e-Journal

Full Text HTML

Note
Note | Regular issue | Vol. 81, No. 6, 2010, pp. 1467-1484
Received, 1st March, 2010, Accepted, 15th April, 2010, Published online, 16th April, 2010.
DOI: 10.3987/COM-10-11936
Synthesis of Dihydroindoles and Tetrahydroquinolines by the Intramolecular Diels-Alder Reaction of N-Alkenylated 2-Acylamino-3-furancarbonitriles

Hiroshi Maruoka,* Fumi Okabe, Yoshimichi Koutake, Eiichi Masumoto, Toshihiro Fujioka, and Kenji Yamagata

Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan

Abstract
An approach to dihydroindoles and tetrahydroquinolines from N-alkenylated 2-acylamino-3-furancarbonitriles via a [4 + 2] cycloaddition reaction is described. Thermal treatment of N-alkenylated 2-acylamino-3- furancarbonitriles 5ad, 6ad, 9ad, and 10ad, which were prepared from 2-acylamino-3-furancarbonitriles 3ad and/or 4ad and 4-bromo-1-butene and/or 5-bromo-1-pentene, caused an intramolecular Diels-Alder reaction to give the corresponding dihydroindole and tetrahydroquinoline derivatives 7ad, 8ad, 11ad, and 12ad. This method has the advantage of easier work-up procedure.

Heterocyclic compounds, particularly five- and six-membered ring compounds, have occupied a prominent place among the organic compounds in view of their diverse biological activities. Dihydroindole derivatives, namely indolines, are common structural elements in many biologically active compounds and natural products.16 Tetrahydroquinoline derivatives have also attracted considerable interest due to their importance as synthetic intermediates, pesticides, and pharmaceutical products with a broad range of physiological and biological properties.711 For the reasons given above, a great number of methods have been developed for synthesis of dihydroindoles1220 and tetrahydroquinolines.2124
In connection with our current research interests in the synthesis of heterocyclic compounds,
2529 we recently reported the synthesis of 4-(cyclic amino)-substituted phthalimide derivatives through a Diels-Alder reaction of maleimides with 2-(cyclic amino)-substituted 3-furancarbonitriles as starting materials.30 Because furan derivatives are useful and versatile synthetic intermediates for heterocyclic compounds, the development of methodologies for the synthesis of such compounds are of significant interest. Among the most significant examples in the furan chemistry, Diels-Alder cycloadditions using this heterocycle as the 4π diene are of particular interest. As part of our efforts in developing new routes in heterocyclic synthesis, we herein describe an efficient procedure for the synthesis of dihydroindole and tetrahydroquinoline derivatives 7, 8, 11, and 12 by an intramolecular Diels-Alder reaction of N-alkenylated 2-acylamino-3-furancarbonitriles 5, 6, 9, and 10.
Initially, we examined the synthesis of 2-acylamino-3-furancarbonitriles
3ad and 4ad starting from 2-amino-3-furancarbonitriles 1ad, which were prepared from phenacylmalononitriles and piperidine according to our previous procedure (Scheme 1).3133 Unfortunately, thermal treatment of 1ad with acetic anhydride gave 2-(diacetylated amino)-3-furancarbonitriles 2ad (2a: 49%, 2b: 54%, 2c: 55%, 2d: 67%) together with 3ad as minor products. On the basis of this result, we tried to synthesize the desired 3ad from 1ad and acetic anhydride in a one-pot process, via a deacetylation reaction of 2ad. Indeed, when a mixture of 1ad and acetic anhydride was refluxed for 3 h and then the reaction mixture was treated with sodium hydroxide in aqueous ethanol at room temperature for 30 min, the desired 2-acetylamino-3-furancarbonitriles 3ad were obtained in good yields (3a: 76%, 3b: 68%, 3c: 75%, 3d: 69%). While, the reaction of 1ad with benzoyl chloride in pyridine at 60 °C for 2 h afforded the desired 2-benzoylamino-3-furancarbonitriles 4ad (4a: 73%, 31 4b: 76%, 4c: 80%, 4d: 78%). Elemental analyses, mass spectra, 1H and 13C NMR spectra of 3ad and 4bd are consistent with the assigned structures (see experimental section).

We next tried to construct dihydroindole derivatives 7ad and 8ad from N-3-buten-1-ylated 2-acylamino-3-furancarbonitriles 5ad and 6ad (Scheme 2). Thus, compounds 3ad were reacted with 4-bromo-1-butene in the presence of sodium hydride in DMF at room temperature to provide the corresponding compounds 5ad in moderate yields (entries 1−4 in Table 1). Under the same conditions, however, the reaction of 4ad with 4-bromo-1-butene gave the corresponding compounds 6ad in very low yields (entries 5−8 in Table 1). Although we examined several reaction conditions, e.g. substrate/base molar ratio and solvent, our attempts were unacceptable with respect to yield. In this case, it seemed possible that 4-bromo-1-butene would easily undergo the elimination reaction of hydrogen bromide to afford 1,3-butadiene. Hence, N-alkenylation reaction of 4ad did not proceed as a major reaction. Treatment of 5ad and 6ad in boiling 1,2-dichlorobenzene for 4 h caused an intramolecular Diels-Alder reaction to furnish the desired dihydroindole derivatives 7ad and 8ad in good yields (Table 2). By comparison of the IR spectra, NMR spectra, mass spectra and elemental analyses of 58, it seems that the structural assignments given to these compounds are correct (see experimental section).

By analogy process given above, we examined the synthesis of tetrahydroquinoline derivatives 11ad and 12ad from N-4-penten-1-ylated 2-acylamino-3-furancarbonitriles 9ad and 10ad (Scheme 2). As a consequence, N-alkenylation reaction of compounds 3ad and 4ad with 5-bromo-1-pentene in the presence of sodium hydride in DMF at 80 °C for 5 h gave the corresponding compounds 9ad and 10ad in moderate yields (Table 3). Thermal treatment of 9ad and 10ad in 1-methyl-2-pyrrolidinone for 16−20 h caused an intramolecular Diels-Alder reaction to provide the desired tetrahydroquinoline derivatives 11ad and 12ad in moderate yields (Table 4). In this reaction, the use of 1-methyl-2-pyrrolidinone as a solvent was better than that of 1,2-dichlorobenzene in the case of the synthesis of dihydroindoles. These products 912 gave satisfactory elemental analyses and spectroscopic data (IR, 1H NMR, 13C NMR, mass) consistent with their assigned structures (see experimental section).
These intramolecular Diels-Alder reactions of 5ad, 6ad, 9ad, and 10ad are assumed to proceed through the formation of the oxabridged cycloadducts A and B. Subsequently, a ring-opening/dehydration reaction of cycloadducts A and B easily occurs and then dihydroindole and tetrahydroquinoline derivatives 7, 8, 11, and 12 would be produced.

During our study of the synthesis of tetrahydroquinoline derivatives, we found that compound 11a reacted with sodium hydroxide in boiling aqueous methanol for 30 min to give the pyrido[3,2,1-ij]quinazoline derivative 13 in 51% yield. The formation of 13 could be explained by possible mechanism presented in Scheme 3. The reaction of 11a with sodium hydroxide probably causes an intramolecular cycloaddition to afford the intermediate C, which undergoes a Dimroth-type rearrangement3438 to yield the pyrido[3,2,1-ij]quinazoline derivative 13.
In conclusion, the intramolecular Diels-Alder reaction of
N-alkenylated 2-acylamino-3-furancarbonitriles proceeds smoothly to furnish the corresponding dihydroindole and tetrahydroquinoline derivatives. Functionalized dihydroindole and tetrahydroquinoline derivatives are important synthons in organic synthesis and for the preparation of biologically active compounds with interest in medicinal chemistry.

EXPERIMENTAL
All melting points are uncorrected. The IR spectra were recorded on a JASCO FT/IR-4100 spectrometer. The 1H and 13C NMR spectra were measured with a JEOL JNM-A500 spectrometer at 500.00 and 125.65 MHz, respectively. The 1H and 13C chemical shifts (δ) are reported in parts per million (ppm) relative to tetramethylsilane as internal standard. Positive FAB mass spectra were obtained on a JEOL JMS-700T spectrometer. Elemental analyses were performed on YANACO MT-6 CHN analyzer. The starting compounds, 2-amino-3-furancarbonitriles 1ad, were prepared in this laboratory according to the procedure reported in literature.3133
General procedure for the preparation of 3ad from 1ad and acetic anhydride.
A mixture of 1ad (20 mmol) and acetic anhydride (30 mL, 0.317 mol) was refluxed for 3 h. After removal of the solvent in vacuo, cold water was added to the residue. The precipitate was isolated by filtration, washed with water, and dried. A mixture of the crude product in 5% aqueous NaOH (5 mL) and EtOH (30 mL) was stirred at rt for 30 min. After removal of the solvent in vacuo, cold water was added to the residue. The precipitate was isolated by filtration, washed with water, dried, and recrystallized from acetone to give 3ad.
