Indian Journal of Human Genetics
Home Current Issue Archives Guidelines Subscriptions e-Alerts Login 
Users online: 36
Print this page  Email this page Small font sizeDefault font sizeIncrease font size
RESEARCH ARTICLE
Year : 2011  |  Volume : 17  |  Issue : 4  |  Page : 32-40

Pharmacogenomic association study on the role of drug metabolizing, drug transporters and drug target gene polymorphisms in drug-resistant epilepsy in a north Indian population


1 Department of Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
2 Department of Neurology, CSM Medical University, Lucknow, Uttar Pradesh, India
3 Department of Neurology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India

Correspondence Address:
Balraj Mittal
Department of Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow - 226 014, Uttar Pradesh
India
Login to access the Email id

Source of Support: DBT, DST and CSIR, Conflict of Interest: None


DOI: 10.4103/0971-6866.80357

Get Permissions

Background: In epilepsy, in spite of the best possible medications and treatment protocols, approximately one-third of the patients do not respond adequately to anti-epileptic drugs. Such interindividual variations in drug response are believed to result from genetic variations in candidate genes belonging to multiple pathways. Materials and Methods: In the present pharmacogenetic analysis, a total of 402 epilepsy patients were enrolled. Of them, 128 were diagnosed as multiple drug-resistant epilepsy and 274 patients were diagnosed as having drug-responsive epilepsy. We selected a total of 10 candidate gene polymorphisms belonging to three major classes, namely drug transporters, drug metabolizers and drug targets. These genetic polymorphism included CYP2C9 c.430C>T (*2 variant), CYP2C9 c.1075 A>C (*3 variant), ABCB1 c.3435C>T, ABCB1c.1236C>T, ABCB1c.2677G>T/A, SCN1A c.3184 A> G, SCN2A c.56G>A (p.R19K), GABRA1c.IVS11 + 15 A>G and GABRG2 c.588C>T. Genotyping was performed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) methods, and each genotype was confirmed via direct DNA sequencing. The relationship between various genetic polymorphisms and responsiveness was examined using binary logistic regression by SPSS statistical analysis software. Results: CYP2C9 c.1075 A>C polymorphism showed a marginal significant difference between drug resistance and drug-responsive patients for the AC genotype (Odds ratio [OR] = 0.57, 95% confidence interval [CI] = 0.32-1.00; P = 0.05). In drug transporter, ABCB1c.2677G>T/A polymorphism, allele "A" was associated with drug-resistant phenotype in epilepsy patients (P = 0.03, OR = 0.31, 95% CI = 0.10-0.93). Similarly, the variant allele frequency of SCN2A c.56 G>A single nucleotide polymorphism was significantly higher in drug-resistant patients (P = 0.03; OR = 1.62, 95% CI = 1.03, 2.56). We also observed a significant difference at the genotype as well as allele frequencies of GABRA1c.IVS11 + 15 A > G polymorphism in drug-resistant patients for homozygous GG genotype (P = 0.03, OR = 1.84, 95% CI = 1.05-3.23) and G allele (P = 0.02, OR = 1.43, 95% CI = 1.05-1.95). Conclusions: Our results showed that pharmacogenetic variants have important roles in epilepsy at different levels. It may be noted that multi-factorial diseases like epilepsy are also regulated by various other factors that may also be considered in the future.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed2708    
    Printed128    
    Emailed0    
    PDF Downloaded136    
    Comments [Add]    
    Cited by others 2    

Recommend this journal