Possible impact of factor V Leiden genotype on warfarin induced bleeding

Sir.

We read with interest the report, recently published by Nahar *et al.*^[1] on the prevalence of warfarin sensitive alleles in factor V Leiden (FVL) mutation carriers. The study provides preliminary evidence for the need of pre-prescription genotyping of warfarin sensitive polymorphisms (CYP2C9*2, *3 and Vitamin-K epoxide reductase complex subunit1 [VKORC1]-1639G/A) in patients who are at risk of thrombosis (carriers of thrombophilic marker) and require anticoagulation therapy.

The authors have reported that 55.6% of the patients who carry FVL mutation also carry warfarin sensitive genotypes; thus, it is important that all patients with thrombophilia need warfarin genotyping prior to prescription with warfarin. The prevalence of these genotypes are however, not significantly different in few other studies including ours [Table 1], where the allele frequencies were studied in warfarin anticoagulated patients, as well as normal healthy controls.^[2,3] FVL mutation has however, not been studied in these cases.

In our study, which included 145 warfarin treated patients (blinded to FVL or other thrombophilic marker carrier status), nearly 44.14% patients were found to be carriers for one or more variant genotype(CYP2C9*2, *3 and VKORC1-1639G/A). Out of these warfarin sensitive genotype carrier patients, 67.18% patients faced over anticoagulation (INR > 4) while on warfarin. Indicating that genotyping of warfarin sensitive markers will be beneficial in all the patients prior to the initiation of anticoagulation therapy.^[3]

Another important aspect of coinheritance of thrombophilia is its impact on the bleeding phenotype. Several studies, both *in vitro* and case series have shown that FVL mutation modulates the clinical severity in hemophilia and other rare bleeding disorders.^[4,5] We

Table 1: Genotype and allele frequencies of CYP2C9 and VKORC1 in few studies from India

Genotypes/Alleles	Nahar et al. ^[1] (FVL carrier patients) <i>N</i> =61	Shalia et al. ^[2] (normal and patients operated for aortic or mitral valve replacement) N=183	Gaikwad et al. ^[3] (warfarin treated patients) N=145
		Frequencies n (%	6)
CYP2C9 genotype CYP2C9*1/*1 CYP2C9*1/*2 CYP2C9*1/*3 CYP2C9*2/*2 CYP2C9*2/*3 CYP2C9*3/*3 VKORC1-1639G>A	41 (67.2) 6 (9.8) 13 (21.3) 0 1 (1.7)	126 (68.9) 17 (9.3) 35 (19.1) 0 0 5 (2.7)	105 (72.4) 9 (6.2) 27 (18.6) 0 0 4 (2.8)
genotype GG	40 (70 F)	100 (75 5)	111 (76.6)
GA AA	43 (70.5) 17 (27.9) 1 (1.6)	138 (75.5) 41 (22.4) 4 (2.1)	111 (76.6) 31 (21.4) 3 (2.0)
CYP2C9 allele CYP2C9*1	0.83	0.84	0.85
CYP2C9*2	0.06	0.04	0.03
CYP2C9*3	0.11	0.12	0.12
VKORC1 allele	0.04	0.07	0.07
VKORC1-1639G VKORC1-1639A	0.84 0.16	0.87 0.13	0.87 0.13
THE THE THE	0.10	0.10	0.10

FVL: Factor V Leiden, VKORC1: Vitamin K epoxide reductase complex subunit 1, CYP2C9: Cytochrome P450 2C9

therefore premise that FVL carrier patients should be at lower risk of over anticoagulation than the FVL non-carrier patients. This would be confirmed by undertaking studies in large series of anticoagulated patients with the long duration follow-up analysis for over anticoagulation and risk of bleeding in carriers of thrombophilia marker versus non-carriers.

Acknowledgments

Authors are grateful to Indian Council of Medical Research (ICMR), Delhi, India for providing Research Fellowship to one of the authors (TG) (IRIS cell No. 2011-05540).

Tejasvita Gaikwad, Kanjaksha Ghosh, Shrimati Shetty

Letter to the Editor

Department of Thrombosis and Haemostasis, National Institute of Immunohaematology, KEM Hospital, Parel, Mumbai, Maharashtra, India

Address for correspondence: Dr. Shrimati Shetty, Department of Thrombosis and Haemostasis, National Institute of Immunohaematology, 13th Floor, KEM Hospital, Parel, Mumbai - 400 012, Maharashtra, India. E-mail: shrimatishetty@yahoo.com

References

- Nahar R, Saxena R, Deb R, Verma IC. Pharmacogenetic typing for oral anti-coagulant response among factor V Leiden mutation carriers. Indian J Hum Genet 2012;18:326-31.
- Shalia KK, Doshi SM, Parikh S, Pawar PP, Divekar SS, Varma SP, et al. Prevalence of VKORC1 and CYP2C9 gene polymorphisms in Indian population and its effect on warfarin response. J Assoc Physicians India 2012;60:34-8.
- Gaikwad T, Ghosh K, Kulkarni B, Kulkarni V, Ross C, Shetty S. Influence of CYP2C9 and VKORC1 gene

- polymorphisms on warfarin dosage, over anticoagulation and other adverse outcomes in Indian population. Eur J Pharmacol 2013;710:80-4.
- Shetty S, Vora S, Kulkarni B, Mota L, Vijapurkar M, Quadros L, et al. Contribution of natural anticoagulant and fibrinolytic factors in modulating the clinical severity of haemophilia patients. Br J Haematol 2007;138:541-4.
- van 't Veer C, Golden NJ, Kalafatis M, Simioni P, Bertina RM, Mann KG. An *in vitro* analysis of the combination of hemophilia A and factor V (LEIDEN). Blood 1997;90:3067-72.

Access this article online			
Quick Response Code:	Website: www.ijhg.com		
ENASSARIES			
	DOI: 10.4103/0971-6866.120807		