N-(3-Cyano-5-phenyl-2-furanyl)acetamide (3a)
Colorless prisms (3.42 g, 76%), mp 215216 °C; IR (KBr): 3187, 3120 (NH), 2223 (CN), 1682 (CO) cm-1; 1H NMR (DMSO-d6): δ 2.14 (s, 3H, COCH3), 7.32 (s, 1H, 4-H), 7.347.37 (m, 1H, aryl H), 7.447.48 (m, 2H, aryl H), 7.647.66 (m, 2H, aryl H), 11.38 (br s, 1H, NH); 13C NMR (DMSO-d6): δ 22.7 (COCH3), 84.9 (C-3), 107.3 (C-4), 113.3 (CN), 123.3, 128.26, 128.28, 129.0 (C aryl), 147.4 (C-5), 151.0 (C-2), 167.7 (CO); MS: m/z 227 [M+H]+. Anal. Calcd for C13H10N2O2: C, 69.02; H, 4.46; N, 12.38. Found: C, 69.03; H, 4.53; N, 12.38.
N-[3-Cyano-5-(4-methoxyphenyl)-2-furanyl]acetamide (3b)
Colorless needles (3.48 g, 68%), mp 221222 °C; IR (KBr): 3258, 3195, 3126 (NH), 2234 (CN), 1704 (CO) cm-1; 1H NMR (DMSO-d6): δ 2.12 (s, 3H, COCH3), 3.80 (s, 3H, OCH3), 7.017.04 (m, 2H, aryl H), 7.13 (s, 1H, 4-H), 7.567.59 (m, 2H, aryl H), 11.26 (br s, 1H, NH); 13C NMR (DMSO-d6): δ 22.6 (COCH3), 55.2 (OCH3), 85.1 (C-3), 105.3 (C-4), 113.4 (CN), 114.5, 121.0, 125.0 (C aryl), 147.7 (C-5), 150.4 (C-2), 159.3 (C aryl), 167.6 (CO); MS: m/z 257 [M+H]+. Anal. Calcd for C14H12N2O3: C, 65.62; H, 4.72; N, 10.93. Found: C, 65.66; H, 4.75; N, 10.92.
N-[3-Cyano-5-(4-methylphenyl)-2-furanyl]acetamide (3c)
Colorless columns (3.62 g, 75%), mp 192193 °C; IR (KBr): 3242, 3192, 3124 (NH), 2224 (CN), 1681 (CO) cm-1; 1H NMR (DMSO-d6): δ 2.13 (s, 3H, COCH3), 2.33 (s, 3H, CH3), 7.22 (s, 1H, 4-H), 7.257.28 (m, 2H, aryl H), 7.527.55 (m, 2H, aryl H), 11.31 (br s, 1H, NH); 13C NMR (DMSO-d6): δ 20.7 (CH3), 22.7 (COCH3), 85.0 (C-3), 106.4 (C-4), 113.3 (CN), 123.3, 125.6, 129.5, 137.9 (C aryl), 147.7 (C-5), 150.7 (C-2), 167.6 (CO); MS: m/z 241 [M+H]+. Anal. Calcd for C14H12N2O2: C, 69.99; H, 5.03; N, 11.66. Found: C, 70.02; H, 5.13; N, 11.67.
N-[5-(4-Chlorophenyl)-3-cyano-2-furanyl]acetamide (3d)
Pale yellow prisms (3.61 g, 69%), mp 214215 °C; IR (KBr): 3187, 3120 (NH), 2226 (CN), 1685 (CO) cm-1; 1H NMR (DMSO-d6): δ 2.13 (s, 3H, COCH3), 7.37 (s, 1H, 4-H), 7.517.54 (m, 2H, aryl H), 7.647.67 (m, 2H, aryl H), 11.41 (br s, 1H, NH); 13C NMR (DMSO-d6): δ 22.7 (COCH3), 84.8 (C-3), 108.1 (C-4), 113.2 (CN), 125.0, 127.1, 129.0, 132.7 (C aryl), 146.1 (C-5), 151.3 (C-2), 167.6 (CO); MS: m/z 261 [M+H]+. Anal. Calcd for C13H9ClN2O2: C, 59.90; H, 3.48; N, 10.75. Found: C, 59.87; H, 3.56; N, 10.76.
General procedure for the preparation of 4bd from 1bd and benzoyl chloride.
A mixture of 1bd (20 mmol) and benzoyl chloride (3.37 g, 24 mmol) in pyridine (20 mL) was stirred at 60 °C for 2 h. After removal of the solvent in vacuo, cold water was added to the residue. The precipitate was isolated by filtration, washed with water, dried, and recrystallized from acetone to yield 4bd. 4a was prepared in this laboratory according to the procedure reported in literature.31
N-[3-Cyano-5-(4-methoxyphenyl)-2-furanyl]benzamide (4b)
Pale yellow needles (4.85 g, 76%), mp 208209 °C; IR (KBr): 3244 (NH), 2231 (CN), 1683 (CO) cm-1; 1H NMR (DMSO-d6): δ 3.81 (s, 3H, OCH3), 7.037.07 (m, 2H, aryl H), 7.24 (s, 1H, 4-H), 7.567.61 (m, 2H, aryl H), 7.637.70 (m, 3H, aryl H), 8.028.05 (m, 2H, aryl H), 11.64 (s, 1H, NH); 13C NMR (DMSO-d6): δ 55.2 (OCH3), 87.1 (C-3), 105.4 (C-4), 113.3 (CN), 114.5, 121.0, 125.1, 128.0, 128.6, 132.1, 132.7 (C aryl), 148.6 (C-5), 150.6 (C-2), 159.5 (C aryl), 164.6 (CO); MS: m/z 319 [M+H]+. Anal. Calcd for C19H14N2O3: C, 71.69; H, 4.43; N, 8.80. Found: C, 71.62; H, 4.54; N, 8.78.
N-[3-Cyano-5-(4-methylphenyl)-2-furanyl]benzamide (4c)
Pale yellow needles (4.85 g, 80%), mp 242243 °C; IR (KBr): 3253 (NH), 2233 (CN), 1690 (CO) cm-1; 1H NMR (DMSO-d6): δ 2.34 (s, 3H, CH3), 7.287.30 (m, 2H, aryl H), 7.33 (s, 1H, 4-H), 7.577.62 (m, 4H, aryl H), 7.667.70 (m, 1H, aryl H), 8.038.06 (m, 2H, aryl H), 11.69 (s, 1H, NH); 13C NMR (DMSO-d6): δ 20.7 (CH3), 86.9 (C-3), 106.5 (C-4), 113.3 (CN), 123.4, 125.6, 128.0, 128.6, 129.5, 132.0, 132.7, 138.1 (C aryl), 148.5 (C-5), 150.9 (C-2), 164.6 (CO); MS: m/z 303 [M+H]+. Anal. Calcd for C19H14N2O2: C, 75.48; H, 4.67; N, 9.27. Found: C, 75.54; H, 4.77; N, 9.28.
N-[5-(4-Chlorophenyl)-3-cyano-2-furanyl]benzamide (4d)
Yellow prisms (5.06 g, 78%), mp 241242 °C; IR (KBr): 3245 (NH), 2236 (CN), 1691 (CO) cm-1; 1H NMR (DMSO-d6): δ 7.47 (s, 1H, 4-H), 7.537.61 (m, 4H, aryl H), 7.667.74 (m, 3H, aryl H), 8.028.06 (m, 2H, aryl H), 11.78 (s, 1H, NH); 13C NMR (DMSO-d6): δ 86.7 (C-3), 108.2 (C-4), 113.1 (CN), 125.1, 127.1, 128.1, 128.6, 129.1, 132.0, 132.76, 132.84 (C aryl), 147.0 (C-5), 151.5 (C-2), 164.5 (CO); MS: m/z 323 [M+H]+. Anal. Calcd for C18H11ClN2O2: C, 66.99; H, 3.44; N, 8.68. Found: C, 66.95; H, 3.51; N, 8.72.
General procedure for the preparation of 5ad and 6ad from 3ad and/or 4ad and 4-bromo-1-butene.
To an ice-cooled and stirred solution of 3ad and 4ad (5 mmol) in DMF (5 mL) was added 60% NaH (0.24 g, 6 mmol). The stirring was continued at rt until evolution of gas ceased. To the obtained mixture was added 4-bromo-1-butene (1.35 g, 10 mmol) with stirring and then the mixture was stirred at rt for 48 h. After removal of the solvent in vacuo, cold water was added to the residue. The resulting mixture was extracted with Et2O (60 mL). The extract was dried over anhydrous sodium sulfate and concentrated in vacuo. The residue was purified by column chromatography on silica gel with CH2Cl2 as the eluent to afford 5ad and 6ad.
