HETEROCYCLES, Vol. 98, No. 4, 2019, pp. 489 - 508. © 2019 The Japan Institute of Heterocyclic Chemistry Received, 29th January, 2019, Accepted, 4th March, 2019, Published online, 25th March, 2019 DOI: 10.3987/COM-19-14052

PREPARATION OF SOME NOVEL TRISUBSTITUTED 1,3,5-TRIAZINES AND HYBRID LINKER MODE 1,3,5-TRIAZINE DERIVATIVES AND THEIR BIOLOGICAL EVALUATION

Nobuko Mibu,¹ Kazumi Yokomizo,² Kanae Yamada,¹ Junko Matsuyama,¹ Syoko Tomonaga,¹ Izumi Sakai,¹ Ryo Sato,¹ Yuki Kawano,¹ Yumemi Matsumoto,¹ Yuka Fujita,¹ Yusuke Inoue,¹ Masaya Iida,² Kaneto Hashiguchi,² Jian-Rong Zhou,² Makoto Furutachi,¹ and Kunihiro Sumoto^{1*}

¹Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan. ²Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan. E-mail: kunihiro@adm.fukuoka-u.ac.jp

Abstract – We report a new route to the preparation of C_3 -symmetrical multivalent hybrid-type molecules having a tris-aminoethylamine (TAEA) linker group and 1,3,5-triazine recognition moieties in the molecule and we also report the results of biological evaluation of their anti-herpes simplex virus type 1 (anti-HSV-1) activity and cytotoxic activity against Vero cells. Among the tested compounds, a new mid-size C_2 -symmetrical multivalent hybrid-type molecule (**10aq**) showed a high level of anti-HSV-1 activity (EC₅₀ = 19.7 μ M) with low cytotoxicity (CC₅₀ > 200 μ M) against Vero cells. A new C_S -symmetrical multivalent derivative (**4ab**) also showed high anti-HSV-1 activity (EC₅₀ = 1.77 μ M) with low cytotoxicity (CC₅₀ > 200 μ M). The hybrid-type C_2 -symmetrical multivalent mid-size molecule (**10aq**) seems to be an interesting new lead in the search for new hybrid-type symmetrical multivalent antiviral compounds.

INTRODUCTION

Interactions between carbohydrate-containing glycoproteins, proteoglycans and glycolipids on the cell surface are important biological stages for the processes of bacterial or viral infection and tumor metastasis.¹⁻³ Moreover, supramolecular interaction by macromolecules with two-fold (C_2) or three-fold (C_3) geometry is one of the common interactions in many important biological responses.⁴ To develop new multivalent symmetrical bioactive compounds or leads, we have recently designed and synthesized a

few new molecules with such geometry and evaluated their bioactivities in order to find new types of bioactive leads.⁵⁻¹⁴ In connection with this project, we have recently reported the preparation of various C_3 -symmetrical trivalent 1,3,5-triazine (TAZ) derivatives and the results of biological evaluation of the synthesized symmetrical TAZ derivatives.^{7,12} Among previously targeted C_3 -symmetrical TAZ derivatives, we found that C_3 -symmetrical tri-substituted TAZ derivatives (**A** and **B**) showed high levels of anti-HSV-1 activity (EC₅₀ = 0.98 and 1.87 μ M, respectively) and considerably low levels of cytotoxic activity (CC₅₀ > 200 μ M) against Vero cells,^{7,12} and these TAZ derivatives are considered to be potential new leads in the search for antiviral active molecules (Figure 1). Regarding the carbohydrate recognition property of TAZ derivatives with high anti-herpes simplex virus type 1 (anti-HSV-1) activity, the results of our thermodynamic experiments indicated that the C_3 -type TAZ derivative (**A**) having a benzylamine group is a more promising antiviral lead than the C_3 -type trialkoxy-substituted TAZ derivative (**B**).¹³

As an extension of molecular modification of these compounds, we further synthesized new symmetrical C_3 and C_s -symmetrical TAZ derivatives having arylalkylamine groups and a few new multivalent hybrid-type TAZ derivatives constructed on a symmetrical TAEA framework. In this paper, we also describe the results of evaluation of their biological activities and the structure-activity relationships (SARs) of these symmetrical TAZ-related derivatives.

Figure 1. Antiviral lead compounds (A and B)

RESULTAS AND DISCUSSION

A few additional C_s -symmetrical TAZ derivatives (4 and 7) were synthesized from 2,4,6-trichloro-1,3,5-triazine (TCTAZ, 1) as a starting material using a stepwise substitution reaction by nucleophiles such as benzylamine derivatives or alcohols (Scheme 1). The details for the stepwise preparation of these C_s -symmetrical TAZ derivatives (4 and 7) are given in EXPERIMENTAL.

Scheme 1. Synthetic pathway of target C_s-symmetrical TAZ derivatives (4 and 7)

Table 1. Synthesis of C_s -symmetrical tribenzylamino-substituted TAZ derivative	'es (4)	$)^{a}$
---	---------	---------

$ \begin{array}{c} CI \\ \downarrow \\ N \\ H \end{array} $ 3a or 3b	Ar N H	Ar' NH ₂ 2	MW 100 °C (100 W)	Ar' NH $Ar N N Ar -$ $N N N -$ $N N N +$ $H H +$ 4	2; $Ar' = R$ 3; $Ar = 4$; $Ar and Ar' = 7$ 2-4 position R a 3-, 4- OMe b 3-, 4- OCH ₂ O c 3-, 4-, 5- OMe d 4- CF ₃
Entry	3	2	Ratio of 3 : 2	Reaction time (min)	Product (yield %)
1	3 a	2b	1:2.5	45	4ab (76)
2	3 a	2c	1:2.5	50	4ac (84)
3	3 a	2d	1:8	60	4ad (77)
4	3b	2a	1:2.5	30	4ba (80)
5	3b	2c	1:2.5	20	4bc (80)
6	3b	2d	1:2.5	30	4bd (92)

a) MW means microwave irradiation (100 W, 100 °C)

As can be seen in Tables 1 and 2, the yields in the procedure (entries 1~11) with the starting TCTAZ (1) to target C_S -symmetrical TAZ derivatives (4 and 7) were good, and this method for synthesis of TAZ derivatives was reproducible and was reconfirmed to be useful as a general procedure for synthesis of trivalent TAZ derivatives.¹² The presence of a phenylethylamino functionality in the C_S -type TAZ molecules (7) also gave a good result. The structures of the obtained new trivalent TAZ derivatives (4 and 7) were established by spectroscopic methods and elemental analysis. Correct molecular ion peaks were observed in high-resolution positive FAB-MS spectra of all C_S -symmetrical TAZ derivatives (4 and 7).

For the preparation of various new target multivalent hybrid-type TAZ mid-size molecules, we also show a few effective synthetic strategies consisting of stepwise coupling of three kinds of motif linkers (see Schemes 2 and 3, and Table 3).

	+ Ar \sim NH ₂ $\frac{M}{r}$	$\frac{100 \text{ °C (100 W)}}{\text{dry dioxane}} \xrightarrow{Ar_N N}_{N NH}$	6; Ar = X \longrightarrow or $\stackrel{H}{\bigvee}$ $\begin{bmatrix} 6p, 6q, 6r, 6s \\ X = H, Me, F, OH \end{bmatrix}$ 6t
Entry	6	$\frac{1}{Peaction time^{a}}$	Product (vield %)
	0		Troduct (Field 70)
7	6р	30	7p (86) ^{b)}
8	6q	60	7q (83) ^{b)}
9	6r	10	$7r(94)^{b}$
10	6s	30	7s (50)
11	6t	30	7t (78)

Table 2. Synthesis of C_S-symmetrical isopropoxy-diarylalkylamino-TAZ derivatives (7)

a) MW means microwave irradiation (100 W, 100 °C). In all entries, reactions were conducted with stirring at 0 °C (10 min) and at rt (20 min) before MW and with the ratio of 5 : 6 = 1 : 5. *b*)Yields after recrystallization.

Scheme 2. Synthesis of C_3 - and C_2 -symmetrical multivalent hybrid-type TAZ derivatives (8 and 10) starting with compound 3 and TAEA or diaminoalkanes (9)

Scheme 3. (1) Stepwise synthesis of C_3 -symmetrical multivalent hybrid-type TAZ derivatives (12 and 14) starting from monoisopropoxy-substituted TAZ derivative (5). (2) Synthesis of C_3 -symmetrical hybrid-type TAZ derivative 16 from dimethoxy-substituted TAZ derivative 15 and TAEA. (3) Two-step synthesis of C_3 -symmetrical hybrid-type TAZ derivative 19 from TCTAZ (1).

