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Abstract – A facile method for the synthesis of azulene derivatives bearing 

2-pyridyl group at the 1-position, and thio or methylthio group at the 2-position is 

described. The color and spectral changes that occur upon the addition of heavy 

metal ions were examined. It was found that the sulfur functional group in 

pyridylazulene did not effectively participate in the improvement of color 

selectivity for heavy metal ions, whereas the sensitivity for Hg
2+

 ion seemed to be 

slightly improved. 

 

INTRODUCTION 

Although it is well known that the addition of a protic acid or metal ions to azulene derivatives causes a 

color change,
1
 the development of more sophisticated systems which also undergo a color change would 

be of great significance to further understand azulenic chromophores. Recently, we reported the synthesis 

of pyridylazulenes (for example, 1), and investigated in detail the color and spectral changes that occurred 

upon the addition of an acid or metal ions.
2
 The color changed from blue to red upon the addition of 

trifluoroacetic acid or soft heavy metal ions such as Hg
2+ 

and Pb
2+

, depending on the substitution patterns 

of the pyridyl group on the azulene skeleton.  

Selective response toward metal ions or colorimetric sensing of Hg
2+

 ion is currently an important 

research area in molecular recognition chemistry, as exemplified with azacrown ethers and 

azocalix[4]arene, etc.
3
 In the course of our studies on high sensing of Hg

2+
 ion in azulene chemistry,

4
 we 

designed compounds 2 and 3, having thio and methylthio groups at the 2-position of the azulene skeleton, 

respectively, since Hg
2+

 ion has high affinity for soft donors such as sulfur. It is of interest to investigate 
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the influence of the sulfur functional group on the selectivity and sensitivity toward Hg
2+

 ion. Here, we 

describe the protocol for their synthesis, and the chromogenic behaviors of these compounds for heavy 

metal ions, especially Hg
2+

 ion. The structural studies of the product are also presented. 

 

 

 

 

 

RESULTS AND DISCUSSION 

The syntheses of pyridylazulenes 2 and 3 are summarized in Scheme 1, showing the use of 2-azulenethiol 

(4)
5
 as a common starting material. In order to protect the thiol (-SH) group, 4 was reacted with 

dimethylcarbamoyl chloride in the presence of KOH in toluene at 120 ºC,
6 providing thiocarbamate 5

5
 in 

72% yield. Subsequent iodination with N-iodosuccinimide (NIS) occurred smoothly in CHCl3 at room 

temperature to afford iodide 6, which was treated with 2-(trimethylstannyl)pyridine in the presence of 

Pd(PPh3)4, CuI, and CsF in DMF at 50 ºC
7
 to give the pyridyl derivative 7 in 60% yield. Finally, the 

attempted hydrolysis of 7 with KOH in EtOH–H2O at 50 ºC or hydrazine in MeOH at 80 ºC
8
 gave 2 in 

only 27%, 5% yield, respectively; however, by treatment with Ba(OH)2 in MeOH–H2O at room 

temperature, 7 was easily deprotected to give 2 as a green solid in 71% yield.
9 

In a similar manner, 

2-methylthioazulene (8), prepared from 4 according to the literature,
5
 was treated with NIS in CHCl3, 

followed by 2-(trimethylstannyl)pyridine under Stille coupling conditions,
7
 forming 3 as a violet oil in 

61% yield. 
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Scheme 1. Synthetic pathways for 2 and 3 
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The structures of 2 and 3 were established by NMR, IR, and MS analyses, and the compounds were stable 

and showed no deterioration after storage for 1 year at –20 ºC.  

We studied changes in the spectral properties and colors of 2 and 3 upon addition of heavy metal ions. 

The coordination of soft heavy metal ions onto the pyridine moiety was expected to enhance its 

electron-withdrawing ability and influence the π-conjugate system of azulene.
4
 The individual addition of 

heavy metal ions (Ag
+
, Hg

2+
, Pb

2+
, Cu

2+
, Cr

3+
) as the perchlorate to 2 in acetone produced red or reddish 

brown color changes.
10

 The individual addition of Hg
2+

, Pb
2+

, Cr
3+

 ions to 3 produced reddish brown 

color changes, although Ag
+
 and Cu

2+ 
ions

 
caused little color change and a dark brown color change, 

respectively. Thus, 2 and 3 did not exhibit the Hg
2+ 

selectivity as in the case of 1. The representative 

spectral changes are shown in Figure 1, revealing an isosbestic point at 565 nm. These observations 

suggest that the sulfur functional group in 2 and 3 did not effectively participate in the improvement of 

color selectivity for heavy metal ions. It is conceivable that some metal ions, which produced color 

changes, bind to the pyridine moiety, regardless of the sulfur functional group. 