N-3-Buten-1-yl-N-(3-cyano-5-phenyl-2-furanyl)acetamide (5a)
Yellow oil (0.84 g, 60%); IR (neat): 2237 (CN), 1698 (CO) cm-1; 1H NMR (CDCl3): δ 2.09 (s, 3H, COCH3), 2.362.41 (m, 2H, 3-butene 2-H), 3.85 (t, J = 7.3 Hz, 2H, 3-butene 1-H), 5.045.14 (m, 2H, 3-butene 4-H), 5.705.80 (m, 1H, 3-butene 3-H), 6.79 (s, 1H, furan 4-H), 7.377.47 (m, 3H, aryl H), 7.607.63 (m, 2H, aryl H); 13C NMR (CDCl3): δ 22.0 (COCH3), 32.8 (3-butene C-2), 47.7 (3-butene C-1), 94.0 (furan C-3), 105.8 (furan C-4), 112.1 (CN), 117.5 (3-butene C-4), 124.1, 128.2, 129.1, 129.4 (C aryl), 134.0 (3-butene C-3), 152.4 (furan C-5), 154.3 (furan C-2), 169.7 (CO); MS: m/z 281 [M+H]+. Anal. Calcd for C17H16N2O2: C, 72.84; H, 5.75; N, 9.99. Found: C, 72.88; H, 5.86; N, 9.96.
N-3-Buten-1-yl-N-[3-cyano-5-(4-methoxyphenyl)-2-furanyl]acetamide (5b)
Colorless needles (1.03 g, 66%), mp 9192 °C (Et2O); IR (KBr): 2231 (CN), 1714 (CO) cm-1; 1H NMR (CDCl3): δ 2.08 (s, 3H, COCH3), 2.352.41 (m, 2H, 3-butene 2-H), 3.83 (t, J = 7.3 Hz, 2H, 3-butene 1-H), 3.85 (s, 3H, OCH3), 5.035.13 (m, 2H, 3-butene 4-H), 5.705.80 (m, 1H, 3-butene 3-H), 6.64 (s, 1H, furan 4-H), 6.946.98 (m, 2H, aryl H), 7.537.56 (m, 2H, aryl H); 13C NMR (CDCl3): δ 22.0 (COCH3), 32.7 (3-butene C-2), 47.6 (3-butene C-1), 55.4 (OCH3), 94.0 (furan C-3), 104.1 (furan C-4), 112.3 (CN), 114.6 (C aryl), 117.4 (3-butene C-4), 121.0, 125.8 (C aryl), 134.1 (3-butene C-3), 152.4 (furan C-5), 153.7 (furan C-2), 160.6 (C aryl), 169.8 (CO); MS: m/z 311 [M+H]+. Anal. Calcd for C18H18N2O3: C, 69.66; H, 5.85; N, 9.03. Found: C, 69.64; H, 5.91; N, 9.03.
N-3-Buten-1-yl-N-[3-cyano-5-(4-methylphenyl)-2-furanyl]acetamide (5c)
Colorless columns (0.82 g, 56%), mp 6970 °C (Et2O); IR (KBr): 2236 (CN), 1693 (CO) cm-1; 1H NMR (CDCl3): δ 2.08 (s, 3H, COCH3), 2.352.41 (m, 2H, 3-butene 2-H), 2.39 (s, 3H, CH3), 3.84 (t, J = 7.3 Hz, 2H, 3-butene 1-H), 5.035.13 (m, 2H, 3-butene 4-H), 5.705.78 (m, 1H, 3-butene 3-H), 6.72 (s, 1H, furan 4-H), 7.237.26 (m, 2H, aryl H), 7.497.52 (m, 2H, aryl H); 13C NMR (CDCl3): δ 21.3 (CH3), 22.0 (COCH3), 32.8 (3-butene C-2), 47.6 (3-butene C-1), 94.0 (furan C-3), 105.1 (furan C-4), 112.2 (CN), 117.4 (3-butene C-4), 124.1, 125.5, 129.5, 129.8 (C aryl), 134.1 (3-butene C-3), 139.7 (C aryl), 152.5 (furan C-5), 153.9 (furan C-2), 169.7 (CO); MS: m/z 295 [M+H]+. Anal. Calcd for C18H18N2O2: C, 73.45; H, 6.16; N, 9.52. Found: C, 73.52; H, 6.27; N, 9.42.
N-3-Buten-1-yl-N-[5-(4-chlorophenyl)-3-cyano-2-furanyl]acetamide (5d)
Colorless columns (0.86 g, 55%), mp 8788 °C (Et2O); IR (KBr): 2238 (CN), 1693 (CO) cm-1; 1H NMR (CDCl3): δ 2.09 (s, 3H, COCH3), 2.362.41 (m, 2H, 3-butene 2-H), 3.85 (t, J = 7.3 Hz, 2H, 3-butene 1-H), 5.045.13 (m, 2H, 3-butene 4-H), 5.715.77 (m, 1H, 3-butene 3-H), 6.79 (s, 1H, furan 4-H), 7.407.44 (m, 2H, aryl H), 7.537.57 (m, 2H, aryl H); 13C NMR (CDCl3): δ 22.0 (COCH3), 32.8 (3-butene C-2), 47.7 (3-butene C-1), 94.2 (furan C-3), 106.3 (furan C-4), 111.9 (CN), 117.5 (3-butene C-4), 125.4, 126.6, 129.4 (C aryl), 134.0 (3-butene C-3), 135.4 (C aryl), 151.1 (furan C-5), 154.5 (furan C-2), 169.5 (CO); MS: m/z 315 [M+H]+. Anal. Calcd for C17H15ClN2O2: C, 64.87; H, 4.80; N, 8.90. Found: C, 64.84; H, 4.84; N, 8.91.
N-3-Buten-1-yl-N-(3-cyano-5-phenyl-2-furanyl)benzamide (6a)
Colorless prisms (0.11 g, 6%), mp 5759 °C (Et2O/petroleum ether); IR (KBr): 2234 (CN), 1682 (CO) cm-1; 1H NMR (CDCl3): δ 2.512.57 (m, 2H, 3-butene 2-H), 4.04 (t, J = 7.3 Hz, 2H, 3-butene 1-H), 5.085.19 (m, 2H, 3-butene 4-H), 5.805.87 (m, 1H, 3-butene 3-H), 6.53 (s, 1H, furan 4-H), 7.257.30 (m, 2H, aryl H), 7.347.45 (m, 6H, aryl H), 7.477.51 (m, 2H, aryl H); 13C NMR (CDCl3): δ 32.7 (3-butene C-2), 48.3 (3-butene C-1), 93.5 (furan C-3), 105.8 (furan C-4), 111.9 (CN), 117.6 (3-butene C-4), 124.0, 127.7, 128.2, 129.0, 129.2, 131.1 (C aryl), 134.1 (3-butene C-3), 134.8 (C aryl), 151.3 (furan C-5), 154.6 (furan C-2), 169.6 (CO); MS: m/z 343 [M+H]+. Anal. Calcd for C22H18N2O2: C, 77.17; H, 5.30; N, 8.18. Found: C, 77.26; H, 5.41; N, 8.19.
N-3-Buten-1-yl-N-[3-cyano-5-(4-methoxyphenyl)-2-furanyl]benzamide (6b)
Colorless needles (0.07 g, 4%), mp 8687 °C (Et2O/petroleum ether); IR (KBr): 2233 (CN), 1681 (CO) cm-1; 1H NMR (CDCl3): δ 2.502.56 (m, 2H, 3-butene 2-H), 3.84 (s, 3H, OCH3), 4.02 (t, J = 7.3 Hz, 2H, 3-butene 1-H), 5.085.19 (m, 2H, 3-butene 4-H), 5.805.89 (m, 1H, 3-butene 3-H), 6.38 (s, 1H, furan 4-H), 6.916.95 (m, 2H, aryl H), 7.257.30 (m, 2H, aryl H), 7.347.38 (m, 1H, aryl H), 7.407.44 (m, 4H, aryl H); 13C NMR (CDCl3): δ 32.7 (3-butene C-2), 48.3 (3-butene C-1), 55.4 (OCH3), 93.6 (furan C-3), 104.1 (furan C-4), 112.1 (CN), 114.5 (C aryl), 117.6 (3-butene C-4), 121.1, 125.6, 127.7, 128.2, 131.0 (C aryl), 134.1 (3-butene C-3), 134.9 (C aryl), 151.5 (furan C-5), 154.0 (furan C-2), 160.5 (C aryl), 169.7 (CO); MS: m/z 373 [M+H]+. Anal. Calcd for C23H20N2O3: C, 74.18; H, 5.41; N, 7.52. Found: C, 74.07; H, 5.49; N, 7.51.
N-3-Buten-1-yl-N-[3-cyano-5-(4-methylphenyl)-2-furanyl]benzamide (6c)
Colorless needles (0.11 g, 6%), mp 109110 °C (Et2O); IR (KBr): 2233 (CN), 1679 (CO) cm-1; 1H NMR (CDCl3): δ 2.38 (s, 3H, CH3), 2.512.56 (m, 2H, 3-butene 2-H), 4.03 (t, J = 7.3 Hz, 2H, 3-butene 1-H), 5.085.19 (m, 2H, 3-butene 4-H), 5.795.88 (m, 1H, 3-butene 3-H), 6.46 (s, 1H, furan 4-H), 7.207.22 (m, 2H, aryl H), 7.257.29 (m, 2H, aryl H), 7.337.40 (m, 3H, aryl H), 7.417.44 (m, 2H, aryl H); 13C NMR (CDCl3): δ 21.3 (CH3), 32.7 (3-butene C-2), 48.3 (3-butene C-1), 93.5 (furan C-3), 105.0 (furan C-4), 112.0 (CN), 117.6 (3-butene C-4), 124.0, 125.5, 127.7, 128.2, 129.7, 131.0 (C aryl), 134.1 (3-butene C-3), 134.8, 139.4 (C aryl), 151.6 (furan C-5), 154.3 (furan C-2), 169.6 (CO); MS: m/z 357 [M+H]+. Anal. Calcd for C23H20N2O2: C, 77.51; H, 5.66; N, 7.86. Found: C, 77.51; H, 5.76; N, 7.87.