The anti-HSV-1 activities (EC₅₀) determined by plaque reduction assays¹⁵ and cytotoxicity (CC₅₀) of single-drug type TAZ derivatives (**4** and **7**) against Vero cells are summarized in Table 4. The calculated log P^{16} values for synthesized compounds are also shown in Table 4. Among the tri-substituted symmetrical TAZ derivatives tested (**4ab~4bd** and **7p~7t**), the *Cs*-symmetrical derivative **4ab** having three substituted benzylamino groups showed the highest anti-HSV-1 activity (EC₅₀ = 1.77 μ M) and low cytotoxity (CC₅₀ > 200 μ M). It is noteworthy that all of the *Cs*-type compounds (**4**) having three benzylamines in the TAZ template listed in Table 4, except for compound (**4bc**), showed considerably high anti-HSV-1 activities (EC₅₀ = 1.77 ~ 7.86 μ M) and low cytotoxicity (CC₅₀ > 200 μ M). In contrast,

most of the *Cs*-symmetrical TAZ derivatives (7) having an isopropoxy group and two substituted phenylethyllamino groups showed no anti-HSV-1 activity (EC₅₀ > 100 μ M). Two compounds (7s and 7t) including phenolic hydroxy groups or indole groups showed anti-HSV-1 activity (EC₅₀ = 6.9 ~ > 25 μ M) with high cytotoxicity (CC₅₀ = 25.8 ~ 35.6 μ M). The results obtained indicated that the presence of three benzylamino groups as substituents seems to be a profitable structure for the expression of a high level of anti-HSV-1 activity. The reason for no activity of compound **4bc** (EC₅₀ > 100 and CC₅₀ > 200 μ M) is not clear.

Base^{a)} (Additive) Ratio of Starting Reactant Entry Reaction conditions^{b)} Products (yield %) compound (S) [B/(A)] S : R : B (: A) (**R**) 5:1:10 reflux 5.5 h, DMF 12 TAEA K₂CO₃ 8a (41) 3a 13 3b TAEA reflux 6.5 h, DMF **8b** (57) K_2CO_3 5:1:1014 3a 9q K_2CO_3 3:1:6 reflux 3 h, DMF 10aq (12) 15 3a 9s DIPEA 2.2:1:2.2 reflux 7 d, THF 10as (36) 16 5 2b DIPEA 1:1:1 rt 1 h, THF 11b (79) 17^{c} 5 DIPEA 0 °C 2 h, THF 2e 1:1:111e (97) MW 70 °C (90 W) 2 h, 18 11b TAEA Et₃N/NaI 3:1:6:3 12b (51) MW 100 °C (100 W) 1 h, THF 19 11e TAEA Et₃N 3:1:12 50 °C 19 h, MeCN-THF 12e (49) DIPEA 20 13 TAEA 3.3:1:3.3 reflux 4 h, THF 14 (60) 15 TAEA DIPEA reflux 22 h, THF, N₂ 16 (19), 17 (37) 21 3:1:30 °C to rt 10 min, reflux 12 h, 22 1 THEA collidine 3:1:3 [18] acetone [18] DIPEA 23 2-PrNH₂ 1:12:6 reflux 12 h, THF 19 (13)

Table 3. Yields of C_3 - and C_s -symmetrical multivalent hybrid-type TAZ derivatives shown in Schemes 2 and 3 and reaction conditions of target C_3 - and C_s -symmetrical multivalent hybrid-type TAZ derivatives

a) DIPEA stands for N,N-diisopropylethylamine. b)MW means microwave irradiation. c) Data were taken from ref. 12.

Regarding the multivalent symmetrical molecules and for the purpose of comparison of the biological activities of *Cs*-type TAZ derivatives (**4** and **7**), we further prepared new hybrid-type TAZ derivatives (**8** and **10**) constructed on tris-aminoethylamine (TAEA) and diaminoalkane frameworks. The structures of target hybrid-type compounds obtained in this study are shown in Table 5. The results of biological evaluation of these hybrid-type compounds and the data for acyclovir¹⁷ are also shown in Table 5. Only new linear methylene linker mode multivalent *C*₂-symmetrical TAZ derivative **10aq** showed a high level of anti-HSV-1 activity (EC₅₀ = 19.1 μ M) with low cytotoxicity (CC₅₀ > 200 μ M), but its anti-HSV-1

Table 4. Anti-HSV-1 activity (EC₅₀) and cytotoxicity (CC₅₀) of C_s -symmetrical TAZ derivatives against Vero cells and calculated log *P* values of target TAZ derivatives (**4** and **7**)

	Ar' HN	0		
	$\begin{array}{ccc} Ar & N & Ar \\ & & N & Ar \\ & & & N & Ar \\ & & & & & & & & Ar$		N N H	
Com	npound Ar Ar'	EC ₅₀ (μΜ)	СС ₅₀ (µМ)	Log P ^{a)}
4ab		1.77	>200	4.00
4ac	MeO MeO MeO MeO MeO	5.58	>200	4.16
4ad		6.6	>400	5.55
4ba		3.49	>200	3.84
4bc	MeO MeO OMe	> 100	>200	3.59
4bd	C F ₃ C F	7.86	>200	5.23
7р	\bigcirc	> 100	>200	5.33
7q	Me	>100	>200	6.27
7r	F	>100	>200	5.61
7s	но	>25	25.8	4.76
7t		6.9	35.6	3.95

a) All log *P* values were calculated by using SCIGRESS v.2.8.1.

Compound	Ar	EC ₅₀ (μM)	СС ₅₀ (µМ)	Log P ^{a)}
8a / Ar NH	MeO	>100	>200	8.29
$8b \qquad \begin{pmatrix} HN - \langle N \\ HN - \langle N \\ N - \rangle \\ N - \rangle \\ HN - \rangle \\ HN - \rangle \\ 3 \end{pmatrix}$	< T	>100	>200	7.33
10aqNH Ar NH NH NH	=3 MeO	19.1	>200	5.65
10as HN $HN - (CH_2)n = HN - (C$	=5 MeO	>100	>200	6.50
	ŚŢ	>100	>200	6.78
$12e \qquad N \qquad HN - Ar / 3$		>100	>200	8.78
$14 \qquad \begin{pmatrix} O \prec \\ N \prec \\ HN \prec N \\ N \leftarrow O \prec \end{pmatrix}_{3}$		>100	>200	6.23
$16 \qquad \begin{pmatrix} O^{-} \\ N \prec \\ H N \prec & N \\ N \leftarrow & O^{-} \end{pmatrix}_{3}$		>100	>200	1.7
$H_2N_{\underline{A}}\begin{pmatrix} O^-\\ N \overleftarrow{A} \\ HN \overleftarrow{A} \\ N \overleftarrow{A} \\ N \overleftarrow{A} \\ O^- \end{pmatrix}_2$		>100	>200	0.395
$19 \qquad \begin{pmatrix} HN - \\ N \prec \\ O - N \\ N \end{pmatrix} \\ N \begin{pmatrix} HN - \\ HN - \end{pmatrix}_{3}$		>100	>200	5.71
11b _o L	(L)	>100	53.0	3.00
N ^へ N Ar 11e CI ^ノ N ^ノ N ^ノ H	\bigcirc	>100	>200	3.67
aciclovir ^{b)}		1.1	> 444	

Table 5. Anti-HSV-1 activity (EC₅₀), cytotoxicity (CC₅₀) against Vero cells, and calculated log P values of target hybrid type TAZ derivatives (8, 10, 12, 14, 16, 19) and related compounds (11 and 17)

a) All log P values were calculated by using SCIGRESS v.2.8.1. b) Data were taken from reference 17.

activity was slightly lower than that of the C_3 -type trivalent original molecules (**A** and **B**). The results for other hybrid-type compounds are also shown in Table 5. The hybrid-type C_3 -symmetrical derivatives (**14**, **16** and **19**) and a byproduct C_2 -symmetrical derivative **17** having two aliphatic isopropylamino, two isopropoxy or two methoxy groups on the TAZ ring showed no anti-HSV-1 activity (EC₅₀ > 100 μ M) and showed low cytotoxicity (CC₅₀ > 200 μ M). The C_3 -symmetrical hybrid-type compounds (**12b** and **12e**) also showed no anti-HSV-1 activity (EC₅₀ > 100 μ M). Regarding synthetic intermediates **11b** and **11e**, notable anti-HSV-1 activity was not observed. Regarding calculated log *P* values¹⁶ for the compounds, there were few distinct correlations between log *P* values and anti-HSV-1 activity (EC₅₀) values shown in Tables 4 and 5.

From these results, we consider that the hybrid-type new C_2 -symmetrical multivalent mid-size molecule^{18,19} (**10aq**) is a useful lead in the search for new multivalent antiviral compounds. We hope that we will encounter a new promising mid-size molecule, though we need further structural transformation.

On the basis of the information obtained by the evaluation of biological activities of the tri-substituted TAZ derivatives and hybrid-type multivalent mid-size series together with recent information on the C_3 -type TAZ series,^{12,13} we are now investigating further molecular modifications of these TAZ derivatives (**4ab** and **10aq**) with the aim of developing new synthetic compounds with anti-HSV-1 activity.

EXPERIMENTAL

Melting points were determined using a micro melting point apparatus (Yanaco MP-S3) without correction. IR spectra were measured by a Shimadzu FTIR-8100 IR spectrophotometer. MicromATR Vision [an apparatus of attenuated total reflectance (ATR)] was used for a neat sample operation. Lowand high-resolution mass spectra (LR-MS and HR-MS) were obtained by a JEOL JMS HX-110 double-focusing model equipped with an FAB ion source interfaced with a JEOL JMA-DA 7000 data system. ¹H- and ¹³C-NMR spectra were obtained by ECG600R. Chemical shifts were expressed in δ ppm downfield from an internal TMS signal for ¹H-NMR and the carbon signal of the corresponding solvent [CDCl₃ (77.00 ppm), DMSO-*d*₆ (39.50 ppm)] for ¹³C-NMR. The signal assignments were confirmed by two-dimensional (2D)-NMR analyses: ¹H-¹H 2D correlation spectroscopy (COSY), ¹H-¹³C heteronuclear multiple-quantum coherence (HMQC), and ¹H-¹³C heteronuclear multiple-bond connectivity (HMBC). Microanalyses were performed with a Yanaco MT-6 CHN corder. Routine monitoring of reactions was carried out using precoated Kieselgel 60F₂₅₄ plates (E. Merck). Detection of products was accomplished with UV light and iodine. Microwave irradiation experiments were carried out in a CEM Discover Focused Microwave System. Open column, flash column, and centrifugal chromatography separations of the reaction products were performed on silica gel (Kanto 60N or Able-Biott) with a UV detector. Commercially available starting materials were used without further purification, and dry solvents were used in all reactions.

