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 Introduction 

 Osteoporosis, the progressive loss of bone mass leading to 
fractures, is a significant cause of morbidity and mortality world-
wide. Fracture risk increases with age, and as the proportion 
of aged persons worldwide is increasing, this disease is likely 
to become an even greater public health burden. 1  Bone min-
eral density (BMD) can be used to predict future fracture risk, 
and studies have demonstrated that over 80 %  of the variance 
in peak bone mass is due to heritable factors. 2  For this rea-
son, there has been significant interest in identifying the genes 
that regulate bone mass. The genome-wide association study 
(GWAS) approach has led to the identification of a number of 
validated loci for BMD. 3  

 As the first wave of GWAS is completed, questions have 
arisen about what the next steps should be. In this review, we 
focus on the use of the mouse both as a discovery tool for find-
ing smaller variance loci missed by GWAS and as a tool that can 
be used to complement GWAS. Although GWAS and related 
gene mapping studies can identify loci implicated in bone mass, 
additional information is required to understand the function of 
these loci in skeletal biology. In the first part of this review, we 
discuss the need for mouse models to validate and interpret 
novel GWAS findings. This is followed by a discussion of the 

current efforts to map candidate genes for bone phenotypes 
using mouse genetic resource populations. We conclude with 
a discussion regarding the need for systems genetics, pathway 
analysis and alternate methods to find genes to move the field 
of skeletal genetics forward.   

 The Need for Mouse Models 

 A GWAS is a hypothesis-free method of identifying genetic 
loci associated with a heritable phenotype. 4  Although genome 
wide association analyses can be done using data from mice, 5 – 9  
most frequently GWAS is employed as a loci discovery tool 
on the basis of the data from human subjects. The rationale 
behind GWAS is that common genetic variants cause common 
diseases. 10  In short, a large cohort is genotyped using single-
nucleotide polymorphisms (SNPs) and associations between 
genotype and phenotype are identified. Between several thou-
sand and a few million SNPs are genotyped per individual and 
SNPs are chosen that represent common alleles. 10  Although 
the benefits and limitations of GWAS are reviewed elsewhere 
(see Hardy  et al.  4 ), the GWAS represents a giant step forward 
in both genetic mapping power and resolution. 

 One misconception about GWAS is that this method identifies 
which genes are associated with a phenotype; however, GWAS 
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identifies which loci are associated with a phenotype. As such, 
SNPs associated with a given GWAS loci may not be within a 
gene at all, but rather may be intergenic. 4  In these instances, it 
may not be clear which gene is causal for the change in pheno-
type. Moreover, it is not clear that protein-coding genes alone 
need be the causative gene for any locus 11  as non-coding RNAs 
also have cellular function. The  rs7524102  locus on 1p36 is just 
such an example. The significant SNPs at this locus fall within an 
intergenic region between  WNT4  and  ZBTB40.  12  Although pre-
liminary data suggest that  WNT4  is expressed in mouse osteob-
lasts, 13  little is known about this gene with regard to basic skeletal 
biology and nothing is known about  ZBTB40  in bone. It is here 
that the mouse, or another appropriate model system, is needed. 
These models are needed not only to determine which gene is 
causal, but also to identify the pathways that each locus interacts 
with and to interpret the cellular function of each locus. 

 Furthermore, it must be appreciated that SNPs genotyped 
in a GWAS may not be causal themselves, but may be in link-
age with a causal polymorphism that was not assayed during 
genotyping. 14  An appreciation for the location of the causative 
polymorphism(s) is important for understanding the underly-
ing biology. It is well understood that the gene expression is 
controlled by local elements, as well as by more distant regula-
tory sequences 15  and the causative SNPs may be located in 
such regulatory elements. For example, in the GEFOS GWAS, 
 TNFSF11  (RANKL) and  CTNNB1  ( � -Catenin) were identified 
as genes associated with BMD 12  and a plethora of data sup-
port the role of these two genes in basic skeletal biology. 16,17  
However, the significant SNPs for these loci were not within the 
coding region of either gene, and, consequently, the causative 
polymorphisms likely influence gene expression. 