N-3-Buten-1-yl-N-[5-(4-chlorophenyl)-3-cyano-2-furanyl]benzamide (6d)
Colorless columns (0.10 g, 5%), mp 118119 °C (Et2O); IR (KBr): 2236 (CN), 1672 (CO) cm-1; 1H NMR (CDCl3): δ 2.512.56 (m, 2H, 3-butene 2-H), 4.04 (t, J = 7.3 Hz, 2H, 3-butene 1-H), 5.085.18 (m, 2H, 3-butene 4-H), 5.795.88 (m, 1H, 3-butene 3-H), 6.53 (s, 1H, furan 4-H), 7.257.30 (m, 2H, aryl H), 7.357.44 (m, 7H, aryl H); 13C NMR (CDCl3): δ 32.8 (3-butene C-2), 48.4 (3-butene C-1), 93.4 (furan C-3), 106.2 (furan C-4), 111.7 (CN), 117.7 (3-butene C-4), 125.2, 126.7, 127.7, 128.3, 129.3, 131.1 (C aryl), 134.0 (3-butene C-3), 134.7, 135.1 (C aryl), 150.1 (furan C-5), 154.9 (furan C-2), 169.5 (CO); MS: m/z 377 [M+H]+. Anal. Calcd for C22H17ClN2O2: C, 70.12; H, 4.55; N, 7.43. Found: C, 70.13; H, 4.63; N, 7.46.
General procedure for the preparation of dihydroindoles 7ad and 8ad from 5ad and 6ad.
A mixture of 5ad and 6ad (1 mmol) in 1,2-dichlorobenzene (1 mL) was stirred at 180 °C for 4 h. After removal of the solvent in vacuo, cold water was added to the residue. The precipitate was isolated by filtration, washed with water, dried, and recrystallized from an appropriate solvent to give 7ad and 8ad.
1-Acetyl-2,3-dihydro-5-phenyl-1H-indole-7-carbonitrile (7a)
Colorless columns (0.22 g, 84%), mp 177178 °C (acetone); IR (KBr): 2224 (CN), 1675 (CO) cm-1; 1H NMR (DMSO-d6): δ 2.26 (s, 3H, COCH3), 3.19 (t, J = 8.2 Hz, 2H, 3-H), 4.20 (t, J = 8.2 Hz, 2H, 2-H), 7.367.40 (m, 1H, aryl H), 7.447.48 (m, 2H, aryl H), 7.687.71 (m, 2H, aryl H), 7.777.79 (m, 1H, aryl H), 7.867.87 (m, 1H, aryl H); 13C NMR (DMSO-d6): δ 23.4 (COCH3), 28.1 (C-3), 49.7 (C-2), 101.5 (C aryl), 117.0 (CN), 126.4, 127.5, 127.7, 128.9, 129.4, 136.3, 136.9, 137.9, 142.2 (C aryl), 168.3 (CO); MS: m/z 263 [M+H]+. Anal. Calcd for C17H14N2O: C, 77.84; H, 5.38; N, 10.68. Found: C, 77.89; H, 5.49; N, 10.67.
1-Acetyl-2,3-dihydro-5-(4-methoxyphenyl)-1H-indole-7-carbonitrile (7b)
Colorless needles (0.24 g, 82%), mp 188189 °C (acetone); IR (KBr): 2225 (CN), 1676 (CO) cm-1; 1H NMR (DMSO-d6): δ 2.26 (s, 3H, COCH3), 3.17 (t, J = 8.2 Hz, 2H, 3-H), 3.80 (s, 3H, OCH3), 4.18 (t, J = 8.2 Hz, 2H, 2-H), 7.007.03 (m, 2H, aryl H), 7.637.65 (m, 2H, aryl H), 7.717.72 (m, 1H, aryl H), 7.817.82 (m, 1H, aryl H); 13C NMR (DMSO-d6): δ 23.3 (COCH3), 28.1 (C-3), 49.7 (C-2), 55.1 (OCH3), 101.5, 114.4 (C aryl), 117.1 (CN), 127.0, 127.6, 128.7, 130.2, 136.0, 136.8, 141.6, 159.1 (C aryl), 168.3 (CO); MS: m/z 293 [M+H]+. Anal. Calcd for C18H16N2O2: C, 73.95; H, 5.52; N, 9.58. Found: C, 73.98; H, 5.57; N, 9.55.
1-Acetyl-2,3-dihydro-5-(4-methylphenyl)-1H-indole-7-carbonitrile (7c)
Colorless prisms (0.23 g, 83%), mp 200201 °C (acetone); IR (KBr): 2221 (CN), 1666 (CO) cm-1; 1H NMR (DMSO-d6): δ 2.26 (s, 3H, COCH3), 2.34 (s, 3H, CH3), 3.18 (t, J = 8.2 Hz, 2H, 3-H), 4.19 (t, J = 8.2 Hz, 2H, 2-H), 7.257.28 (m, 2H, aryl H), 7.577.61 (m, 2H, aryl H), 7.747.75 (m, 1H, aryl H), 7.837.85 (m, 1H, aryl H); 13C NMR (DMSO-d6): δ 20.5 (CH3), 23.3 (COCH3), 28.1 (C-3), 49.7 (C-2), 101.5 (C aryl), 117.1 (CN), 126.2, 127.3, 129.1, 129.5, 135.0, 136.2, 136.8, 137.1, 141.9 (C aryl), 168.3 (CO); MS: m/z 277 [M+H]+. Anal. Calcd for C18H16N2O: C, 78.24; H, 5.84; N, 10.14. Found: C, 78.25; H, 5.90; N, 10.14.
1-Acetyl-5-(4-chlorophenyl)-2,3-dihydro-1H-indole-7-carbonitrile (7d)
Colorless needles (0.22 g, 74%), mp 179180 °C (acetone); IR (KBr): 2222 (CN), 1678 (CO) cm-1; 1H NMR (DMSO-d6): δ 2.26 (s, 3H, COCH3), 3.19 (t, J = 8.2 Hz, 2H, 3-H), 4.20 (t, J = 8.2 Hz, 2H, 2-H), 7.487.52 (m, 2H, aryl H), 7.717.75 (m, 2H, aryl H), 7.807.81 (m, 1H, aryl H), 7.867.87 (m, 1H, aryl H); 13C NMR (DMSO-d6): δ 23.4 (COCH3), 28.1 (C-3), 49.7 (C-2), 101.6 (C aryl), 116.9 (CN), 127.4, 128.2, 128.8, 129.5, 132.6, 134.9, 136.7, 136.9, 142.4 (C aryl), 168.4 (CO); MS: m/z 297 [M+H]+. Anal. Calcd for C17H13ClN2O: C, 68.81; H, 4.42; N, 9.44. Found: C, 68.89; H, 4.46; N, 9.47.
1-Benzoyl-2,3-dihydro-5-phenyl-1H-indole-7-carbonitrile (8a)
Colorless prisms (0.25 g, 77%), mp 267268 °C (CH2Cl2); IR (KBr): 2229 (CN), 1662 (CO) cm-1; 1H NMR (CDCl3): δ 3.16 (t, J = 7.9 Hz, 2H, 3-H), 4.23 (t, J = 7.9 Hz, 2H, 2-H), 7.367.40 (m, 1H, aryl H), 7.447.49 (m, 4H, aryl H), 7.527.55 (m, 3H, aryl H), 7.567.65 (m, 1H, aryl H), 7.727.73 (m, 1H, aryl H), 7.757.77 (m, 2H, aryl H); 13C NMR (CDCl3): δ 29.5 (C-3), 53.3 (C-2), 103.8 (C aryl), 116.8 (CN), 126.9, 127.7, 128.0, 128.5, 128.8, 129.1, 130.5, 131.9, 134.6, 136.2, 138.5, 138.9, 143.6 (C aryl), 169.4 (CO); MS: m/z 325 [M+H]+. Anal. Calcd for C22H16N2O: C, 81.46; H, 4.97; N, 8.64. Found: C, 81.39; H, 5.08; N, 8.69.
1-Benzoyl-2,3-dihydro-5-(4-methoxyphenyl)-1H-indole-7-carbonitrile (8b)
Pale yellow columns (0.28 g, 79%), mp 214215 °C (acetone); IR (KBr): 2231 (CN), 1660 (CO) cm-1; 1H NMR (DMSO-d6): δ 3.15 (t, J = 7.9 Hz, 2H, 3-H), 3.81 (s, 3H, OCH3), 4.18 (t, J = 7.9 Hz, 2H, 2-H), 7.027.05 (m, 2H, aryl H), 7.537.57 (m, 2H, aryl H), 7.617.63 (m, 1H, aryl H), 7.677.70 (m, 2H, aryl H), 7.767.79 (m, 2H, aryl H), 7.837.84 (m, 1H, aryl H), 7.887.89 (m, 1H, aryl H); 13C NMR (DMSO-d6): δ 29.0 (C-3), 53.1 (C-2), 55.2 (OCH3), 102.5, 114.4 (C aryl), 116.7 (CN), 127.2, 127.7, 128.3, 128.4, 128.5, 130.3, 131.7, 134.6, 136.8, 137.3, 142.8, 159.2 (C aryl), 168.5 (CO); MS: m/z 355 [M+H]+. Anal. Calcd for C23H18N2O2: C, 77.95; H, 5.12; N, 7.90. Found: C, 78.03; H, 5.23; N, 7.89.