General Procedure for C_{s} -Symmetrical Tribenzylamino-substituted TAZ Derivatives (4) (Table 1): N^2 -(Benzo[d][1,3]dioxol-5-ylmethyl)- N^4 , N^6 -bis(3,4-dimethoxybenzyl)-**Example: Synthesis** of 1,3,5-triazine-2,4,6-triamine (4ab) (Entry 1): To a suspension mixture of dibenzylamino-TAZ intermediate **3a** (669 mg, 1.50 mmol) in dioxane (4 mL) was added piperonylamine (**2b**, 567 mg, 3.75 mmol) at room temperature with stirring, and then the mixture was subjected to microwave irradiation (MW) at 100 °C (100 W) for 45 min with stirring. After addition of saturated ag. NH₄Cl (20 mL), the mixture was extracted with CH₂Cl₂ (30 mL×3). The combined organic layer was washed with brine (20 mL) and dried over MgSO₄. After evaporation of the solvent, the crude compound **4ab** (636.6 mg, 1.14 mmol, 76%) was obtained as a white solid. An analytically pure sample was obtained as colorless crystals after recrystallization from EtOH. Mp 57-61 °C. IR (KBr) cm⁻¹: 3403 (NH), 1562, 1513 (C=N), 1259, 1234, 1138, 1028 (C-N and/or C-O). ¹H-NMR (CDCl₃) δ : 3.82 (6H, s, OCH₃ on C3'), 3.85 (6H, s, OCH₃ on C4'), 4.49 (6H, br s, Ha', α), ca. 5.3 (1H, br s, NH), 5.44 (2H, br s, NH), 5.91 (2H, s, H2"), 6.70 (2H, br s, H6", 7"), 6.76, 6.77 (3H, br s, H4", 5'), 6.81 (2H, br s, H6'), 6.82 (2H, br s, H2'). ¹³C-NMR (CDCl₃) δ: 44.36, 44.49 (Cα, α'), 55.78 (OCH₃ on C4'), 55.87 (OCH₃ on C3'), 100.91 (C2"), 108.08 (C4", 7"), 110.84 (C2'), 110.06 (C5'), 119.71 (C6'), 120.58 (C6"), 131.81 (C1'), 133.26 (C5"), 146.62 (C3a"), 147.70 (C7a"), 148.16 (C4'), 148.98 (C3'), 165.91 (C2, 4, 6). Positive-ion FAB-MS m/z: 561 (M+H)⁺. HR-FAB-MS m/z: 561.2465 (Calcd for C₂₉H₃₃N₆O₆: 561.2462). Anal. Calcd for C₂₉H₃₂N₆O₆·H₂O: C, 60.19; H, 5.92; N, 14.53. Found: C, 60.23; H, 5.66; N, 14.42.

*N*²,*N*⁴-Bis(3,4-dimethoxybenzyl)-*N*⁶-(3,4,5-trimethoxybenzyl)-1,3,5-triazine-2,4,6-triamine (4ac) (Entry 2): Colorless solid. Mp 67-70 °C. IR (KBr) cm⁻¹: 3386 (NH), 1562, 1508 (C=N), 1262, 1234, 1126, 1027 (C-N and/or C-O). ¹H-NMR (CDCl₃) δ : 3.79 (6H, s, OCH₃ on C3", 5"), 3.82 (9H, s, OCH₃ on C4", 3'), 3.85 (6H, s, OCH₃ on C4'), *ca*. 4.45 (2 H, br s, Hα'), 4.50 (4H, br s, Hα), 5.35, 5.44 (3H, br s, NH), 6.52 (2H, br s, H2", 6"), 6.76 (2H, d, *J* = 7.6 Hz, H5'), 6.81 (2H, br s, H6'), 6.82 (2H, br s, H2'). ¹³C-NMR (CDCl₃) δ : 44.46 (Cα), 44.95 (Cα'), 55.76 (C4"), 55.85 (C3'), 56.01 (OCH₃ on C3", 5"), 60.75 (OCH₃ on C4"), 104.43 (C2", 6"), 110.84 (C2'), 111.06 (C5'), 119.69 (C6'), 131.72 (C1'), 134.99 (C1"), 137.00 (C4"), 148.16 (C4'), 148.96 (C3'), 153.25 (C3", 5"), 166.12 (C2, 4, 6). Positive-ion FAB-MS *m*/*z*: 607 (M+H)⁺. HR-FAB-MS *m*/*z*: 607.2871 (Calcd for C₃₁H₃₉N₆O₇: 607.2880). Anal. Calcd for C₃₁H₃₈N₆O₇·0.7H₂O: C, 60.12; H, 6.41; N, 13.57. Found: C, 60.12; H, 6.27; N, 13.46.

 N^2 , N^4 -Bis(3,4-dimethoxybenzyl)- N^6 -(4-(trifluoromethyl)benzyl)-1,3,5-triazine-2,4,6-triamine (4ad) (Entry 3): Colorless solid. Mp 55-60 °C. IR (KBr) cm⁻¹: 3282 (NH), 1563, 1513 (C=N), 1325 (ArCF₃), 1262, 1235, 1161, 1138, 1120 (C-N and/or C-O). ¹H-NMR (CDCl₃) δ : 3.79 (3H, s, OCH₃ on C3'), 3.82 (3H, s, OCH₃ on C4'), 4.42, 4.48, 4.57 (6H, br s, H α , α '), 5.49, 5.65* (3H, br s, NH), 6.64-6.82 (6H, m, H5', 6', 2'), 7.23-7.41 (2H, m, H2", 6"), 7.49* (1.95H, br d, *J* = 6.9 Hz, H3", 5"), 7.58 (0.05H, br d, *J* = 6.9 Hz, H3", 5"). (The observed ¹H-signals assignable to the predominant tautomer are asterisked.) ¹³C-NMR (CDCl₃) δ : 41.51, 44.00, 44.34 (C α , α '), 55.71, 55.78 (OCH₃), 110.75 (C2'), 111.00 (C5'), 119.62 (C6'), 124.10 (q, *J* = 271.6 Hz, CF₃), 125.24 (C3", 5"), 127.41 (C2", 6"), 129.13 (q, *J* = 31.8 Hz, C4"), 131.66 (C1'), 143.75 (C1"), 148.13 (C4'), 148.94 (C3'), 166.08 (C2, 4, 6). Positive-ion FAB-MS *m/z*: 585 (M+H)⁺. HR-FAB-MS *m/z*: 585.2446 (Calcd for C₂₉H₃₂F₃N₆O₄: 585.2437). Anal. Calcd for C₂₉H₃₁F₃N₆O₄·0.7H₂O : C, 58.32; H, 5.47; N, 14.07. Found: C, 58.41; H, 5.40; N, 13.84.

N^2 , N^4 -Bis(benzo[d][1,3]dioxol-5-ylmethyl)- N^6 -(3,4-dimethoxybenzyl)-1,3,5-triazine-2,4,6-triamine

(**4ba**) (Entry 4): Colorless solid. Mp 53-55 °C. IR (KBr) cm⁻¹: 3408 (NH), 1563, 1512 (C=N), 1250, 1038 (C-N and/or C-O). ¹H-NMR (CDCl₃) δ : 3.81 (3H, br s, OCH₃ on C3"), 3.84 (3H, br s, OCH₃ on C4"), *ca*. 4.38, 4.44*, *ca*. 4.47 (6H, br s, H α , α '), 5.45 (3H, br s, NH), 5.90 (4H, s, H2'), 6.69 (4H, br s, H6', 7'), 6.73-6.85 (5H, m, H4', 5", 6", 2"). (The observed ¹H-signals assignable to the predominant tautomer are asterisked.) ¹³C-NMR (CDCl₃) δ : 44.31 (C α , α '), 55.75, 55.84 (OCH₃ on C3', 4'), 100.88 (C2'), 108.04 (C4', 7'), 110.75 (C2"), 111.03 (C5"), 119.64 (C6"), 120.53 (C6'), 131.95 (C1"), 133.45 (C5'), 146.55 (C3a'), 147.66 (C7a'), 148.09 (C4"), 148.95 (C3"), 166.12 (C2, 4, 6). Positive-ion FAB-MS *m/z*: 545 (M+H)⁺. HR-FAB-MS *m/z*: 545.2137 (Calcd for C₂₈H₂₉N₆O₆: 545.2149). Anal. Calcd for C₂₈H₂₈N₆O₆: C, 61.50; H, 5.20; N, 15.37. Found: C, 61.50; H, 5.20; N, 15.37.