 The problem of  ‘ missing variance ’  has been an issue for most 
GWAS. 18  In the GEFOS study mentioned above, 20 loci were 
identified that were significantly associated with BMD of either 
the lumbar spine or of proximal femur, yet these loci account 
for     <    5 %  of heritable variance in the phenotype. 12  Owing to the 
large number of genetic tests being performed in GWAS, the 
potential for false discoveries is high. To compensate, a high 
multiple testing correction penalty is applied. The concern has 
been raised that this stringent cutoff is preventing the identifica-
tion of true associations and that this may be a source of missing 
variance. By design, GWAS is hypothesis free and accordingly, 
all genomic regions are treated as equal. Given the rich amount 
of prior genetic mapping data available for many complex traits, 
methods using prior data to weight associations and minimize 
the multiple testing penalty have been proposed. 19  The mouse 
BMD quantitative trait loci (QTL) display excellent concordance 
with human GWAS loci for these same phenotypes and to date, 
many more reproducible mouse BMD QTL have been identi-
fied than have human GWAS loci. 20  A recent study from our 
group has shown that genetic mapping data from mice can be 
effectively used to find sub-significant loci associated with BMD 
by allowing for the identification of a  ‘ prior ’  or narrow region of 
interest to be targeted for analysis in human data sets. 21  This 
is yet another way in which data obtained from mouse models 
could be used to guide and enhance GWASs.   

 Genetic Loci Mapping in Mice 

 The traditional approach for genetic loci mapping in mouse 
has been interval mapping. In short, either an intercross or a 

backcross between two strains of mice is constructed, the 
mice are genotyped at low marker density, they are pheno-
typed and QTL are identified. 22  This method has been prolifically 
applied to the phenotype of BMD and  ~ 85 unique QTL have 
been reported. 20  These types of mapping studies have suffered 
from poor mapping resolution 23  and other issues, and only five 
candidate genes for BMD have been identified:  Alox15 ,  Darc, 
Trps1, Pparg  and  Sfrp4.  24 – 28  Although two strain intercross and 
interval mapping is no longer the workhorse of mouse genetics 
that they once were, gene-mapping efforts have not ceased. 
Rather these efforts have evolved with the development of 
better methods and new genetic resource populations.  

  The Collaborative Cross.      The Collaborative Cross (CC) is an 
ambitious, multi-national, multi-institutional effort to create a 
large set of recombinant inbred (RI) strains, with each RI line 
derived from eight strains of mice. The generation of this panel 
has been undertaken to create a large enough population of mice 
with enough genetic diversity to allow for systems biology analy-
ses of complex traits. 29  The eight founder strains are five classi-
cal inbred strains: C57BL / 6J, A / J, 129S1 / SvImJ, NZO / H1LtJ and 
NOD / LtJ, and three wild-derived strains: WSB / EiJ, PWK / PhJ 
and CAST / EiJ. 30  In short, offspring from a two strain mating 
(G1 generation) were mated with other G1 mice to produced G2 
generation animals (descended from four strains). The G2 mice 
are interbred to generate G2:F1 mice (descended from all eight 
founder strains). These G2:F1 mice were then, and continue to 
be, interbred such that fully inbred RI lines are established. 29  

 Some very interesting studies have now been completed 
using mice from the early stages of inbreeding the CC lines 
(so called  ‘ pre-CC ’  mice). These studies demonstrate that 
the breadth of values for a given phenotype measured in the 
pre-CC is greater than observed in the founder strains alone 31,32  
( Figure 1 ). Moreover, these traits display greater breadth of phe-
notypic variation than is observed when measured in a genetic 
mapping panel derived from two progenitor strains. 32  The first 
CC genetic loci have also now been mapped. 31 – 33  As predicted 
from the computer simulations, 34  QTL mapped in the pre-CC 
are an order of magnitude narrower than QTL mapped using 
an intercross mapping population. 31,32  For example, a QTL for 
periosteal circumference mapped to chromosome 19 had a 
confidence interval width of only 0.96   Mb containing five candi-
date genes. 32  The average confidence interval size of BMD QTL 
mapped using a traditional intercross population is  ~ 32   cM. 20  
Assuming that on average 1   cM equals 2   Mb and that there are 
on average 10 genes per Mb, 35  this equals  ~ 640 candidate 
genes per QTL. Thus, five candidate genes for a QTL is nearly 
2 orders of magnitude improvement in resolution. The power to 
map QTL utilizing the pre-CC is diminished relative to what is 
predicted for the completed lines 33  and accordingly, there are 
high expectations for the final strains. 

 The advantages of the CC are many. One large burden for any 
genetics study is the cost involved in genotyping the mice. Once 
inbred, the genotypes of individual lines will be stable, preclud-
ing the need for future genotyping. 30  However, genetic stability 
comes at a price. Every allele in the CC will be homozygous, 
which does not mirror the natural state 36  and there may have 
been loss of allelic variation (due to genetic incompatibilities) as 
the inbreeding progressed. Another advantage is the anticipated 
size of this panel together with the genetic diversity captured 
within it by the inclusion of wild-derived strains. Despite our 
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successes in mapping genetic loci using classical inbred strains 
of mice, these strains have limited genetic diversity. 37  Although 
the wild-derived CAST / EiJ strain has been used in two separate 
studies for BMD QTL mapping, 20  the WSB / EiJ strain, which is 
 M. m. domesticus , and PWD / PhJ strain, which is essentially 
pure  M. m. musculus , 37  have not been used extensively in skel-
etal biology. The increase in genetic diversity seen in the CC 
may in part explain the number of novel QTL mapped for energy 
expenditure, 33  and bodes well for BMD studies. 