Interestingly, upon careful addition of 0.2 equiv of Hg(ClO4)2, the color of 2 and 3 changed from violet to 

red. Compared with 1, which required 2 equiv of Hg
2+

 ion for color change,
2
 2 and 3 seem to show 

slightly improved sensitivity for Hg
2+

 ion. With the concentration of pyridylazulene employed in our 

studies, Hg
2+

 ion concentrations as low as 10
-4

 M could be detected, i.e, concentrations in the ppm range. 

 

 

Figure 1. Spectral and color changes of 3 (3.4 mM) upon the addition of Hg(ClO4)2  

in acetone at rt, where the amount of Hg(ClO4)2 was varied from 0.01 to 1.0 equiv 
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To gain insight into the interaction of pyridylazulene 3 with Hg
2+

 ion, 
1
H NMR, ESI-TOF-MS, and Job’s 

plot analyses were performed. In the 
1
H NMR spectrum of the complex formed in the reaction of 3 and 1 

equiv of Hg(ClO4)2 in acetone-d6, the Me protons of the SMe group were shifted downfield by 0.19 ppm 

(3, δ 2.64; 3•Hg
2+

, δ 2.83), in addition to the downfield shifts of the aromatic protons. ESI-TOF-MS of 

the complex in acetone gave a charged peak at m/z 510, corresponding to [3•Hg•acetone–H]
+
 (Figure 2). 

The observed isotopic and theoretical distributions were in close agreement. These data suggest that 3 

strongly interacts with Hg
2+

 ion in acetone, in which both the sulfur donor atom and nitrogen atom of 

pyridine moiety should coordinate to Hg
2+

 ion. Further support of the 1:1 binding ratio comes from a 

Job’s plot experiment,
11

 where the absorption of the complex at 514 nm was plotted against the molar 

fraction of 3 at an invariant total concentration. As a result, the concentration of the 3•Hg
2+

 complex 

approached a maximum when the molar fraction of [3] / ([3] + [Hg
2+

]) was about 0.5, therefore 1:1 

association constant was estimated on the basis of Benesi-Hilderbrand plot
12

 to give 330 M
-1

.
13 

 

 

 

 

 

 

 

Figure 2. ESI-TOF-MS spectra of 3 with 1 equiv of Hg(ClO4)2 in acetone 

In summary, a synthetic method for pyridylazulenes bearing a sulfur functional group has been developed. 

It is worth noting that the deprotection of thiocarbamate moiety in 7 was improved by the use of 

Ba(OH)2.
9
 The color selectivity for Hg

2+
 ion in 2 and 3 did not improved as compared with 1, although an 

S-coordinated Hg
2+

-complex would be easily formed. It can be seen that the coordination bond of 

pyridine moiety with Hg
2+

 ion, which is responsible for a color change, was little subject to the influence 

of the sulfur functional group. The sensitivity for Hg
2+

 ion seemed to be slightly improved as compared 

with 1.
2
 Further study toward high sensing of heavy metal ions in azulene chemistry is in progress. 

 

EXPERIMENTAL 

Melting points were determined on a Shibata MEL-270 melting point apparatus and are uncorrected. 
1
H 

and 
13

C NMR spectra were recorded in CDCl3 on a Varian 400-MR spectrometer and referenced to 

internal TMS or solvent signals. IR spectra were measured with a Shimadzu IRAffinity-1 

spectrophotometer. UV-Vis spectra were obtained on Shimadzu UV-2200 and Hitachi U-3000 
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spectrophotometer. Electron impact mass spectra (EIMS) and high resolution mass spectra (HRMS) were 

measured at a voltage of 70 eV on a Jeol JMS T100GCV. Electrospray ionization mass spectrum 

(ESI-TOF-MS) was recorded on a Brucker Daltonics microtof-SZ. All reagents and solvents were 

purchased from commercial sources and used as received. Most reactions were carried out in 

serum-capped, oven-dried, and argon-purged flasks. TLC analyses were conducted on Merck Kieselgel 

60 F254-precoated plates with detection by UV light. 

 

2-Azulenyl N,N-dimethylthiocarbamate (5)   

To a soln of 2-azulenethiol (4) (330 mg, 2.06 mmol) in toluene (10 mL) were added dimethylcarbamoyl 

chloride (1.40 mL, 15.2 mmol) and KOH (139 mg, 2.48 mmol) and the mixture was stirred at 120 ºC for 