*N*²,*N*⁴-**Bis(benzo[***d***][1,3]dioxol-5-ylmethyl)-***N***⁶-(3,4,5-trimethoxybenzyl)-1,3,5-triazine-2,4,6-triamine (4bc) (Entry 5): Colorless solid. Mp 55-60 °C. IR (KBr) cm⁻¹: 3408 (NH), 1566, 1503 (C=N), 1234, 1126, 1038 (C-N and/or C-O). ¹H-NMR (CDCl₃) \delta : 3.78 (6H, br s, OCH₃ on C3", 5"), 3.81 (3H, br s, OCH₃ on C4"),** *ca***. 3.9 (0.5H, br s, NH), 4.43 (6H, br s, Hα, α'), 5.56* (2.5H, br s, NH), 5.89 (4H, br s, H2'), 6.50 (2H, br s, H2", 6"), 6.68 (4H, br s, H6',7'), 6.74 (2H, br s, H4'). (The observed ¹H-signals assignable to the predominant tautomer are asterisked.) ¹³C-NMR (CDCl₃) \delta: 44.27 (Cα), 44.88 (Cα'), 55.96 (OCH₃ on C3", 5"), 60.72 (OCH₃ on C4"), 100.86 (C2'), 104.34 (C2", 6"), 108.00 (C4', 7'), 120.48 (C6'), 133.38 (C5'), 135.13 (C1"), 136.91 (C4"), 146.54 (C3a'), 147.65 (C7a'), 153.20 (C3", 5"), 166.05 (C2, 4, 6). Positive-ion FAB-MS** *m***/***z***: 575 (M+H)⁺. HR-FAB-MS** *m***/***z***: 575.2257 (Calcd for C₂₉H₃₁N₆O₇: 575.2254). Anal. Calcd for C₂₉H₃₀N₆O₇: C, 60.62; H, 5.26; N, 14.63. Found: C, 60.50; H, 5.30; N, 14.45.**

*N*²,*N*⁴-Bis(benzo[*d*][1,3]dioxol-5-ylmethyl)-*N*⁶-[4-(trifluoromethyl)benzyl]-1,3,5-triazine-2,4,6-triamine (4bd) (Entry 6): Colorless crystals. Mp 120-124 °C (from EtOH). IR (KBr, tab) cm⁻¹: 3447 (NH), 1577, 1531, 1506 (C=N), 1327 (ArCF₃), 1250, 1110, 1039 (C-N and/or C-O). ¹H-NMR (CDCl₃) δ : 4.43 (4H, br s, Hα), 4.61 (2H, br s, Hα'), 5.09, 5.15, 5.23*, 5.34 (3H, br s, NH), 5.92*, 5.93 (4H, s, H2'), 6.72 (4H, br s, H6', 7'), 6.79 (2H, br s, H4'), 7.38 (2H, br d, *J* = 7.3 Hz, H2'', 6''), 7.54 (2H, br d, *J* = 7.3 Hz,

H3", 5"). ¹³C-NMR (CDCl₃) δ : 44.11 (C α '), 44.43 (C α), 100.95 (C2'), 108.15 (C7'), 108.30, 109.39* (C4'), 120.59 (C6'), 124.19 (q, *J* = 271.7 Hz, CF₃) 125.38 (q, *J* = 2.9 Hz, C3", 5"), 127.49 (C2", 6"), 129.27 (q, *J* = 33.2 Hz, C4"), 133.16, 133.33* (C5'), 143.72, 143.77* (C1"), 146.70 (C3a'), 147.76 (C7a'), 166.08 (C2, 4, 6). (The observed ¹H- and ¹³C-signals assignable to the predominant tautomer are asterisked.) Positive-ion FAB-MS *m*/*z*: 553 (M+H)⁺. HR-FAB-MS *m*/*z*: 553.1799 (Calcd for C₂₇H₂₄F₃N₆O₄: 553.1811). Anal. Calcd for C₂₇H₂₃F₃N₆O₄: C, 58.69; H, 4.20; N, 15.21. Found: C, 58.62; H, 4.20; N, 15.21.

General Procedure for C₅-Symmetrical Isopropoxy-diarylalkylamino-TAZ Derivatives (7) (Table 2): Example: Synthesis of 6-Isopropoxy- N^2 , N^4 -diphenethyl-1,3,5-triazine-2,4-diamine (7p) (Entry 7): To a solution of 2,4-dichloro-6-isopropoxy-1,3,5-triazine (5, 416 mg, 2.00 mmol) in dioxane (4 mL) was added phenethylamine (6p, 1.21 g, 10.0 mmol) at 0 °C with stirring, and the reaction mixture was continuously stirred for 10 min at 0 °C and then for another 20 min at room temperature. Then the mixture was subjected to microwave irradiation (MW) at 100 °C (100 W) for 30 min with stirring. After addition of water (50 mL), the mixture was extracted with CH_2Cl_2 (30 mL×3). The combined organic layer was washed with saturated aq. NH₄Cl (90 mL) and dried over MgSO₄. After evaporation of the solvent, the residue was recrystallized by MeCN to give compound 7p (0.646 g, 1.71 mmol, 86%) as colorless crystals. Mp 136-140 °C (from MeCN). IR (KBr) cm⁻¹: 3344 (NH), 1624, 1521 (C=N), 1314, 1165, 1102 (C-N and/or C-O). ¹H-NMR (CDCl₃) δ: 1.29, 1.35* (6H, s, H2", 3"), 2.85, 2.91* (4H, br s, Hβ), 3.58, 3.68* (4H, br s, Hα), 5.12, 5.24* (1H, br s, H1"), ca. 5.10, ca. 5.15, 5.31* (2H, br s, NH), 7.17-7.25 (5H, m, H2', 4', 6'), 7.25-7.33 (2H, m, H3', 5'). ¹³C-NMR (CDCl₃) δ: 21.98 (C2", 3"), 35.97 (Cβ), 41.89*, 42.26 (Cα), 68.89*, 69.27, 69.35 (C1"), 126.36 (C2', 6'), 128.54 (C3', 5'), 128.77 (C4'), 139.04 (C1'), 166.94, 167.29* (C2, 4), 169.82*, 171.11 (C6). (The observed ¹H- and ¹³C-signals assignable to the predominant tautomer are asterisked.) Positive-ion FAB-MS m/z: 378 (M+H)⁺. HR-FAB-MS m/z: 378.2294 (Calcd for C₂₂H₂₈N₅O: 378.2292). Anal. Calcd for C₂₂H₂₇N₅O: C, 70.00; H, 7.21; N, 18.55. Found: C, 70.00; H, 7.29; N, 18.55.

6-Isopropoxy-*N*²,*N*⁴-**bis**(4-methylphenethyl)-1,3,5-triazine-2,4-diamine (7q) (Entry 8): Colorless crystals. Mp 126-128 °C (from MeCN). IR (KBr) cm⁻¹: 3339, 3255, 3107 (NH), 1623, 1515 (C=N), 1316, 1102 (C-N and/or C-O). ¹H-NMR (CDCl₃) δ: 1.28, 1.34* (6H, br s, H2", 3"), 2.32 (6H, s, CH₃ on C4'), 2.80*, 2.86 (4H, br s, Hβ), 3.55, 3.56, 3.64* (4H, br s, Hα), 5.12, 5.23* (1H, br s, H1"), *ca*. 5.16, 5.29 (2H, br s, NH), 7.10 (8H, br s, H2', 3', 5', 6'). ¹³C-NMR (CDCl₃) δ: 20.97 (CH₃ on C4'), 21.96 (C2", 3"), 35.47 (Cβ), 41.96*, 42.33 (Cα), 68.83*, 69.23 (C1"), 128.62 (C2', 6'), 129.20 (C3', 5'), 135.83, 135.89 (C1', 4'), 166.96, 167.24*, 167.47 (C2, 4), 169.79*, 169.82 (C6). (The observed ¹H- and ¹³C-signals assignable to the predominant tautomer are asterisked.) Positive-ion FAB-MS *m/z*: 406 (M+H)⁺. HR-FAB-MS *m/z*: 406.2608 (Calcd for C₂₄H₃₂N₅O: 406.2607). Anal. Calcd for C₂₄H₃₁N₅O: C, 71.08 H,

7.70; N, 17.27. Found: C, 71.26; H, 7.76; N, 17.11.

6-Isopropoxy-*N*²,*N*⁴**-bis(4-fluorophenethyl)-1,3,5-triazine-2,4-diamine (7r) (Entry 9):** Colorless crystals. Mp 138-140 °C (from MeCN). IR (KBr) cm⁻¹: 3345 (NH), 1622, 1509 (C=N), 1314, 1230, 1149, 1098 (C-N and/or C-O). ¹H-NMR (CDCl₃) δ: 1.29[¶], 1.35[¶] (6H, br s, H2", 3"), 2.83[¶], 2.86[¶] (4H, br s, Hβ), 3.56[¶], 3.64[¶] (4H, br s, Hα), 4.96, 5.07 (1.5H, br s, NH), [5.12 (0.2H), 5.23 (0.8H)] (br s, H1"), 5.24 (0.5H, br s, NH), 6.98 (4H, t, *J* = 8.3 Hz, H3', 5'), 7.15 (4H, br s, H2', 6'). ¹³C-NMR (CDCl₃) δ: 21.97 (C2", 3"), 35.16 (Cβ), 41.96[¶], 42.28[¶] (Cα), 69.39[¶], 69.45[¶] (C1"), 115.33 (d, *J* = 2.1 Hz, C3', 5'), 130.15 (d, *J* = 8.6 Hz, C2', 6'), 134.64 (C1'), 161.59 (d, *J* = 244.2 Hz, C4'), 166.97[¶], 167.27[¶] (C2, 4), 169.49[¶], 169.86[¶] (C6). [Signals that appeared in ¹H- and ¹³C-NMR spectra are consistent with the tautomeric mixture of two isomers with the ratio of *ca*. 1 : 1. The signals assignable to each tautomer are marked with a superscript **¶**.] Positive-ion FAB-MS *m/z*: 414 (M+H)⁺. HR-FAB-MS *m/z*: 414.2100 (Calcd for C₂₂H₂₆F₂N₅O: C, 63.91; H, 6.09; N, 16.94. Found: C, 63.87; H, 6.14; N, 16.86.