 For GWASs that have been conducted using meta-
analyzed data, 12  the inherent differences in the comprising 
cohorts, which could be ethnically and geographically diverse 
in origin, could result in too much heterogeneity in the envi-
ronmental data for these metadata be used for GxE studies. 
In contrast, as the CC population is genetically reproducible, 
this population has clear and distinct advantages over pre-
existing mouse populations for gene by environment (GxE), 
aging and developmental genetics studies. 30  For example, the 
CC could be used to set up studies where group A is exposed 
to an environmental variable (that is, a high-fat diet), whereas 
group B is not. Group A and B would be genetically identical to 
each other; however, each group could also have consistently 
high amounts of genetic variability. At the end of the experi-
ment, all mice from both groups A and B would be examined 
for a phenotype of interest and genetic loci associated with that 
phenotype would be mapped. Loci mapped in both A and B 
would represent loci that are independent of the environmental 
condition, whereas loci mapped in only group A or B could 
be considered to interact with the environmental condition. 
This point is particularly relevant for studies of skeletal biology, 
where we know that environmental factors affect basic bone 
biology. Analyses of GxE are just now beginning for human 
GWAS, but these types of case versus control GxE mapping 
studies, with static genetics between the case and control 
groups, cannot be conducted with human subjects. Unlike for 
GxE studies done with humans, one (or a limited number of) 
environmental factor(s) at a time can be examined independ-
ently using mouse models, and these experiments do not rely on 
self-reporting, are not confounded by failure to comply with 
interventions such as diet, and so on, so in this way mouse 
models are simpler. Although mouse models may not be appro-
priate for the examination of all types of environmental variable, 
these  ‘ simplified ’  GxE studies using the CC, or other pre-existing 
mouse populations, have the potential to identify key GxE 
interactions and may help direct simpler  ‘ candidate gene by 
environment ’  studies in human subjects.   

  The Diversity Outcross.      The Diversity Outcross (DO) is an off-
shoot of the CC, but unlike the CC, the goal is to maintain alleles 
in a segregating state. The DO was started from 144 CC lines 
obtained at early stages of inbreeding and the DO is propagated 
using a random breeding strategy. Consequently, all DO mice 
carry alleles from the eight CC founder strains, but each mouse 
is a unique mixture of alleles and heterozygosity is maintained 
in the population, more closely mimicking the natural popu-
lation. As with the pre-CC mice, phenotypic diversity is high 
in the DO, as is the genetic mapping resolution. 36  However, 
this population has disadvantages. Specifically, every mouse 
must be genotyped at high resolution for mapping and the lack 
of genetic stability makes this panel less attractive for some 
experimental designs.   

  The Hybrid Mouse Diversity Panel.      The Hybrid Mouse Diversity 
Panel (HMDP) panel is composed of 29 inbred strains, as well as 
71 RI lines of mice. These 71 lines come from three sets of two-
founder strain RI panels, wherein one founder was C57BL / 6J 
(B6). This is a  ‘ use as is ’  panel of mice, in that all of the strains 
are  ‘ completed ’  and can be readily purchased. Furthermore, 
high-density genotyping for all lines is available 23  and gene 
expression data are available from femoral cortical bone from 
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  Figure 1             Periosteal circumference measured in the pre-CC. Periosteal circumference 
of the mid-diaphysis of the femur, as measured by peripheral quantitative computed 
tomography, is presented for 224 female ( a ) and 225 male ( b ) pre-CC mice. 32  As these 
data are from mice still carrying a large degree of heterozygosity, values for individual 
mice are shown. The data for the progenitor strains are also presented and these strains 
are represented by red ( a ) and blue ( b ) bars, respectively. Note, that data were not 
available from female NZO / H1LtJ ( a ) and male NZO / H1LtJ and A / J inbred mice ( a ). Data 
are also presented as box and whisker plot to emphasize the greater variance in BMD in 
the CC mice as compared with the founder strains ( c ).  
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male mice for most HMDP strains. 38  This panel is very different 
than the CC and the DO in a number of ways. First, as the panel 
is  ‘ fixed, ’  in that the mice are not interbred in any way, no new 
allelic combinations are generated. Second, alleles from wild-
derived strains of mice are under represented and as such the 
HMDP will not be able identify wild-allele-driven loci and may 
fail to map loci in regions where the classical strains are nearly 
all identical by decent. 23,39  As with the CC and the DO, the map-
ping resolution of the HMDP is superior to that obtained with 
traditional two-strain-intercross mapping populations. 23  Using 
a combined phenotype QTL and expression QTL approach, the 
 Asxl2  gene was identified as underlying a BMD locus on mouse 
chromosome 12 in the HMDP. Furthermore, a role for this gene 
in osteoclast differentiation has been established, solidifying 
this gene as a true genetic regulator of bone mass, 38  however, 
it has not yet been ascertained if genetic variation in this gene 
is associated with BMD in human subjects.   