20 h. The reaction mixture was poured into H2O (30 mL) and extracted with ether (60 mL). The organic 

layer was washed with brine (2 × 10 mL), dried over MgSO4, and concentrated. The crude product was 

subjected to silica gel column chromatography [silica gel (10 g), hexane, then benzene–hexane (1:1)] to 

afford 5 (341 mg, 72%) as a blue solid. mp 154–155 ºC. (Lit.
5
 blue needles, mp 156 ºC) 

1
H NMR (400 

MHz, CDCl3) δ 3.10 (bs, 3H), 3.15 (bs, 3H), 7.18 (t, J = 9.6 Hz, 2H), 7.55 (s, 2H), 7.56 (t, J = 9.6 Hz, 

2H), 8.25 (d, J = 9.7 Hz, 2H).
 13

C NMR (100 MHz, CDCl3) δ 37.0, 120.3, 123.8, 128.3, 136.1, 137.3, 

139.7,165.6. IR (KBr): 3447, 1667, 1364, 1094 cm
-1

. MS (EI, 70 eV) m/z 231 (M
+
, 42), 159 

(M
+
–CONMe2, 20). HRMS (EI): m/z calcd for C13H13NOS 231.0718, found 231.0716. 

 

1-Iodoazulen-2-yl N,N-dimethylthiocarbamate (6)   

To a soln of 5 (340 mg, 1.472 mmol) in CHCl3 (20 mL) was added NIS (337 mg, 1.498 mmol) and the 

mixture was stirred at rt for 30 min. The mixture was directly subjected to column chromatography using 

alumina (25 g) and a 1:5 mixture of EtOAc and hexane as eluent to afford 6 (574 mg, 100%) as a blue oil. 

1
H NMR (400 MHz, CDCl3) δ 3.08 (bs, 3H), 3.19 (bs, 3H), 7.21 (t, J = 9.8 Hz, 1H), 7.28 (t, J = 9.8 Hz, 

1H), 7.59 (t, J = 9.8 Hz, 1H), 7.86 (s, 1H), 8.18 (d, J = 9.6 Hz, 1H), 8.25 (d, J = 9.8 Hz, 1H).
  

13
C NMR (100 MHz, CDCl3) δ 37.1, 122.1, 124.6, 124.7, 128.3, 136.3, 138.2, 138.6, 139.6, 140.8, 141.6, 

164.5. IR (neat): 2926, 1661, 1574, 1393, 1360, 1258, 1094 cm
-1

. 

 

1-(2-Pyridyl)azulen-2-yl N,N-dimethylthiocarbamate (7)    

A mixture of 6 (410 mg, 1.15 mmol), Pd(PPh3)4 (88 mg, 0.0762 mmol), CuI (45 mg, 0.240 mmol), CsF 

(431 mg, 2.84 mmol), and 2-(trimethylstannyl)pyridine (490 mg, 2.03 mmol) in DMF (10 mL) was stirred 

at 50 ºC for 3 h. After this time, the reaction mixture was poured into H2O (30 mL) and extracted with 

EtOAc (80 mL). The organic layer was washed with brine (2 × 10 mL), dried over MgSO4, and 

concentrated. The crude product was subjected to silica gel column chromatography [silica gel (18 g), 
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benzene–hexane (1:1), then benzene, then benzene–ether (9:1)] to afford 7 (213mg, 60%) as a blue oil.  

1
H NMR (400 MHz, CDCl3) δ 3.07 (bs, 3H), 3.12 (bs, 3H), 7.22 (t, J = 10.0 Hz, 2H), 7.24–7.27 (m, 1H), 

7.59 (t, J = 9.8 Hz, 1H), 7.65 (dt, J = 1.0, 8.0 Hz, 1H), 7.796 (td, J = 7.6, 1.9 Hz, 1H), 7.802 (s, 1H), 8.32 

(d, J = 9.4 Hz, 1H), 8.57 (d, J = 9.6 Hz, 1H), 8.80 (dm, J = 5.7 Hz, 1H).
 13

C NMR (100 MHz, CDCl3) δ 

37.0, 121.1, 121.8, 124.5, 125.1, 126.2, 128.3, 129.9, 135.8, 136.1, 136.96, 137.04, 138.2, 139.9, 149.4, 

154.7, 165.8. IR (neat): 3032, 2928, 1667, 1585, 1572, 1485, 1404, 1360, 1258, 1096 cm
-1

. MS (EI, 70 

eV) m/z 308 (M
+
, 30), 236 (M

+
–HSCH2CON(CH3)2, 100). HRMS (EI): m/z calcd for C18H16N2OS 

308.0983, found 308.0978. 