6-Isopropoxy- N^2 , N^4 -**diphenethyl-1,3,5-triazine-2,4-diamine (7s) (Entry 10):** White solid. Mp 88-90 °C. IR (KBr) cm⁻¹: 3410 (NH), 1577, 1514 (C=N), 1317, 1240, 1103 (C-N and/or C-O). ¹H-NMR (DMSO-*d*₆) δ : [1.21*(J = 5.5 Hz), 1.25 (J = 6.4 Hz), 1.29 (J = 6.9 Hz)] (6H, d, H2", 3"), 2.68-2.78 (4H, m, H β), 3.41,* 3.46 (4H, m, H α), 5.11-5.23 (1H, m, H1"), 6.72 (4H, dd, J = 8.2, 2.2 Hz, H3', 5'), 6.93, 6.98 (0.7H, br s, NH), 7.02-7.08 (4H, m, H2', 6'), 7.14-7.22 (1.3H, m, NH), 9.29,* 9.31 (2H, br s, OH). ¹³C-NMR (DMSO-*d*₆) δ : 22.08 (C2", 3"), 34.45, 34.78,* 34.89 (C β), 42.29,* 42.54 (C α), 67.78,* 68.19, 68.60 (C1"), 115.33 (C3', 5'), 129.68 (C2', 6'), 129.92 (C1'), 155.73 (C4'), 166.65, 166.84, 166.94,* 167.15 (C2, 4), 169.52,* 169.69, 170.05 (C6). (The observed ¹H- and ¹³C-signals assignable to the predominant tautomer are asterisked.) Positive-ion FAB-MS m/z: 410 (M+H)⁺. HR-FAB-MS m/z: 410.2192 (Calcd for C₂₂H₂₇N₅O₃: 410.2192). Anal. Calcd for C₂₂H₂₇N₅O₃·0.4H₂O: C, 63.41; H, 6.72; N, 16.81. Found: C, 63.43; H, 6.64; N, 16.76.

6-Isopropoxy-*N*²,*N*⁴-**bis**[2-(1*H*-indol-3-yl)ethyl]-1,3,5-triazine-2,4-diamine (7t) (Entry 11): White solid. Mp 70-73 °C. IR (KBr) cm⁻¹: 3410 (NH), 1573, 1516 (C=N), 1338, 1317, 1157, 1104 (C-N and/or C-O). ¹H-NMR (CDCl₃) δ: 1.24, 1.31 (6H, br s, H2", 3"), 2.92, 3.00 (4H, br s, Hβ), 3.62, 3.72 (4H, br s, Hα), 5.11, 5.23* (1H, br s, H1"), 5.31*, 5.43 (2H, br s, NH), 6.74*, 6.83 (2H, br s, H2'), 7.06 (2H, br s, H6'), 7.14 (2H, br s, H5'), 7.25 (2H, br s, H7'), 7.55*, 7.60 (2H, br s, H4'), 8.40*, 8.48 (2H, br s, NH of indole). ¹³C-NMR (CDCl₃) δ: 21.91 (C2", 3"), 25.34 (Cβ), 40.71*, 40.97 (Cα), 68.90, 69.34* (C1"), 111.21 (C7'), 112.51*, 112.74 (C3'), 118.55 (C4'), 119.08 (C6'), 121.80 (C5'), 122.11 (C2'), 127.16 (C3a'), 136.31 (C7a'), 166.70*, 167.15 (C2, 4), 169.63, 170.03* (C6). (The observed ¹H- and ¹³C-signals assignable to the predominant tautomer are asterisked.) Positive-ion FAB-MS *m/z*: 456 (M+H)⁺. HR-FAB-MS *m/z*: 456.2512 (Calcd for C₂₆H₃₀N₇O: 456.2513). Anal. Calcd for C₂₆H₂₉N₇O·1/3EtOAc·

1/3H₂O: C, 66.87; H, 6.66; N, 19.97. Found: C, 67.10; H, 6.67; N, 20.04.

General Procedure for C₃- and C₂-Symmetrical Multivalent Hybrid-type TAZ Derivatives (8, 10): Example: Synthesis of N²-[2-[Bis[2-[[4,6-bis[(3,4-dimethoxybenzyl)amino]-1,3,5-triazin-2-yl]amino]ethyl]amino]ethyl]-N⁴, N⁶-bis(3,4-dimethoxybenzyl)-1,3,5-triazine-2,4,6-triamine (8a) (Entry 12): To a suspension of intermediate 3a (1.411 g, 2.55 mmol) in DMF (2.5 mL) was added TAEA (74.6 mg, 0.510 mmol) and K₂CO₃ (705 mg, 5.10 mmol) at room temperature with stirring. The reaction mixture was refluxed for 5.5 h. After evaporation of the solvent and addition of 1M HCl (20 mL), the brown residue was extracted with CH₂Cl₂ (20 mL×3). The combined organic layer was washed with 1M aq. NaHCO₃ (50 mL) and dried over MgSO₄. After evaporation of the solvent, the brown oily residue was purified by flush column chromatography (CH₂Cl₂ : EtOH = 95 : 5 \rightarrow 90 : 10) to obtain compound 8a (305 mg, 0.222 mmol, 41%) as a white solid. Mp 103-110 °C. IR (KBr) cm⁻¹: 3389 (NH), 2833 (ArOCH₃) 1565, 1516 (C=N), 1262, 1234, 1138, 1026 (C-N and/or C-O). ¹H-NMR (CDCl₃) δ: 2.61 (6H, br s, H2''), 2.73* (5.6H, br s, NH), 3.38 (6H, br s, H1"), 3.77 (18H, br s, OCH₃ on C3'), 3.81 (18H, br s, OCH₃ on C4'), 4.35, 4.47* (12H, br s, Hα), [4.88 (1.8H), 5.12 (1.2H), 5.97 (0.15H), 6.32 (0.25H)] (br s, NH), 6.60-6.90 (18H, m, H2', 5', 6'). ¹³C-NMR (CDCl₃) δ: 38.68 (C1"), 44.29 (Cα), 55.74 (OCH₃ on C3' or 4'), 55.83 (OCH₃ on C4' or 3', C2"), 110.74 (C5'), 110.98 (C2'), 119.54 (C6'), 132.03 (C1'), 148.05 (OCH₃ on C4'), 148.92 (OCH₃ on C3'), 166.17 (C2, 4, 6). (The observed ¹H- and ¹³C-signals assignable to the predominant tautomer are asterisked.) Positive-ion FAB-MS m/z: 1374 (M+H)⁺. HR-FAB-MS m/z: 1374.6868 (Calcd for C₆₉H₈₈N₁₉O₁₂: 1374.6860). Anal. Calcd for C₆₉H₈₇N₁₉O₁₂·EtOH·1.5H₂O: C, 58.91; H, 6.68; N, 18.38. Found: C, 58.88; H, 6.58; N, 18.38.

*N*²,*N*⁴-**Bis(benzo**[*d*][1,3]dioxol-5-ylmethyl)-*N*⁶-[2-[bis[2-[[4,6-bis[(benzo[*d*]][1,3]dioxol-5-ylmethyl)amino]-1,3,5-triazin-2-yl]amino]ethyl]amino]ethyl]-1,3,5-triazine-2,4,6-triamine (8b) (Entry 13): Colorless solid. Mp 90-93 °C. IR (KBr) cm⁻¹: 3410 (NH), 1567, 1501 (C=N), 1249, 1038 (C-N and/or C-O). ¹H-NMR (CDCl₃) δ : 2.55 (6H, br s, H2"), ca. 3.2* (3.8H, br s, NH), 3.31 (6H, br s, H1"), 4.29, 4.40* (12H, br s, Hα), 5.19, 5.38 (3.5H, br s, NH), 5.86 (12H, br s, H2'), ca. 6.25 (1.7H, br s, NH), 6.50-6.90 (18H, br s, H4', 6', 7'). ¹³C-NMR (CDCl₃) δ : 39.09 (C1"), 44.21 (Cα), 54.27 (C2"), 100.84 (C2'), 108.00, 108.11 (C4', 7'), 120.47 (C6'), 133.62 (C5'), 146.47, 147.60 (C3'α, 7'α), 165.52, 165.72, 165.92 (C2, 4, 6). (The observed ¹H- and ¹³C-signals assignable to the predominant tautomer are asterisked.) Positive-ion FAB-MS *m/z*: 1278 (M+H)⁺. HR-FAB-MS *m/z*: 1278.4091 (Calcd for C₆₃H₆₄N₁₉O₁₂: 1278.4982). Anal. Calcd for C₆₃H₆₃N₁₉O₁₂·EtOH·0.5H₂O: C, 58.55; H, 5.29; N, 19.96. Found: C, 58.32; H, 5.12; N, 20.10.

