e-Journal

Full Text HTML

Paper
Paper | Regular issue | Vol. 83, No. 12, 2011, pp. 2779-2802
Received, 9th August, 2011, Accepted, 30th September, 2011, Published online, 13th October, 2011.
DOI: 10.3987/COM-11-12332
Alternative Synthesis of Radioiodinated Trisaccharide Derivatives, 2-(4-125Iodophenyl)ethyl 2-Acetamido-2-deoxy-β-D-glucopyranosyl-(1→2)-α-D-mannopyranosyl-(1→6)-β-D-glucopyranoside, and Preparation of Its Analogs Having Different Lengths of Alkyl Chains Instead of Ethyl Group: Acceptor Substrates of N-Acetylglucosaminyltransferase V for in vivo Imaging

Kenji Arimitsu, Tetsuya Kajimoto, Hiroyuki Kimura, Masahiro Ono, Minoru Ozeki, Manabu Node, Yoshiro Ohmomo, Hideo Saji,* and Masayuki Yamashita*

Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi, Yamashina, Kyoto, Japan

Abstract
A radioiodinated artificial substrate of N-acetylglucosaminyl- transferase V (GnT-V), 2-(4-iodophenyl)ethyl 2-acetamido-2-deoxy-β-D-glucopyranosyl-(1→2)-α-D-mannopyranosyl-(1→6)-β-D-glucopyranoside ([125I]1a), was alternatively synthesized by using the glycosylation reaction from the non-reducing end, in which a glycosyl sulfoxide and a thioglycoside were employed as the glycosyl acceptor and donor, respectively. In addition, two derivatives of [125I]1a having different lengths of alkyl chain ([125I]1b, [125I]1c) were prepared in the same way to increase the permeability of the substrates through the cell membrane and into the Golgi apparatus, where GnT-V acts to modify glycoconjugates by transferring N-acetylglucosamine units from UDP-GlcNAc.

References

1. R. D. Cummings, I. S. Trowbridge, and S. Kornfeld, J. Biol. Chem., 1982, 257, 13421.
2.
K. Yamashita, Y. Tachibana, T. Ohkura, and A. Kobata, J. Biol. Chem., 1985, 260, 3963.
3.
M. Pierce and J. Arango, J. Biol. Chem., 1986, 261, 10772.
4.
J. W. Dennis, S. Laferte, C. Waghorne, M. L. Breitman, and R. S. Kerbel, Science, 1987, 236, 582. CrossRef
5.
J. W. Dennis and S. Laferte, Cancer Res., 1989, 49, 945.
6.
B. Fernandes, U. Sagman, M. Auger, M. Demetrio, and J. W. Dennis, Cancer Res., 1991, 51, 718.
7.
E. Miyoshi, A. Nishikawa, Y. Ihara, J. Gu, T. Sugiyama, N. Hayashi, H. Fusamoto, T. Kamada, and N. Taniguchi, Cancer Res., 1993, 53, 3899.
8.
K. Murata, E. Miyoshi, M. Kameyama, O. Ishikawa, T. Kabuto, Y. Sasaki, M. Hiratsuka, H. Ohigashi, S. Ishiguro, S. Ito, H. Honda, F. Takemura, N. Taniguchi, and S. Imaoka, Clin. Cancer Res., 2000, 6, 1772.
9.
J. W. Dennis, J. Pawling, P. Cheung, E. Partridge, and M. Demetriou, Biochim. Biophys. Acta, 2002, 157, 414.
10.
T. Saito, E. Miyoshi, K. Sasai, N. Nakano, H. Eguchi, K. Honke, and N. Taniguchi, J. Biol. Chem., 2002, 277, 1700210. CrossRef
11.
T. Mukai, M. Hagimori, K. Arimitsu, T. Katoh, M. Ukon, T. Kajimoto, H. Kimura, Y. Magata, E. Miyoshi, N. Taniguchi, M. Node, and H. Saji, Bioorg. Med. Chem., 2011, 19, 4312. CrossRef
12.
T. Kajimoto, Y. Ishioka, T. Katoh, and M. Node, Bioorg. Med. Chem. Lett., 2006, 16, 5736. CrossRef
13.
T. Kajimoto, Y. Ishioka, T. Katoh, and M. Node, J. Carbohydr. Chem., 2007, 26, 469. CrossRef
14.
T. Kajimoto, K. Arimitsu, M. Ozeki, and M. Node, Chem. Pharm. Bull., 2010, 58, 758. CrossRef
15.
Hydrogenolysis of 14 or 15 with Pd/C or Pd(OH)2/C did not proceed.
16.
T. L. Ho and G. A. Olah, Angew. Chem., Int. Ed. Engl., 1976, 15, 774; CrossRef See also, M. E. Jung and M. A. Lyster, J. Am. Chem. Soc., 1977, 99, 968. CrossRef
17.
A. N. Pinchuk, M. A. Rampy, M. A. Longino, R. W. Scott Skinner, M. D. Gross, J. P. Weichert, and R. E. Counsell, J. Med. Chem., 2006, 49, 2155. CrossRef
18.
Y. Hayakawa, H. Kato, M. Uchiyama, H. Kajino, and R. Noyori, J. Org. Chem., 1986, 51, 2400. CrossRef
19.
A. Hasegawa, T. Nagahama, H. Ohki, K. Hotta, H. Ishida, and M. Kiso, J. Carbohydr. Chem., 1991, 10, 493. CrossRef
20.
M. E. Mahoney, A. Oliver, O. Einarsdottir, and J. P. Konopelski, J. Org. Chem., 2009, 74, 8212. CrossRef
21.
W. Qu, K. Ploessl, H. Truong, M-P. Kung, and H. K. Kung, Bioorg. Med. Chem. Lett., 2009, 19, 3382. CrossRef

PDF (817KB) PDF with Links (1MB)