1-Benzoyl-2,3-dihydro-5-(4-methylphenyl)-1H-indole-7-carbonitrile (8c)
Pale brown prisms (0.28 g, 83%), mp 201202 °C (acetone); IR (KBr): 2231 (CN), 1668 (CO) cm-1; 1H NMR (DMSO-d6): δ 2.35 (s, 3H, CH3), 3.16 (t, J = 7.9 Hz, 2H, 3-H), 4.18 (t, J = 7.9 Hz, 2H, 2-H), 7.287.30 (m, 2H, aryl H), 7.537.57 (m, 2H, aryl H), 7.617.64 (m, 3H, aryl H), 7.777.79 (m, 2H, aryl H), 7.86 (s, 1H, aryl H), 7.91 (s, 1H, aryl H); 13C NMR (DMSO-d6): δ 20.6 (CH3), 28.9 (C-3), 53.1 (C-2), 102.5 (C aryl), 116.7 (CN), 126.4, 127.4, 128.4, 128.5, 128.6, 129.5, 131.7, 134.6, 135.0, 136.9, 137.3, 143.1 (C aryl), 168.5 (CO); MS: m/z 339 [M+H]+. Anal. Calcd for C23H18N2O: C, 81.63; H, 5.36; N, 8.28. Found: C, 81.63; H, 5.48; N, 8.26.
1-Benzoyl-5-(4-chlorophenyl)-2,3-dihydro-1H-indole-7-carbonitrile (8d)
Colorless prisms (0.30 g, 85%), mp 235236 °C (acetone); IR (KBr): 2236 (CN), 1665 (CO) cm-1; 1H NMR (DMSO-d6): δ 3.17 (t, J = 7.9 Hz, 2H, 3-H), 4.20 (t, J = 7.9 Hz, 2H, 2-H), 7.527.58 (m, 4H, aryl H), 7.617.64 (m, 1H, aryl H), 7.767.79 (m, 4H, aryl H), 7.927.93 (m, 1H, aryl H), 7.947.95 (m, 1H, aryl H); 13C NMR (DMSO-d6): δ 28.9 (C-3), 53.1 (C-2), 102.6 (C aryl), 116.6 (CN), 127.7, 128.4, 128.47, 128.52, 128.9, 129.1, 131.8, 132.8, 134.5, 135.6, 136.8, 137.5, 143.7 (C aryl), 168.6 (CO); MS: m/z 359 [M+H]+. Anal. Calcd for C22H15ClN2O: C, 73.64; H, 4.21; N, 7.81. Found: C, 73.67; H, 4.31; N, 7.78.
General procedure for the preparation of 9ad and 10ad from 3ad and/or 4ad and 5-bromo-1-pentene.
To an ice-cooled and stirred solution of 3ad and 4ad (5 mmol) in DMF (5 mL) was added 60% NaH (0.24 g, 6 mmol). The stirring was continued at rt until evolution of gas ceased. To the obtained mixture was added 5-bromo-1-pentene (1.49 g, 10 mmol) with stirring and then the mixture was stirred at 80 °C for 5 h. After removal of the solvent in vacuo, cold water was added to the residue. The resulting mixture was extracted with Et2O (60 mL). The extract was dried over anhydrous sodium sulfate and concentrated in vacuo. The residue was purified by column chromatography on silica gel with CH2Cl2 as the eluent to afford 9ad and 10ad.
N-(3-Cyano-5-phenyl-2-furanyl)-N-4-penten-1-ylacetamide (9a)
Brown oil (1.22 g, 83%); IR (neat): 2236 (CN), 1698 (CO) cm-1; 1H NMR (CDCl3): δ 1.691.76 (m, 2H, 4-pentene 2-H), 2.09 (s, 3H, COCH3), 2.102.15 (m, 2H, 4-pentene 3-H), 3.78 (t, J = 7.6 Hz, 2H, 4-pentene 1-H), 4.955.05 (m, 2H, 4-pentene 5-H), 5.745.83 (m, 1H, 4-pentene 4-H), 6.79 (s, 1H, furan 4-H), 7.377.47 (m, 3H, aryl H), 7.607.63 (m, 2H, aryl H); 13C NMR (CDCl3): δ 22.0 (COCH3), 27.5 (4-pentene C-2), 30.6 (4-pentene C-3), 47.8 (4-pentene C-1), 94.0 (furan C-3), 105.8 (furan C-4), 112.1 (CN), 115.5 (4-pentene C-5), 124.1, 128.2, 129.1, 129.4 (C aryl), 137.2 (4-pentene C-4), 152.2 (furan C-5), 154.4 (furan C-2), 169.7 (CO); MS: m/z 295 [M+H]+. Anal. Calcd for C18H18N2O2: C, 73.45; H, 6.16; N, 9.52. Found: C, 73.48; H, 6.25; N, 9.45.
N-[3-Cyano-5-(4-methoxyphenyl)-2-furanyl]-N-4-penten-1-ylacetamide (9b)
Colorless columns (0.96 g, 59%), mp 5657 °C (Et2O/petroleum ether); IR (KBr): 2235 (CN), 1691 (CO) cm-1; 1H NMR (CDCl3): δ 1.681.75 (m, 2H, 4-pentene 2-H), 2.07 (s, 3H, COCH3), 2.092.14 (m, 2H, 4-pentene 3-H), 3.76 (t, J = 7.5 Hz, 2H, 4-pentene 1-H), 3.85 (s, 3H, OCH3), 4.955.04 (m, 2H, 4-pentene 5-H), 5.745.83 (m, 1H, 4-pentene 4-H), 6.64 (s, 1H, furan 4-H), 6.946.98 (m, 2H, aryl H), 7.537.56 (m, 2H, aryl H); 13C NMR (CDCl3): δ 22.0 (COCH3), 27.5 (4-pentene C-2), 30.7 (4-pentene C-3), 47.8 (4-pentene C-1), 55.4 (OCH3), 94.0 (furan C-3), 104.1 (furan C-4), 112.3 (CN), 114.6 (C aryl), 115.4 (4-pentene C-5), 121.0, 125.8 (C aryl), 137.2 (4-pentene C-4), 152.4 (furan C-5), 153.8 (furan C-2), 160.6 (C aryl), 169.8 (CO); MS: m/z 325 [M+H]+. Anal. Calcd for C19H20N2O3: C, 70.35; H, 6.21; N, 8.64. Found: C, 70.39; H, 6.28; N, 8.61.
N-[3-Cyano-5-(4-methylphenyl)-2-furanyl]-N-4-penten-1-ylacetamide (9c)
Colorless columns (0.87 g, 56%), mp 5455 °C (Et2O/petroleum ether); IR (KBr): 2236 (CN), 1697 (CO) cm-1; 1H NMR (CDCl3): δ 1.681.75 (m, 2H, 4-pentene 2-H), 2.07 (s, 3H, COCH3), 2.082.14 (m, 2H, 4-pentene 3-H), 2.39 (s, 3H, CH3), 3.77 (t, J = 7.6 Hz, 2H, 4-pentene 1-H), 4.955.04 (m, 2H, 4-pentene 5-H), 5.735.82 (m, 1H, 4-pentene 4-H), 6.72 (s, 1H, furan 4-H), 7.237.26 (m, 2H, aryl H), 7.497.52 (m, 2H, aryl H); 13C NMR (CDCl3): δ 21.3 (CH3), 22.0 (COCH3), 27.5 (4-pentene C-2), 30.7 (4-pentene C-3), 47.8 (4-pentene C-1), 94.0 (furan C-3), 105.0 (furan C-4), 112.2 (CN), 115.4 (4-pentene C-5), 124.1, 125.5, 129.8 (C aryl), 137.2 (4-pentene C-4), 139.7 (C aryl), 152.5 (furan C-5), 154.1 (furan C-2), 169.8 (CO); MS: m/z 309 [M+H]+. Anal. Calcd for C19H20N2O2: C, 74.00; H, 6.54; N, 9.08. Found: C, 74.06; H, 6.56; N, 9.10.