 N^2 , N^2 '-(Propane-1,3-diyl)bis(N^4 , N^6 -bis(3,4-dimethoxybenzyl)-1,3,5-triazine-2,4,6-triamine (10aq) (Entry 14): White solid. mp 71-74 °C. IR (NaCl) cm⁻¹: 3377(NH), 1671, 1558 (C=N), 1262, 1235, 1139, 1027 (C-N and/or C-O). ¹H-NMR (CDCl₃) δ : 1.73 (2H, br s, H2''), 2.22 (5H, br s, NH), 3.39 (4H, br s,

H1^{''}, 3^{''}), 3.81, 3.835, 3.84, 3.85 (24H, br s, OCH₃), 4.40, 4.52 (8H, br s, H α), 5.13 (0.4H, br s, NH), 5.28 (0.6H, br s, NH), 6.65-6.9 (12H, m, ArH). ¹³C-NMR (CDCl₃) δ : 30.07 (C2^{''}), 37.44 (br s, C1^{''}, 3^{''}), 44.41 (br s, C α), 55.76, 55.84 (OCH₃), 110.80 (C5[']), 111.02 (C2[']), 119.55 (C6[']), 131.99 (br s, C1[']), 148.09 (C4[']), 148.95 (C3[']), 165.95 (br s, C2, 4, 6). Positive-ion FAB-MS *m*/*z*: 893 (M+H)⁺. HR-FAB-MS *m*/*z*: 893.4423 (Calcd for C₄₅H₅₇N₁₂O₈: 893.4422). Anal. Calcd for C₄₅H₅₆N₁₂O₈•1.5H₂O: C, 58.75; H, 6.46; N, 18.27. Found: C, 58.83; H, 6.72; N, 18.15.

 N^2 , N^2 '-(Pentane-1,5-diyl)bis[N^4 , N^6 -bis(3,4-dimethoxybenzyl)-1,3,5-triazine-2,4,6-**Synthesis** of triamine] (10as) (Entry 15): To a suspension of intermediate 3a (981 mg, 2.20 mmol) in THF (10 mL) was added 1,5-diaminopentane (9s, 102 mg, 1.00 mmol) and N,N-diisopropylethylamine (DIPEA, 284 mg, 2.20 mmol) at room temperature with stirring. The reaction mixture was refluxed for 7 d. After addition of water (20 mL), the mixture was extracted with CH_2Cl_2 (20 mL×3). The combined organic layer was washed with brine and dried over MgSO₄. After evaporation of the solvent, the residual yellow oil was purified by centrifugal chromatography (CH_2Cl_2 : EtOH = 97 : 3) to give compound **10as** (330 mg, 358 mmol, 36%) as a white solid. Mp 75-77 °C. IR (KBr) cm⁻¹: 3403 (NH), 1557, 1506 (C=N), 1262, 1234, 1137, 1027 (C-N and/or C-O). ¹H-NMR (CDCl₃) δ: 1.29 (2H, br s, H3"), 1.47 (4H, br s, H2", 4"), 2.66 (1.7H, br s, NH), 3.21, 3.30 (4H, br s, H1", 5"), 3.79, 3.82 (24H, OCH₃), 4.47 (8H, br s, Ha), 5.17 (0.7H, br s, NH), 5.60 (3.6H, br s, NH), 6.70-6.85 (12H, m, ArH). ¹³C-NMR (CDCl₃) δ: 24.01 (C3"), 29.30 (C2", 4"), 40.32 (C1", 5"), 44.29 (Cα), 55.67, 55.76 (OCH₃), 110.75 (C5'), 110.97 (C2'), 119.56 (C6'), 131.98 (br s, C1'), 148.01 (C4'), 148.87 (C3'), 166.00 (br s, C2, 4, 6). Positive-ion FAB-MS *m/z*: 921 (M+H)⁺. HR-FAB-MS m/z: 921.4763 (Calcd for C47H61N12O8: 921.4735). Anal. Calcd for C47H60N12O8 · 1.2H2O: C, 59.88; H, 6.67; N, 17.83. Found: C, 59.89; H, 6.61; N, 17.68.

Synthesis of *N*-(Benzo[*d*][1,3]dioxol-5-ylmethyl)-4-chloro-6-isopropoxy-1,3,5-triazin-2-amine (11b) (Entry 16): Compound 11b was prepared from the reaction of 5 with piperonylamine 2b under the conditions shown in Table 3 in a manner similar to that for the preparation of compound 11e reported before.¹² Colorless crystals. Mp 148-150 °C (from MeCN). IR (KBr) cm⁻¹: 3260, 3121 (NH), 1645, 1564, 1530 (C=N), 1298, 1248, 1234, 1038, (C-N and/or C-O), 806 (C-Cl). ¹H-NMR (CDCl₃) δ : 1.32 (2H, d, *J* = 6.2 Hz, H2", H3"), 1.36* (4H, d, *J* = 6.2 Hz, H2", H3"), 4.55 (1.3H, d, *J* = 6.2 Hz, Ha), 4.56* (0.7H, d, *J* = 6.2 Hz, Ha), 5.24 (0.3H, qu, *J* = 6.2 Hz, H1"), 5.29* (0.7H, qu, *J* = 6.2 Hz, H1"), 5.95* (1.3H, s, H2'), 5.95 (0.7H, s, H2'), 6.28 (0.3H, br s, NH), 6.73* (0.7H, br s, NH), 6.75-6.83, m, H4', 6', 7'). ¹³C-NMR (CDCl₃) δ : 21.66*, 21.69 (C2", 3"), 44.80*, 44.89 (Ca), 71.67, 72.01* (C1"), 101.10 (C2'), 108.01 (C4'), 108.32 (C7'), 120.79*, 121.11 (C6'), 131.25*, 131.28 (C5'), 147.15 (C7a'), 147.92 (C3a'), 166.93 (C2), 169.79 (C4), 170.31 (C4 or 6), 170.38 (C6 or 4), 171.45 (C6). (The observed ¹H- and ¹³C-signals assignable to the predominant tautomer are asterisked.) Positive-ion FAB-MS *m/z*: 323 (M+H)⁺. HR-FAB-MS *m/z*: 323.0914 (Calcd for C₁₄H₁₆ClN₄O₃: 323.0911). Anal. Calcd for C₁₄H₁₅ClN₄O₃·

0.2H₂O: C, 51.52; H, 4.76; N, 17.17. Found: C, 51.56; H, 4.76; N, 17.04.

N-Benzyl-4-chloro-6-isopropoxy-1,3,5-triazin-2-amine (11e) (Entry 17): See reference 12.

Synthesis of N^2 -(Benzo[d][1,3]dioxol-5-ylmethyl)- N^4 -[2-[bis[2-[[4-[(benzo[d][1,3]dioxol-5-ylmethyl)amino]-6-isopropoxy-1,3,5-triazin-2-yl]amino]ethyl]amino]ethyl]-6-isopropoxy-1,3,5-triazine-2,4diamine (12b) (Entry 18): To a solution of compound 4c (485 mg, 1.50 mmol) in THF was added TAEA (73.1 mg, 0.500 mmol), Et₃N (304 mg, 3.00 mmol) and NaI (229 mg, 1.50 mmol) at room temperature with stirring. The reaction mixture was subjected to MW at 70 °C (90 W) for 2 h and at 100 °C (100 W) for 1 h with stirring. After addition of water (35 mL) to the resulting mixture, the mixture was extracted with CH₂Cl₂ (25 mL×3). The combined organic layer was washed with saturated aq. NH₄Cl (50 mL) and dried over MgSO₄. After evaporation of the solvent, the residue was purified by centrifugal chromatography (CH₂Cl₂ : EtOH = 95 : 5) to give compound **5c** (257 mg, 0.256 mmol, 51%) as a white solid. Mp 97-100 °C. IR (KBr) cm⁻¹: 3409 (NH), 1575, 1514 (C=N), 1317, 1249, 1105, 1039 (C-N and/or C-O). ¹H-NMR (CDCl₃) δ: 1.20, 1.30 (18H, br s, H2", H3"), 2.64 (6H, br s, H2""), 3.42 (6H, br s, H1""), 4.35, 4.48 (6H, br s, Hα), ca. 5.1 (0.8H, br s, NH), 5.11, 5.18 (3H, br s, H1"), 5.45 (0.4H, br s, NH), 5.90 (6H, br s, H2'), ca. 5.9 (0.8H, br s, NH), 6.15 (0.4H, br s, NH), ca. 6.3 (0.4H, br s, NH), 6.6-6.85 (9H, m, ArH), ca. 8.5 (0.2H, br s, NH). ¹³C-NMR (CDCl₃) δ: 21.89 (C2^{''}, 3^{''}), 38.69, 38.96* (br s, C1^{'''}), 44.27, 44.43* (br s, Ca), 53.38, 55.65*, 56.22 (br s, C2"), 68.95, 69.24* (br s, C1"), 100.87 (C2'), 108.00 (C4', 7'), 120.53 (C6'), 133.15 (br s, C5'), 146.55, (C7a'), 147.64 (C3a'), 167.07 (br s, C2, 4), 167.46 (br s, C6). (The observed ¹H- and ¹³C-signals assignable to the predominant tautomer are asterisked.) Positive-ion FAB-MS m/z: 1005 (M+H)⁺. HR-FAB-MS m/z: 1005.4813 (Calcd for C₄₈H₆₁N₁₆O₉: 1005.4807). Anal. Calcd for C₄₈H₆₀N₁₆O₉·2H₂O: C, 55.37; H, 6.20; N, 21.53. Found: C, 55.44; H, 5.94; N, 21.31.

