (h) Ac₂O, DMAP, CH₂Cl₂; (i) NaBH₄, MeOH, 67% for 3 steps; (j) O₃, MeOH then Me₂S, -78 °C, 96%; (k) Ph₃P=CHCOMe, MeCN, reflux, 83%; (m) PPTS, CH(OMe)₃, CH₂Cl₂, 90%.

which was converted into requisite unsaturated ketone **10** for the first key reaction *via* Wittig reaction followed by acetalization (**Scheme 2**).

Then **10** was treated with a catalytic amount of TfOH. As expected, the intramolecular Michael reaction proceeded stereoselectively to give oxabicyclo[3.3.0]octane compound **11** in 97% yield, which was transformed into hemiacetal **12** by deprotection of the hydroxyl group followed by dehydration⁵ and hydrolysis. An intramolecular aldol reaction of **12** in the presence of pyrrolidine was accompanied by an intramolecular Michael reaction to afford keto ether **13**. To obtain the desired *trans*-hydrindane derivative for the second key reaction, **13** was subjected to a retro Michael reaction under acidic conditions. After acetylation of the corresponding diol, enone diacetate **14**⁴ was isolated in 96% yield. Compound **14** was transformed into the corresponding silyl enol ether, and the subsequent palladium-catalyzed cycloalkenylation successfully synthesized desired cyclization product **15**⁴ in 89% yield (**Scheme 3**).

Scheme 3. Reagents and conditions: (a) TfOH (0.5 mol %), CH_2Cl_2 , 97%; (b) Bu_4NF , THF; (c) *o*-NO₂PhSeCN, Bu_3P , THF, 65% for 2 steps; (d) $NaIO_4$, MeOH-H₂O, 76%; (e) 10% HCl, acetone, 80%; (f) pyrrolidine, benzene, reflux, 72%; (g) TsOH, Ac₂O, benzene, reflux, 96%; (h) TBDMSOTf, Et_3N , CH_2Cl_2 ; (i) Pd(OAc)₂ (20 mol %), DMSO, O₂ (1 atm), 89% for 2 steps.

The relative stereochemistry was established using NOE experiments employing cyclization product **15** as shown in **Figure 1**.

In conclusion, we demonstrated that **15**, a potential intermediate in the synthesis of **1**, could be stereoselectively constructed by combining a palladium-catalyzed cycloalkenylation with an acid-catalyzed intramolecular Michael reaction.

Figure 1. NOE Experiment of Cyclization Product 15.

ACKNOWLEDGMENT

Part of this research was supported by a Grant-in-Aid for Scientific Research on Priority Areas 18390007 from the Ministry of Education, Culture, Sports, Science and Technology (MEXT).

REFERENCES

- Isolation: G. J. Calton, R. L. Ranieri, and M. A. Espenshade, J. Antibiot., 1978, **31**, 38. Recent syntheses of quadrone: (a) A. B. Smith, III, J. P. Konopelski, B. A. Wexler, and P. A. Sprengeler, <u>J. Am.</u> <u>Chem. Soc., 1991, **113**, 3533</u>; (b) C. G. Sowell, R. L. Wolin, and R. D. Little, <u>Tetrahedron Lett., 1990</u>, <u>**31**, 485</u>; (c) A. P. Neary and P. J. Parsons, J. C. Soc., Chem. Commun., 1989, 1090; (d) P. Magnus, L. M. Principe, and M. J. Slater, <u>J. Org. Chem., 1987, **52**, 1483</u>; (e) R. L. Funk and M. M. Abelman, <u>J. Org. Chem., 1986, **51**, 3247</u>.
- M. Toyota, T. Wada, K. Fukumoto, and M. Ihara, <u>J. Am. Chem. Soc.</u>, 1998, 120, 4916. Selected applications to natural product synthesis: (a) M. Toyota, T. Asano, and M. Ihara, <u>Org. Lett.</u>, 2005, 7, 3929; (b) M. Toyota, M. Sasaki, and M. Ihara, <u>Org. Lett.</u>, 2003, 5, 1193; (c) M. Toyota, T. Odashima, T. Wada, and M. Ihara, <u>J. Am. Chem. Soc.</u>, 2000, 122, 9036; (d) M. Toyota, T. Wada, and M. Ihara, J. Org. Chem., 2000, 65, 4565.
- G. Stork and K. S. Atwal, <u>Tetrahedron Lett.</u>, 1983, 24, 3819. Selected applications to natural product synthesis: (a) M. Toyota, Y. Nishikawa, K. Motoki, N. Yoshida, and K. Fukumoto, <u>Tetrahedron</u>, 1993, 49, 11189; (b) M. Toyota, Y. Nishikawa, K. Motoki, N. Yoshida, and K. Fukumoto, <u>Tetrahedron Lett.</u>, 1993, 34, 6099.
- 4. Satisfactory analytical data were obtained for all new compounds. Compound 7: IR (neat) 1771 cm⁻¹.
 ¹H NMR (CDCl₃, 400 MHz) δ 7.64 (4H, dd, *J*=8.0 and 1.5 Hz), 7.45-7.35 (6H, m), 6.21-6.15 (1H, m), 5.75-5.70 (1H, m), 4.73 (1H, dd, *J*=5.3 and 5.3 Hz), 3.68 (2H, td, *J*=5.9 and 1.5 Hz), 2.74-2.71 (1H, m), 2.51-2.45 (1H, m), 2.31 (1H, ddd, *J*=11.3, 5.3 and 5.3 Hz), 2.09 (1H, d, *J*=11.3 Hz), 1.67-1.50 (4H, m) and 1.05 (9H, s). ¹³C NMR (CDCl₃, 100 MHz) δ 179.2, 135.3, 134.5, 133.6, 129.5, 128.5, 127.5,