N-[5-(4-Chlorophenyl)-3-cyano-2-furanyl]-N-4-penten-1-ylacetamide (9d)
Colorless columns (0.98 g, 60%), mp 5657 °C (Et2O/petroleum ether); IR (KBr): 2238 (CN), 1696 (CO) cm-1; 1H NMR (CDCl3): δ 1.681.75 (m, 2H, 4-pentene 2-H), 2.09 (s, 3H, COCH3), 2.092.14 (m, 2H, 4-pentene 3-H), 3.77 (t, J = 7.6 Hz, 2H, 4-pentene 1-H), 4.965.04 (m, 2H, 4-pentene 5-H), 5.735.82 (m, 1H, 4-pentene 4-H), 6.79 (s, 1H, furan 4-H), 7.407.44 (m, 2H, aryl H), 7.537.57 (m, 2H, aryl H); 13C NMR (CDCl3): δ 22.0 (COCH3), 27.5 (4-pentene C-2), 30.6 (4-pentene C-3), 47.9 (4-pentene C-1), 94.1 (furan C-3), 106.3 (furan C-4), 111.9 (CN), 115.5 (4-pentene C-5), 125.4, 126.6, 129.4, 135.4 (C aryl), 137.1 (4-pentene C-4), 151.1 (furan C-5), 154.6 (furan C-2), 169.5 (CO); MS: m/z 329 [M+H]+. Anal. Calcd for C18H17ClN2O2: C, 65.75; H, 5.21; N, 8.52. Found: C, 65.82; H, 5.29; N, 8.50.
N-(3-Cyano-5-phenyl-2-furanyl)-N-4-penten-1-ylbenzamide (10a)
Colorless prisms (1.03 g, 58%), mp 101102 °C (Et2O/petroleum ether); IR (KBr): 2237 (CN), 1666 (CO) cm-1; 1H NMR (CDCl3): δ 1.831.90 (m, 2H, 4-pentene 2-H), 2.172.23 (m, 2H, 4-pentene 3-H), 3.953.99 (m, 2H, 4-pentene 1-H), 4.985.09 (m, 2H, 4-pentene 5-H), 5.795.88 (m, 1H, 4-pentene 4-H), 6.54 (s, 1H, furan 4-H), 7.257.30 (m, 2H, aryl H), 7.337.45 (m, 6H, aryl H), 7.477.50 (m, 2H, aryl H); 13C NMR (CDCl3): δ 27.4 (4-pentene C-2), 30.8 (4-pentene C-3), 48.6 (4-pentene C-1), 93.5 (furan C-3), 105.8 (furan C-4), 111.9 (CN), 115.5 (4-pentene C-5), 124.0, 127.7, 128.2, 129.0, 129.2, 131.0, 134.9 (C aryl), 137.2 (4-pentene C-4), 151.3 (furan C-5), 154.7 (furan C-2), 169.6 (CO); MS: m/z 357 [M+H]+. Anal. Calcd for C23H20N2O2: C, 77.51; H, 5.66; N, 7.86. Found: C, 77.57; H, 5.74; N, 7.88.
N-[3-Cyano-5-(4-methoxyphenyl)-2-furanyl]-N-4-penten-1-ylbenzamide (10b)
Colorless columns (0.66 g, 34%), mp 9596 °C (Et2O); IR (KBr): 2233 (CN), 1679 (CO) cm-1; 1H NMR (CDCl3): δ 1.821.89 (m, 2H, 4-pentene 2-H), 2.172.23 (m, 2H, 4-pentene 3-H), 3.84 (s, 3H, OCH3), 3.933.97 (m, 2H, 4-pentene 1-H), 4.985.09 (m, 2H, 4-pentene 5-H), 5.795.88 (m, 1H, 4-pentene 4-H), 6.39 (s, 1H, furan 4-H), 6.916.95 (m, 2H, aryl H), 7.257.30 (m, 2H, aryl H), 7.337.38 (m, 1H, aryl H), 7.407.45 (m, 4H, aryl H); 13C NMR (CDCl3): δ 27.4 (4-pentene C-2), 30.8 (4-pentene C-3), 48.6 (4-pentene C-1), 55.4 (OCH3), 93.5 (furan C-3), 104.0 (furan C-4), 112.0 (CN), 114.5 (C aryl), 115.5 (4-pentene C-5), 121.1, 125.6, 127.6, 128.2, 130.9, 134.9 (C aryl), 137.2 (4-pentene C-4), 151.6 (furan C-5), 154.1 (furan C-2), 160.4 (C aryl), 169.7 (CO); MS: m/z 387 [M+H]+. Anal. Calcd for C24H22N2O3: C, 74.59; H, 5.74; N, 7.25. Found: C, 74.70; H, 5.84; N, 7.25.
N-[3-Cyano-5-(4-methylphenyl)-2-furanyl]-N-4-penten-1-ylbenzamide (10c)
Colorless needles (0.80 g, 43%), mp 9596 °C (Et2O); IR (KBr): 2232 (CN), 1673 (CO) cm-1; 1H NMR (CDCl3): δ 1.831.90 (m, 2H, 4-pentene 2-H), 2.172.23 (m, 2H, 4-pentene 3-H), 2.38 (s, 3H, CH3), 3.943.98 (m, 2H, 4-pentene 1-H), 4.985.09 (m, 2H, 4-pentene 5-H), 5.795.88 (m, 1H, 4-pentene 4-H), 6.47 (s, 1H, furan 4-H), 7.197.23 (m, 2H, aryl H), 7.257.29 (m, 2H, aryl H), 7.337.40 (m, 3H, aryl H), 7.417.44 (m, 2H, aryl H); 13C NMR (CDCl3): δ 21.3 (CH3), 27.4 (4-pentene C-2), 30.8 (4-pentene C-3), 48.6 (4-pentene C-1), 93.5 (furan C-3), 105.0 (furan C-4), 112.0 (CN), 115.5 (4-pentene C-5), 124.0, 125.5, 127.6, 128.2, 129.7, 131.0, 134.9 (C aryl), 137.2 (4-pentene C-4), 139.4 (C aryl), 151.6 (furan C-5), 154.4 (furan C-2), 169.7 (CO); MS: m/z 371 [M+H]+. Anal. Calcd for C24H22N2O2: C, 77.81; H, 5.99; N, 7.56. Found: C, 77.89; H, 6.10; N, 7.59.
N-[5-(4-Chlorophenyl)-3-cyano-2-furanyl]-N-4-penten-1-ylbenzamide (10d)
Pale yellow prisms (0.92 g, 47%), mp 120121 °C (Et2O); IR (KBr): 2237 (CN), 1673 (CO) cm-1; 1H NMR (CDCl3): δ 1.831.89 (m, 2H, 4-pentene 2-H), 2.172.23 (m, 2H, 4-pentene 3-H), 3.953.99 (m, 2H, 4-pentene 1-H), 4.985.08 (m, 2H, 4-pentene 5-H), 5.785.87 (m, 1H, 4-pentene 4-H), 6.54 (s, 1H, furan 4-H), 7.257.31 (m, 2H, aryl H), 7.357.44 (m, 7H, aryl H); 13C NMR (CDCl3): δ 27.4 (4-pentene C-2), 30.8 (4-pentene C-3), 48.6 (4-pentene C-1), 93.4 (furan C-3), 106.2 (furan C-4), 111.7 (CN), 115.6 (4-pentene C-5), 125.2, 126.7, 127.6, 128.3, 129.3, 131.1, 134.8, 135.2 (C aryl), 137.2 (4-pentene C-4), 150.2 (furan C-5), 155.0 (furan C-2), 169.5 (CO); MS: m/z 391 [M+H]+. Anal. Calcd for C23H19ClN2O2: C, 70.68; H, 4.90; N, 7.17. Found: C, 70.72; H, 5.02; N, 7.18.
General procedure for the preparation of tetrahydroquinolines 11ad and 12ad from 9ad and 10ad.
A mixture of 9ad and 10ad (1 mmol) in 1-methyl-2-pyrrolidinone (1 mL) was stirred at 210 °C for 16 h (in the case of the preparation of 11ad, 12a, and 12d) or for 20 h (in the case of the preparation of 12b,c). After removal of the solvent in vacuo, cold water was added to the residue. Further processing of the resulting mixture is described in the following paragraphs.
(A) The resulting mixture was extracted with CH2Cl2 (30 mL). The extract was dried over anhydrous sodium sulfate and concentrated in vacuo. The residue was purified by column chromatography on silica gel with CH2Cl2-acetone (4:1) as the eluent to afford 11ad.
(B) The precipitate was isolated by filtration, washed with water, dried, and recrystallized from an appropriate solvent to give 12ad.
1-Acetyl-1,2,3,4-tetrahydro-6-phenyl-8-quinolinecarbonitrile (11a)
Colorless columns (0.16 g, 58%), mp 136137 °C (acetone/petroleum ether); IR (KBr): 2231 (CN), 1659 (CO) cm-1; 1H NMR (DMSO-d6): δ 1.97 (br s, 2H, 3-H), 2.23 (br s, 3H, COCH3), 2.85 (br s, 2H, 4-H), 3.78 (br s, 2H, 2-H), 7.387.43 (m, 1H, aryl H), 7.467.50 (m, 2H, aryl H), 7.727.75 (m, 2H, aryl H), 7.85 (br s, 1H, aryl H), 7.93 (br s, 1H, aryl H); 13C NMR (DMSO-d6): δ 22.1 (COCH3), 23.3 (C-3), 25.9 (C-4), 45.0 (C-2), 109.9 (C aryl), 117.2 (CN), 126.6, 128.0, 128.4, 128.9, 131.3, 137.3, 137.7 (C aryl), 169.7 (CO); MS: m/z 277 [M+H]+. Anal. Calcd for C18H16N2O: C, 78.24; H, 5.84; N, 10.14. Found: C, 78.31; H, 5.96; N, 10.12.