Synthesis of N^2 -Benzyl- N^4 -[2-[bis[2-[[4-(benzylamino)-6-isopropoxy-1,3,5-triazin-2-yl]amino]ethyl]amino]ethyl]-6-isopropoxy-1,3,5-triazine-2,4-diamine (12e) (Entry 19): To a suspension of compound 11e (585 mg, 2.10 mmol) in MeCN (15 mL) and THF (10 mL) was added TAEA (102 mg, 0.700 mmol) and Et₃N (850 mg, 8.40 mmol) at room temperature. The reaction mixture was stirred at 50 °C for 19 h with stirring. After addition of water (75 mL) to the resulting mixture, the mixture was extracted with EtOAc (40 mL×3). The combined organic layer was washed with brine (40 mL) and dried over MgSO₄. After evaporation of the solvent, the residue was purified by centrifugal chromatography (CH₂Cl₂ : EtOH = 95 : 5) to afford compound 12e (299 mg, 0.343 mmol, 49%) as a colorless solid. 12e: Mp 85-88 °C. IR (ATR, neat) cm⁻¹: 3254 (NH), 1564, 1508 (C=N), 1144, 1104 (C-N and/or C-O). ¹H-NMR (CDCl₃) δ : 1.17, 1.29* (18H, br s, H2'', 3''), 2.60, 2.64* (6H, br s, H2'''), 3.24 (1.9H, br s, NH), 3.38, 3.42* (6H, br s, H1'''), 4.46, 4.58* (6H, br s, H α), *ca*. 5.1 (0.2H, br s, NH), 5.09, 5.19* (3H, br s, H1''), 5.48 (0.5H, br s, NH), *ca*. 6.35 (3.4H, br s, NH), 7.10-7.35 (15H, m, ArH). ¹³C-NMR (CDCl₃) δ : 21.87 (C2'', 3''), 3.893*, 39.58 (br s, C1''), 44.53*, 44.57 (C α), 53.60*, 55.99 (br s, C2'''), 68.94*, 69.29 (br s, C1''), 127.01 (C4'), 127.30 (C2', 6'), 128.41 (C3', 5'), 139.27 (br s, C1'), 167.05 (br s, C2, 4), 169.63 (br s, C6). (The observed ¹H- and ¹³C-signals assignable to the predominant tautomer are asterisked.) Positive-ion FAB-MS *m*/*z*: 873 (M+H)⁺. HR-FAB-MS *m*/*z*: 873.5108 (Calcd for C₄₅H₆₁N₁₆O₃: 873.5113). Anal. Calcd for C₄₅H₆₀N₁₆O₃· 0.4H₂O: C, 61.40; H, 6.96; N, 25.46. Found: C, 61.56; H, 6.97; N, 25.36.

Synthesis of *N*¹-(4,6-Diisopropoxy-1,3,5-triazin-2-yl)-*N*²,*N*²-bis[2-[(4,6-diisopropoxy-1,3,5-triazin-2-yl)amino]ethyl]ethane-1,2-diamine (14) (Entry 20): To a solution of compound 13 (765 mg, 3.30 mmol) in THF (10 mL) was added TAEA (146 mg, 1.00 mmol) and DIPEA (427 mg, 3.30 mmol) at room temperature. The reaction mixture was refluxed for 4 h. After addition of water (15 mL) to the resulting mixture, the mixture was extracted with CH₂Cl₂ (20 mL×3). The combined organic layer was washed with brine (15 mL) and dried over MgSO₄. After evaporation of the solvent, the residue was purified by centrifugal chromatography (CH₂Cl₂ : EtOH = 97 : 3) to give compound 14 (438 mg, 0.598 mmol, 60%) as a colorless solid. Mp 155-158 °C. IR (KBr) cm⁻¹: 3261, 3144 (N-H), 1621, 1575 (C=N), 1178, 1124, 1099 (C-N and/or C-O). ¹H-NMR (CDCl₃) δ : 1.33 (3H, d, *J* = 6.2 Hz, H2', 3' on C4), 1.35 (3H, d, *J* = 6.2 Hz, H2', 3' on C6), 2.67-2.74 (6H, m, H2''), 3.44-3.50 (6H, m, H1''), 5.22 (3H, qu, *J* = 6.2 Hz, H1' on C4), 5.30 (3H, qu, *J* = 6.2 Hz, H1' on C4), 70.40 (C1' on C6), 167.95 (C2), 171.85 (C4), 171.55 (C6). Positive-ion FAB-MS *m*/*z*: 732 (M+H)⁺. HR-FAB-MS *m*/*z*: 732.4631 (Calcd for C₃₃H₅₈N₁₃O₆: EtOH·H₂O: C, 52.81; H, 8.23; N, 22.88. Found: C, 52.98; H, 7.87; N, 22.54.

Synthesis of N^1 -(4,6-Dimethoxy-1,3,5-triazin-2-yl)- N^2 , N^2 -bis[2-[(4,6-dimethoxy-1,3,5-triazin-2-yl)amino]ethyl]ethane-1,2-diamine (16) and N^1 -(2-Aminoethyl)- N^2 -(4,6-dimethoxy-1,3,5-triazin-2-yl)- N^1 -[2-[(4,6-dimethoxy-1,3,5-triazin-2-yl)amino]ethyl]ethane-1,2-diamine (17) (Entry 21): To a solution of TAEA (292 mg, 2.00 mmol) in THF (20 mL) was added a solution of compound 13 (1.09 g, 6.20 mmol) in THF (5 mL) and DIPEA (775 mg, 6.00 mmol) with stirring at room temperature under an N_2 atmosphere. The reaction mixture was refluxed for 22 h. After addition of water (30 mL) to the resulting mixture, the mixture was extracted with CH₂Cl₂ (40 mL×3). The combined organic layer was washed with brine (25 mL) and dried over MgSO₄. After evaporation of the solvent, the residue was purified by centrifugal chromatography (CH₂Cl₂ : 95% EtOH : 28% NH₃ = 70 : 27.5 : 2.5) to give compounds 16 (219 mg, 0.389 mmol, 19%) and 17 (316 mg, 0.744 mmol, 37%).

16: White solid. Mp 62-64 °C. IR (KBr) cm⁻¹: 3264, 3153 (N-H), 1571, 1544 (C=N), 1345, 1254, 1105 (C-N and/or C-O). ¹H-NMR (CDCl₃) δ : 2.75 (6H, t, *J* = 5.5 Hz, H2'), 3.47 (6H, dt, *J* = 5.5, 5.2 Hz, H1'), 3.90 (9H, s, OMe on C4), 3.94 (9H, s, OMe on C6), 6.44 (3H, br s, NH). ¹³C-NMR (CDCl₃) δ : 38.71 (C1'), 52.98 (C2'), 54.42 (OMe on C4), 54.51 (OMe on C6), 167.95 (C2), 171.82 (C4), 172.41 (C6).

Positive-ion FAB-MS *m/z*: 564 (M+H)⁺. HR-FAB-MS *m/z*: 565.2750 (Calcd for C₂₁H₃₄N₁₃O₆: 564.2755). Anal. Calcd for C₂₁H₃₃N₁₃O₆•5/6EtOH: C, 45.23; H, 6.36; N, 30.25. Found: C, 44.97; H, 5.91; N, 30.10. 17: Colorless solid. Mp 117-118 °C. IR (ATR) cm⁻¹: 3015, 2970 (N-H), 1577, 1550 (C=N), 1362, 1229, 1217 (C-N and/or C-O). ¹H-NMR (CDCl₃) δ : 2.40 (2H, br s, NH), 2.61 (2H, t, J = 5.5 Hz, H2"), 2.72 (4H, t, J = 5.5, Hz, H2'), 2.80 (2H, t, J = 5.5 Hz, H1"), 3.49 (4H, t, J = 5.5 Hz, H1'), 3.95 (6H, s, OMe on C4), 4.02 (6H, s, OMe on C6), 6.71 (2H, br s, NH). ¹³C-NMR (CDCl₃) δ: 39.01 (C1'), 39.56 (C1"), 53.26 (C2'), 54.39 (OMe on C4), 54.47 (OMe on C6), 56.28 (C2"), 167.95 (C2), 171.88 (C4), 172.42 (C6). Positive-ion FAB-MS *m/z*: 425 (M+H⁺). HR-FAB-MS *m/z*: 425.2370 (Calcd for C₂₁H₃₄N₁₃O₆: 425.2373). Anal. Calcd for C₁₆H₂₈N₁₀O₄·0.4H₂O: C, 44.52; H, 6.72; N, 32.45. Found: C, 44.76; H, 6.62; N, 32.18. **Synthesis** of 6-[2-[Bis[2-[[4,6-bis(isopropylamino)-1,3,5-triazin-2-yl]oxy]ethyl]amino]ethoxy]- N^2 , N^4 -diisopropyl-1,3,5-triazine-2,4-diamine (19) (Entry 22 and 23): (Step 1): To a solution of TCTAZ (1, 5.53 g, 30.0 mmol) in acetone (20 mL) was added a solution of THEA (1.49 g, 10.0 mmol) and collidine (3.64 g, 30.0 mmol) in acetone (30 mL) drop by drop for 20 min with stirring at 0 °C under an N₂ atmosphere. The reaction mixture was refluxed for 12 h. After filtration of white solids (collidine · HCl salt), ice water (50 mL) was added to the filtrate. The resulting mixture was extracted with CH₂Cl₂ (40 mL×3). The combined organic layer was washed with brine (10 mL) and dried over MgSO₄. After evaporation of the solvent, the residue was solidified to give the crude intermediate 18 by addition of a solvent (*n*-hexane : EtOAc = 7 : 3, *ca*. 5 mL). (Step 2): To a solution of the crude intermediate 18 in THF