907

73.7, 63.4, 42.2, 38.3, 31.2, 30.5, 29.4, 27.0, and 19.3. LRMS m/z 363 (M⁺-C₄H₉). Anal. Calcd for C₂₆H₃₂O₃Si: C, 74.24; H, 7.67. Found: C, 74.39; H, 7.56. Compound 14: IR (neat) 1738, 1732, and 1682 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz) δ 7.20 (1H, δ, J=10.1 Hz), 6.00 (1H, d, J=10.1 Hz), 5.74 (1H, dddd, J=17.1, 9.5, 8.7, and 6.5 Hz), 5.19 (1H, d, J=9.5 Hz), 5.12 (1H, dd, J=17.1 and 1.2 Hz), 5.04-4.97 (1H, m), 4.06 (1H, dd, J=11.4 and 7.4 Hz), 3.99 (1H, dd, J=11.4 and 6.8 Hz), 2.70 (1H, ddd, J=15.1, 9.0, and 9.0 Hz), 2.64-2.48 (4H, m), 2.34 (1H, dd, J=13.4 and 6.5 Hz), 2.09 (1H, dd, J=13.4 and 8.7 Hz), 2.07 (3H, s), 2.06 (3H, s), 1.43 (1H, ddd, J=15.1, 5.7 and 3.2 Hz). ¹³C NMR (CDCl₃, 100 MHz) δ 198.0, 170.7, 170.4, 154.1, 132.3, 130.2, 119.7, 74.8, 66.0, 47.4, 46.5, 40.3, 40.1, 36.5, 33.8, 21.1, and 21.0. LRMS m/z 265 (M^+ -C₃H₅). HRMS calcd for C₁₄H₁₇O₅ (M^+ -C₃H₅) 265.1076. Found: 265.1070. Compound 15: IR (neat) 1738, 1732, and 1682 cm⁻¹. ¹H NMR (C₆D₆, 600 MHz) δ 6.60 (1H, d, J=9.6 Hz), 5.71 (1H, dd, J=9.6 and 1.5 Hz), 5.31-5.29 (1H, m), 4.84 (1H, s), 4.68 (1H, ddd, J=9.0, 9.0 and 6.6 Hz), 3.86 (1H, s), 3.84 (1H, dd, J=11.4 and 6.0 Hz), 3.70 (1H, dd, J=11.4 and 6.0 Hz), 2.37 (1H, ddd, J=15.0, 9.0, and 9.0 Hz), 2.34 (1H, d, J=9.0 Hz), 1.89 (1H, d, J=17.0 Hz), 1.77-1.72 (1H, m), 1.64 (1H, ddd, J=17.0, 2.4, and 2.4 Hz), 1.59 (3H, s), 1.58 (3H, s), and 1.38 (1H, ddd, *J*=15.0, 6.6, and 4.2 Hz). ¹³C NMR (C₆D₆, 150 MHz) δ 196.2, 170.0, 169.8, 152.7, 143.2, 128.3, 114.2, 75.3, 65.7, 63.6, 59.4, 53.5, 42.0, 40.2, 35.4, 20.4, and 20.3. LRMS m/z 304 (M⁺). Anal. Calcd for C₁₇H₂₀O₅: C, 67.09; H, 6.62. Found: C, 67.05; H, 6.77.

 (a) K. B. Sharpless and M. W. Young, <u>J. Org. Chem., 1975</u>, 40, 947; (b) P. A. Grieco, S. Gilman, and M. Nishizawa, <u>J. Org. Chem., 1976</u>, 41, 1485.