1-Acetyl-1,2,3,4-tetrahydro-6-(4-methoxyphenyl)-8-quinolinecarbonitrile (11b)
Brown oil (0.16 g, 52%); IR (neat): 2228 (CN), 1670 (CO) cm-1; 1H NMR (DMSO-d6): δ 1.96 (br s, 2H, 3-H), 2.21 (br s, 3H, COCH3), 2.83 (br s, 2H, 4-H), 3.81 (br s, 2H, 2-H), 3.81 (s, 3H, OCH3), 7.017.05 (m, 2H, aryl H), 7.677.70 (m, 2H, aryl H), 7.80 (br s, 1H, aryl H), 7.88 (br s, 1H, aryl H); 13C NMR (DMSO-d6): δ 22.1 (COCH3), 23.4 (C-3), 25.8 (C-4), 45.0 (C-2), 55.2 (OCH3), 114.4 (C aryl), 117.3 (CN), 127.8, 130.0, 130.7, 159.3 (C aryl), 169.7 (CO); MS: m/z 307 [M+H]+. Anal. Calcd for C19H18N2O20.25H2O: C, 73.41; H, 6.00; N, 9.01. Found: C, 73.45; H, 6.08; N, 8.91.
1-Acetyl-1,2,3,4-tetrahydro-6-(4-methylphenyl)-8-quinolinecarbonitrile (11c)
Pale brown prisms (0.15 g, 52%), mp 129130 °C (acetone/petroleum ether); IR (KBr): 2224 (CN), 1665 (CO) cm-1; 1H NMR (DMSO-d6): δ 1.96 (br s, 2H, 3-H), 2.22 (br s, 3H, COCH3), 2.35 (s, 3H, CH3), 2.83 (br s, 2H, 4-H), 3.78 (br s, 2H, 2-H), 7.277.30 (m, 2H, aryl H), 7.617.64 (m, 2H, aryl H), 7.82 (br s, 1H, aryl H), 7.90 (br s, 1H, aryl H); 13C NMR (DMSO-d6): δ 20.6 (CH3), 22.1 (COCH3), 23.3 (C-3), 25.8 (C-4), 44.9 (C-2), 117.2 (CN), 126.4, 128.1, 129.5, 130.9, 134.7, 137.1, 137.5 (C aryl), 169.7 (CO); MS: m/z 291 [M+H]+. Anal. Calcd for C19H18N2O: C, 78.59; H, 6.25; N, 9.65. Found: C, 78.64; H, 6.31; N, 9.63.
1-Acetyl-6-(4-chlorophenyl)-1,2,3,4-tetrahydro-8-quinolinecarbonitrile (11d)
Colorless prisms (0.14 g, 45%), mp 129130 °C (Et2O); IR (KBr): 2232 (CN), 1674 (CO) cm-1; 1H NMR (DMSO-d6): δ 1.96 (br s, 2H, 3-H), 2.23 (br s, 3H, COCH3), 2.84 (br s, 2H, 4-H), 3.79 (br s, 2H, 2-H), 7.517.55 (m, 2H, aryl H), 7.757.79 (m, 2H, aryl H), 7.86 (br s, 1H, aryl H), 7.96 (br s, 1H, aryl H); 13C NMR (DMSO-d6): δ 22.1 (COCH3), 23.3 (C-3), 25.8 (C-4), 45.0 (C-2), 117.1 (CN), 128.4, 128.9, 131.2, 132.9, 136.5 (C aryl), 169.7 (CO); MS: m/z 311 [M+H]+. Anal. Calcd for C18H15ClN2O: C, 69.57; H, 4.86; N, 9.01. Found: C, 69.51; H, 4.94; N, 8.97.
1-Benzoyl-1,2,3,4-tetrahydro-6-phenyl-8-quinolinecarbonitrile (12a)
Colorless prisms (0.24 g, 71%), mp 238239 °C (CH2Cl2); IR (KBr): 2224 (CN), 1664 (CO) cm-1; 1H NMR (DMSO-d6): δ 1.95 (br s, 2H, 3-H), 2.95 (t, J = 6.7 Hz, 2H, 4-H), 3.80 (br s, 2H, 2-H), 7.387.54 (m, 8H, aryl H), 7.737.75 (m, 2H, aryl H), 7.867.88 (m, 1H, aryl H), 7.917.93 (m, 1H, aryl H); 13C NMR (DMSO-d6): δ 23.4 (C-3), 25.9 (C-4), 46.1 (C-2), 109.4 (C aryl), 116.9 (CN), 126.6, 128.1, 128.2, 128.5, 129.0, 130.9, 131.4, 134.9, 135.0, 137.2, 137.5, 140.5 (C aryl), 170.5 (CO); MS: m/z 339 [M+H]+. Anal. Calcd for C23H18N2O: C, 81.63; H, 5.36; N, 8.28. Found: C, 81.55; H, 5.43; N, 8.25.
1-Benzoyl-1,2,3,4-tetrahydro-6-(4-methoxyphenyl)-8-quinolinecarbonitrile (12b)
Pale brown prisms (0.21 g, 57%), mp 192193 °C (acetone); IR (KBr): 2232 (CN), 1661 (CO) cm-1; 1H NMR (DMSO-d6): δ 1.95 (br s, 2H, 3-H), 2.93 (t, J = 6.7 Hz, 2H, 4-H), 3.773.81 (m, 3H, 2-H), 3.80 (s, 3H, OCH3), 7.017.04 (m, 2H, aryl H), 7.417.45 (m, 2H, aryl H), 7.487.51 (m, 3H, aryl H), 7.677.70 (m, 2H, aryl H), 7.807.82 (m, 1H, aryl H), 7.867.87 (m, 1H, aryl H); 13C NMR (DMSO-d6): δ 23.5 (C-3), 25.9 (C-4), 46.0 (C-2), 55.2 (OCH3), 109.3, 114.4 (C aryl), 116.9 (CN), 127.7, 127.8, 128.2, 128.5, 129.8, 130.7, 130.8, 134.8, 135.1, 137.0, 139.8, 159.4 (C aryl), 170.4 (CO); MS: m/z 369 [M+H]+. Anal. Calcd for C24H20N2O2: C, 78.24; H, 5.47; N, 7.60. Found: C, 78.31; H, 5.61; N, 7.59.
1-Benzoyl-1,2,3,4-tetrahydro-6-(4-methylphenyl)-8-quinolinecarbonitrile (12c)
Colorless columns (0.21 g, 60%), mp 171172 °C (acetone); IR (KBr): 2227 (CN), 1653 (CO) cm-1; 1H NMR (DMSO-d6): δ 1.95 (br s, 2H, 3-H), 2.35 (s, 3H, CH3), 2.94 (t, J = 6.7 Hz, 2H, 4-H), 3.79 (br s, 2H, 2-H), 7.277.29 (m, 2H, aryl H), 7.417.45 (m, 2H, aryl H), 7.497.53 (m, 3H, aryl H), 7.617.64 (m, 2H, aryl H), 7.837.84 (m, 1H, aryl H), 7.887.90 (m, 1H, aryl H); 13C NMR (DMSO-d6): δ 20.6 (CH3), 23.4 (C-3), 25.9 (C-4), 46.1 (C-2), 109.4 (C aryl), 116.9 (CN), 126.4, 128.1, 128.2, 128.5, 129.6, 130.9, 131.1, 134.6, 134.8, 135.0, 137.2, 137.5, 140.2 (C aryl), 170.5 (CO); MS: m/z 353 [M+H]+. Anal. Calcd for C24H20N2O: C, 81.79; H, 5.72; N, 7.95. Found: C, 81.79; H, 5.84; N, 7.93.
1-Benzoyl-6-(4-chlorophenyl)-1,2,3,4-tetrahydro-8-quinolinecarbonitrile (12d)
Colorless columns (0.24 g, 64%), mp 221222 °C (acetone); IR (KBr): 2229 (CN), 1650 (CO) cm-1; 1H NMR (DMSO-d6): δ 1.951.97 (m, 2H, 3-H), 2.95 (t, J = 6.7 Hz, 2H, 4-H), 3.79 (br s, 2H, 2-H), 7.427.46 (m, 2H, aryl H), 7.507.54 (m, 5H, aryl H), 7.767.79 (m, 2H, aryl H), 7.907.91 (m, 1H, aryl H), 7.927.94 (m, 1H, aryl H); 13C NMR (DMSO-d6): δ 23.4 (C-3), 25.9 (C-4), 46.2 (C-2), 109.5 (C aryl), 116.8 (CN), 128.2, 128.4, 128.48, 128.50, 128.9, 130.9, 131.4, 133.0, 134.9, 135.0, 135.8, 136.3, 140.8 (C aryl), 170.5 (CO); MS: m/z 373 [M+H]+. Anal. Calcd for C23H17ClN2O: C, 74.09; H, 4.60; N, 7.51. Found: C, 74.07; H, 4.71; N, 7.48.
Preparation of pyridoquinazoline 13 from 11a.