 

1-(2-Pyridyl)azulene-2-thiol (2) 

To a soln of 7 (189 mg, 0.614 mmol) in MeOH (13.5 mL)–H2O (2.7 mL) was added Ba(OH)2•8H2O (571 

mg, 1.810 mmol) and the mixture was stirred at rt for 5.5 h. To the reaction mixture was added 2N HCl (3 

mL) and pH was adjusted to 3–4. The reaction mixture was poured into H2O (20 mL) and extracted with 

benzene (30 mL, 2 × 15 mL). The combined organic layer was washed with brine (2 × 10 mL), dried over 

MgSO4, and concentrated. The crude product was subjected to silica gel column chromatography [silica 

gel (8 g), benzene, then benzene–ether (9:1)] to afford 2 (103 mg, 71%) as a green solid. mp 78–80 ºC.
 1
H 

NMR (400 MHz, CDCl3) δ 7.14 (t, J = 9.8 Hz, 1H), 7.21–7.26 (m, 2H), 7.49 (t, J = 10.0 Hz, 1H), 7.67 (s, 

1H), 7.79–7.86 (m, 2H), 8.04 (d, J = 9.4 Hz, 1H), 8.59 (d, J = 9.8 Hz, 1H), 8.84 (dt, J = 1.3, 4.5 Hz, 1H). 

13
C NMR (100 MHz, CDCl3) δ 115.9, 120.8, 124.4, 125.2, 125.7, 125.8, 128.3, 132.9, 134.8, 136.3, 136.6, 

137.7, 140.5, 148.4, 149.5, 154.3. IR (KBr): 3447, 3012, 1584, 1481, 1402, 1387 cm
-1

. MS (EI, 70 eV) 

m/z 237 (M
+
, 88), 236 (M

+
–1, 89), 204 (M

+
–SH, 100). HRMS (EI): m/z calcd for C15H11NS 237.0612, 

found 237.0612. UV/Vis (acetone) λmax (ε) = 328 (30200), 402 (7300, sh), 560 (260), 600 nm (220, sh). 

 

2-Methylthio-1-(2-pyridyl)azulene (3)  

To a soln of 2-methylthioazulene (8) (290 mg, 1.67 mmol) in CHCl3 (15 mL) was added NIS (398 mg, 

1.77 mmol) and the mixture was stirred at rt for 1 h. The mixture was directly subjected to column 

chromatography [alumina (20 g), hexane] to afford iodide 9 (505 mg, 100%) as a blue oil. To this were 

added Pd(PPh3)4 (138 mg, 0.119 mmol), CsF (605 mg, 3.983 mmol), CuI (65 mg, 0.341 mmol), and a 

soln of 2-(trimethylstannyl)pyridine (744 mg, 3.079 mmol) in DMF (12 mL). After 2.5 h of stirring at 50 

ºC, the mixture was poured into H2O (30 mL) and extracted with EtOAc (60 mL, 2 × 20 mL). The 

combined organic layer was washed with brine (2 × 10 mL) and dried over MgSO4. The crude product 

was subjected to silica gel column chromatography [silica gel (22 g), EtOAc–hexane (1:20), then (1:8), 

then (1:5)] to afford 3 (253 mg, 61%) as a violet oil. 
1
H NMR (400 MHz, CDCl3) δ 2.64 (s, 3H), 

7.17–7.24 (m, 4H), 7.47 (t, J = 9.8 Hz, 1H), 7.70 (dt, J = 8.0, 1.0 Hz, 1H), 7.77 ( td, J = 7.8, 2.0 Hz, 1H), 
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8.12 (d, J = 9.4 Hz, 1H), 8.54 (d, J = 10.0 Hz, 1H), 8.79 (dm, J = 4.9 Hz, 1H).
 13

C NMR (100 MHz, 

CDCl3) δ 15.8, 112.4, 120.8, 124.8, 125.1, 125.4, 125.7, 132.1, 132.8, 135.4, 136.0, 137.4, 141.1, 149.6, 

149.6, 154.8. IR (neat): 3049, 3017, 2920, 1709, 1585, 1562, 1483, 1437, 1408, 1391 cm
-1

. MS (EI, 70 

eV) m/z 251 (M
+
, 62), 236 (M

+
–Me, 100), 218 (73). HRMS (EI): m/z calcd for C16H13NS 251.0769, found 

251.0757. UV/Vis (acetone) λmax (ε) = 331 (39100), 388 (7200), 405 (7200), 554 (240), 590 nm (210, sh).  

 

General procedures for the titration experiments by UV/vis.  

Screw-capped quartz cells were used in order to prevent the volatilization of solvent and to mix up the 

samples. To a soln of azulene derivative in acetone (3.4 × 10
-3

 M, 3 mL) was added a 0.761 M soln of 

Hg(ClO4)2 in acetone with a pipetman. After mixing at r.t., the changes of color were checked by the 

naked eye and UV/vis spectra were recorded. 
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