(200 mL) was added 2-propylamine and DIPEA (7.75 g, 60.0 mmol) at room temperature. The reaction mixture was refluxed for 12 h. After filtration of white solids (DIPEA · HCl salt) and evaporation of the solvent, the residue was purified by flash column chromatography (CH₂Cl₂ : 95% EtOH : 28% NH₃ = 95 : 4.7 : 0.3) to afford compound **19** (936 mg, 1.28 mmol, 13%) as a pale yellow solid. Mp 97-99 °C. IR (ATR) cm⁻¹: 3255 (NH), 1565 (C=N), 1325, 1181 (C-N and/or C-O). ¹H-NMR (CDCl₃) δ : 1.18 (36H, br s, H2', 3'), 3.00 (6H, br s, H2''), 4.08, 4.16* (6H, br s, H1'), 4.29, 4.35* (6H, br s, H1''), 4.85, 4.92* (6H, br s, NH). ¹³C-NMR (CDCl₃) δ : 22.78, 22.95* (C2', 3'), 42.27*, 42.47 (C1'), 53.59 (C2''), 64.32 (C1''), 166.48 (C2, 4), 170.52 (C6). (The observed ¹H- and ¹³C-signals assignable to the predominant tautomer are asterisked.) Positive-ion FAB-MS *m/z*: 729 (M+H)⁺. HR-FAB-MS *m/z*: 729.5123 (Calcd for C₃₃H₆₁N₁₆O₃: 729.5113). Anal. Calcd for C₃₃H₆₀N₁₆O₃·0.25EtOH·0.5H₂O: C, 53.69; H, 8.41; N, 29.90. Found: C, 53.89; H, 8.59; N, 29.68.

Antiviral Activity Assay and Cytotoxicity

The anti-HSV-1 activities (EC₅₀) of the synthesized TAZ derivatives were measured by using a plaque reduction assay,¹⁵ and their cytotoxicity against Vero cells (CC₅₀) was also evaluated as we described previously. The results are summarized in Tables 4 and 5 together with data for acyclovir.¹⁷ Calculated

log *P* values for the compounds are also shown in the tables. There were few distinct correlations between log *P* values and anti-HSV-1 activity (EC₅₀).

REFERENCES AND NOTES

- A. Varki, R. D. Cummings, J. D. Esko, H. H. Freeze, P. Stanley, C. R. Bertozzi, G. W. Hart, and M. E. Etzler, 'Essentials of Glycobiology', 2nd edn., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N. Y., 2009 and related references cited therein.
- S. Reitsma, D. W. Slaaf, H. Vink, M. A. M. J. van Zandvoort, and M. G. A. oude Egbrink, <u>*Pflugers*</u> <u>Arch. Eur. J. Physiol.</u>, 2007, 454, 345.
- 3. F. Sansone and A. Casnati, *Chem. Soc. Rev.*, 2013, 42, 4623.
- 4. A. M. Duran and J. Meiler, *Comput. Struct. Biotechnol. J.*, 2013, 8, e201308004.
- N. Mibu, K. Yokomizo, W. Uchida, S. Takemura, J. Zhou, H. Aki, T. Miyata, and K. Sumoto, <u>*Chem.*</u> *Pharm. Bull.*, 2012, **60**, 408.
- N. Mibu, H. Aki, H. Ikeda, A. Saito, W. Uchida, K. Yokomizo, J. Zhou, T. Miyata, and K. Sumoto, J. Therm. Anal. Calorim., 2013, 113, 1015.
- N. Mibu, K. Yokomizo, A. Koga, M. Honda, K. Mizokami, H. Fujii, N. Ota, A. Yuzuriha, K. Ishimaru, J. Zhou, T. Miyata, and K. Sumoto, <u>*Chem. Pharm. Bull.*</u>, 2014, 62, 1032.
- N. Mibu, K. Yokomizo, H. Aki, N. Ota, H. Fujii, A. Yuzuriha, S. Saneyoshi, A. Tanaka, A. Koga, J. Zhou, T. Miyata, and K. Sumoto, *Chem. Pharm. Bull.*, 2015, 63, 935.
- N. Mibu, K. Yokomizo, K. Murakami, Y. Ono, M. Ishimaru, M. Otsubo, H. Inao, Y. Ono, J.-R. Zhou, and K. Sumoto, *Chem. Pharm. Bull.*, 2016, 64, 1769.
- M. Furutachi, T. Gondo, S. Goto, S. Fuchigami, K. Ako, Y. Oowada , K. Yokomizo, J.-R. Zhou, T. Ishizaki , T. Koga , N. Kashige, F. Miake, and K. Sumoto, <u>*Heterocycles*</u>, 2017, 94, 1748.
- M. Furutachi, S. Fuchigami, K. Ako, S. Goto, T. Gondo, M. Takuse, M. Yoshida, K. Yokomizo, J.-R. Zhou, A. Matsunaga, N. Hiraga, N. Kashige, F. Miake, and K. Sumoto, *Heterocycles*, 2018, 96, 144.
- N. Mibu, K. Yokomizo, M. Sano, Y. Kawaguchi, K. Morimoto, S. Shimomura, R. Sato, N. Hiraga, A. Matsunaga, J.-R. Zhou, T. Ohata, H. Aki, and K. Sumoto, <u>*Chem. Pharm. Bull.*</u>, 2018, 66, 830.
- N. Mibu, T. Ohata, M. Sano, J.-R. Zhou, K. Yokomizo, H. Aki, and K. Sumoto, *J. Therm. Anal. Calorim.*, 2019, **135**, 2807 (DOI 10.1007/s10973-018-7573-4).
- N. Mibu, K. Yokomizo, A. Yuzuriha, M. Otsubo, Y. Kawaguchi, M. Sano, I. Sakai, K. Nakayama, J.-R. Zhou, and K. Sumoto, *<u>Heterocycles</u>*, 2017, 94, 1653.
- R. F. Schinazi, J. Peters, C. C. Williams, D. Chance, and A. J. Nahmias, <u>Antimicrob. Agents</u> <u>Chemother., 1982, 22, 499</u>.

- 16. Log *P* values were calculated by using SCIGRESS v.2.8.1.
- T. Ikeda, K. Yokomizo, M. Okawa, R. Tsuchihashi, J. Kinjo, T. Nohara, and M. Uyeda, <u>*Biol. Pharm.*</u> *Bull.*, 2005, 28, 1779.
- M. Belema, Van N. Nguyen, C. Bachand, D. H. Deon, J. T. Goodrich, C. A. James, R. Lavoie, O. D. Lopez, A. Martel, J. L. Romine, E. H. Ruediger, L. B. Snyder, D. R. St. Laurent, F. Yang, J. Zhu, H. S. Wong, D. R. Langley, S. P. Adams, G. H. Cantor, A. Chimalakonda, A. Fura, B. M. Johnson, J. O. Knipe, D. D. Parker, K. S. Santone, R. A. Fridell, J. A.Lemm, D. R. II O'Boyle, R. J. Colonno, M. Gao, N. A. Meanwell, and L. G. Hamann, *J. Med. Chem.*, 2014, 57, 2013.
- D. A. DeGoey, J. T. Randolph, D. Liu, J. Pratt, C. Hutchins, P. Donner, A. C. Krueger, M. Matulenko, S. Patel, C. E. Motter, L. Nelson, R. Keddy, M. Tufano, D. D. Caspi, P. Krishnan, N. Mistry, G. Koev, T. J. Reisch, R. Mondal, T. Pilot-Matias, Y. Gao, D. W. A. Beno, C. J. Maring, A. Molla, E. Dumas, A. Campbell, L. Williams, C. Collins, R. Wagner, and W. M. Kati, <u>J. Med. Chem.</u>, 2014, 57, 2047.
- 20. Some of the tri-substituted TAZ derivatives described in this paper showed a complicated ¹³C-NMR signal pattern because of their keto-enol tautomeric isomers in solutions. Compounds (4ad, 4ba, 4bc, 4bd, 7p-t, 8a, 8b, 11b, 11e, 12b, 12e, 19) that have a *sec*-alkylamino groups on a TAZ template are examples of TAZ derivatives with such a signal pattern. These compounds showed the presence of a few tautomeric isomers in solution. For example, signals that appeared in the ¹³C-NMR spectrum of compound 7p seem to be consistent with the tautomeric mixture of a few isomers shown below (T1, T2, T3 etc.).

Tautomeric Isomerism of TAZ Derivative 7p