A mixture of 11a (0.276 g, 1 mmol) in 10% aqueous NaOH (1 mL) and MeOH (5 mL) was refluxed for 30 min. After removal of the solvent in vacuo, cold water was added to the residue. The precipitate was isolated by filtration, washed with water, dried, and recrystallized from acetone to yield 3-methyl-9-phenyl-1H,5H-pyrido[3,2,1-ij]quinazolin-1(6H)-one (13) (0.14 g, 51%) as colorless needles, mp 258259 °C; IR (KBr): 1632 (CO) cm-1; 1H NMR (DMSO-d6): δ 2.072.13 (m, 2H, 6-H), 2.53 (s, 3H, CH3), 3.00 (t, J = 6.1 Hz, 2H, 7-H), 4.14 (t, J = 5.8 Hz, 2H, 5-H), 7.377.41 (m, 1H, aryl H), 7.477.51 (m, 2H, aryl H), 7.707.73 (m, 2H, aryl H), 7.867.87 (m, 1H, aryl H), 8.108.11 (m, 1H, aryl H); 13C NMR (DMSO-d6): δ 20.6 (C-6), 22.9 (CH3), 25.9 (C-7), 46.7 (C-5), 119.6, 122.0, 126.4, 127.6, 127.8, 129.0, 130.7, 136.2, 137.0, 138.7 (C aryl), 160.8 (C-3), 167.8 (CO); MS: m/z 277 [M+H]+. Anal. Calcd for C18H16N2O: C, 78.24; H, 5.84; N, 10.14. Found: C, 78.16; H, 5.84; N, 10.11.



References

1. D. W. Robertson, J. H. Krushinski, E. E. Beedle, V. Wyss, G. D. Pollock, H. Wilson, R. F. Kauffman, and J. S. Hayes, J. Med. Chem., 1986, 29, 1832. CrossRef
2.
H. Matsuoka, N. Maruyama, H. Suzuki, T. Kuroki, K. Tsuji, N. Kato, N. Ohi, M. Mihara, Y. Takeda, and K. Yano, Chem. Pharm. Bull., 1996, 44, 2287.
3.
D. L. Boger, C. W. Boyce, R. M. Garbaccio, and J. A. Goldberg, Chem. Rev., 1997, 97, 787. CrossRef
4.
S. Kamiya, H. Shirahase, A. Yoshimi, S. Nakamura, M. Kanda, H. Matsui, M. Kasai, K. Takahashi, and K. Kurahashi, Chem. Pharm. Bull., 2000, 48, 817.
5.
R. J. Perner, S. DiDomenico, J. R. Koenig, A. Gomtsyan, E. K. Bayburt, R. G. Schmidt, I. Drizin, G. Z. Zheng, S. C. Turner, T. Jinkerson, B. S. Brown, R. G. Keddy, K. Lukin, H. A. McDonald, P. Honore, J. Mikusa, K. C. Marsh, J. M. Wetter, K. S. George, M. F. Jarvis, C. R. Faltynek, and C.-H. Lee, J. Med. Chem., 2007, 50, 3651. CrossRef
6.
Y. Shoji, K. Takahashi, M. Ohta, M. Kasai, K. Kunishiro, M. Kanda, S. Yogai, Y. Takeuchi, and H. Shirahase, Bioorg. Med. Chem., 2009, 17, 6020. CrossRef
7.
O. B. Wallace, K. S. Lauwers, S. A. Jones, and J. A. Dodge, Bioorg. Med. Chem. Lett., 2003, 13, 1907. CrossRef
8.
R. D. Fabio, E. Tranquillini, B. Bertani, G. Alvaro, F. Micheli, F. Sabbatini, M. D. Pizzi, G. Pentassuglia, A. Pasquarello, T. Messeri, D. Donati, E. Ratti, R. Arban, G. D. Forno, A. Reggiani, and R. J. Barnaby, Bioorg. Med. Chem. Lett., 2003, 13, 3863. CrossRef
9.
R. N. Asolkar, D. Schröder, R. Heckmann, S. Lang, I. Wagner-Döbler, and H. Laatsch, J. Antibiot., 2004, 57, 17.
10.
L. Nallan, K. D. Bauer, P. Bendale, K. Rivas, K. Yokoyama, C. P. Hornéy, P. R. Pendyala, D. Floyd, L. J. Lombardo, D. K. Williams, A. Hamilton, S. Sebti, W. T. Windsor, P. C. Weber, F. S. Buckner, D. Chakrabarti, M. H. Gelb, and W. C. V. Voorhis, J. Med. Chem., 2005, 48, 3704. CrossRef
11.
L. J. Lombardo, A. Camuso, J. Clark, K. Fager, J. Gullo-Brown, J. T. Hunt, I. Inigo, D. Kan, B. Koplowitz, F. Lee, K. McGlinchey, L. Qian, C. Ricca, G. Rovnyak, S. Traeger, J. Tokarski, D. K. Williams, L. I. Wu, Y. Zhao, V. Manne, and R. S. Bhide, Bioorg. Med. Chem. Lett., 2005, 15, 1895. CrossRef
12.
M. Somei, T. Kawasaki, and T. Ohta, Heterocycles, 1988, 27, 2363. CrossRef
13.
R. Grigg, S. Sukirthalingam, and V. Sridharan, Tetrahedron Lett., 1991, 32, 2545. CrossRef
14.
Y. Ishihara T. Tanaka, and G. Goto, J. Chem. Soc., Perkin Trans. 1, 1992, 3401. CrossRef
15.
J. P. Wolfe, R. A. Rennels, and S. L. Buchwald, Tetrahedron, 1996, 52, 7525. CrossRef
16.
M. Dias, M. Gibson, J. Grimshaw, I. Hill, J. Trocha-Grimshaw, and O. Hammerich, Acta Chem. Scand., 1998, 52, 549. CrossRef
17.
M. D. Ganton and M. A. Kerr, Org. Lett., 2005, 7, 4777. CrossRef
18.
P. Liu, L. Huang, Y. Lu, M. Dilmeghani, J. Baum, T. Xiang, J. Adams, A. Tasker, R. Larsen, and M. M. Faul, Tetrahedron Lett., 2007, 48, 2307. CrossRef
19.
Y.-X. Jia, D. Katayev, and E. P. Kündig, Chem. Commun., 2010, 46, 130. CrossRef
20.
K. G. Liu, J. R. Lo, and A. J. Robichaud, Tetrahedron, 2010, 66, 573. CrossRef
21.
P. Beak and G. W. Selling, J. Org. Chem., 1989, 54, 5574. CrossRef
22.
O. Miyata, A. Shirai, S. Yoshino, T. Nakabayashi, Y. Takeda, T. Kiguchi, D. Fukumoto, M. Ueda, and T. Naito, Tetrahedron, 2007, 63, 10092. CrossRef
23.
B.-J. Li, S.-L. Tian, Z. Fang, and Z.-J. Shi, Angew. Chem. Int. Ed., 2008, 47, 1115. CrossRef
24.
T. H. Babu, G. Shanthi, and P. T. Perumal, Tetrahedron Lett., 2009, 50, 2881. CrossRef
25.
H. Maruoka, K. Yamagata, and M. Yamazaki, J. Heterocycl. Chem., 2001, 38, 269. CrossRef
26.
H. Maruoka, M. Yamazaki, and Y. Tomioka, J. Heterocycl. Chem., 2004, 41, 641. CrossRef
27.
H. Maruoka, K. Yamagata, F. Okabe, and Y. Tomioka, J. Heterocycl. Chem., 2005, 42, 717. CrossRef
28.
H. Maruoka, F. Okabe, and K. Yamagata, J. Heterocycl. Chem., 2008, 45, 541. CrossRef
29.
H. Maruoka, F. Okabe, E. Masumoto, T. Fujioka, and K. Yamagata, Heterocycles, 2010, 80, 637. CrossRef
30.
H. Maruoka, F. Okabe, Y. Koutake, T. Fujioka, and K. Yamagata, Heterocycles, 2009, 77, 617. CrossRef
31.
T. Matsuda, K. Yamagata, Y. Tomioka, and M. Yamazaki, Chem. Pharm. Bull., 1985, 33, 937.
32.
V. S. Karavan, S. N. Semenova, and A. K. Schurinova, Zh. Org. Khim., 1969, 5, 2161.
33.
A. O. Abdelhamid, A. M. Negm, and I. M. Abbas, J. Prakt. Chem., 1989, 331, 31. CrossRef
34.
G. L’abbé, J. Heterocycl. Chem., 1984, 21, 627. CrossRef
35.
H. Maruoka, K. Yamagata, and M. Yamazaki, Liebigs Ann. Chem., 1994, 993. CrossRef
36.
A. Alberola, L. A. Calvo, A. G. Ortega, M. C. S. Ruíz, and P. Yustos, J. Org. Chem., 1999, 64, 9493. CrossRef
37.
J. O. Subbotina, W. M. F. Fabian, E. V. Tarasov, N. N. Volkova, and V. A. Bakulev, Eur. J. Org. Chem., 2005, 2914. CrossRef
38.
J.-H. Tang, D.-X. Shi, L.-J. Zhang, Q. Zhang, and J.-R. Li, Synth. Commun., 2010, 40, 632. CrossRef

PDF (860KB) PDF with Links (931KB)