  Outbred mice.      Outbred stocks of mice are also starting to 
receive a lot of attention for GWASs. 7,9,40  Although outbred 
stocks can be created, 9  commercial outbreds are also use-
ful. 7,40  Most commercial outbred stocks are Swiss in origin and 
were derived from an extremely small founder population, sug-
gesting that the number of private alleles in these colonies will 
be small, improving their usefulness for mapping. 40  In theory, 
these mice are maintained as random bred colonies to maxi-
mize genetic variability. However, upon close examination, it has 
been determined that some stocks are actually inbred. A sub-
set of the commercial outbred stocks have been identified that 
have low linkage disequilibrium, making them better suited for 
high-resolution mapping. 40  One of these stocks is MF1. Farber 
 et al.  6  selectively genotyped the MF1 strain for the purposes of 
narrowing a traditionally mapped BMD QTL on mouse chromo-
some 11. Using this combined approach, they narrowed this 
QTL to two candidate genes:  Wnt9a  and  Rasd1.    

  Additional resources.      In addition to the loci identification and 
characterization uses described in this review, projects are 
currently underway that leverage more  ‘ traditional ’  transgenic 
mutant mouse models. The International Knockout Mouse 
Consortium (IKMC,  http://www.knockoutmouse.org/ ) is tasked 
with developing knockout alleles for every gene in the mouse 
genome. 41  In a complementary project, the International Mouse 
Phenotyping Consortium (IMPC,  http://www.mousephenotype.
org/ ) plans to phenotype the mice generated by the IKMC, in 
a high-throughput manner. The aim of the IMPC is to gener-
ate as much phenotyping data, on as many physiological sys-
tems as possible, in a high-throughput manner and as such 
will expand our genetic baseline knowledge of the laboratory 
mouse and provide resources for further mechanistic studies. 42  
This plethora of phenotyping data, including BMD data, will aid 
in identifying genes with direct actions on bone and those with 
indirect actions on bone (that is, a bone phenotype is observed 
that is caused by defects in another organ system). Combining 
this wealth of phenotyping data with new molecular and phe-
notypic measurement technologies, including high-throughput 
sequencing, chromatin immunoprecipitation,  in vivo  bone for-
mation assays, and so on, are vital for downstream mechanis-
tic studies of the proteins and pathways identified by genetics 
approaches. In this manner, the mouse will serve as an important 
mammalian genetic model for many more years.    

 The Need to Examine Pathways, not just Individual Genes, 
to Understand Disease 

 A more general and fundamental problem with current genet-
ics and biomedical research is that a reductive approach is 
applied to a limited set of  ‘ candidate genes ’ . This may assume 
an inaccurate level of biological simplicity. Increasing evidence 
suggests that groups, suites, or pathways of proteins, RNAs, 
lipids and other small molecules work together to perform nor-
mal cellular functions, and that small perturbations to these 
components can cause systemic changes, potentially leading 
to impaired cellular function and a disease state. Genetic map-
ping research has identified many genes and pathways involv-
ing these genes that are responsible for phenotypic outcomes. 
However, in many cases, the specific genes responsible for 
the phenotypes may not be conserved between species, 43,44  
or even between strains of the same species; however, the 
pathways perturbed are often conserved across millions of 
evolutionary years. This suggests that rather than focusing on 
specific genetic alterations or expression changes in a single 
gene, research could benefit from considering data at a higher, 
so called  ‘ systems ’  level. 

 This is especially true for many medical conditions, where sub-
tle phenotypic variations can be just as important as dramatic 
phenotypic differences. In many situations, genetic or chemi-
cal manipulations that completely render a pathway or process 
inactive are likely to have detrimental outcomes, as extreme as 
embryonic lethality. For example, specific mutations that pre-
vent the mineralization of the skeleton in model organisms are 
unlikely to contribute to osteoporosis, as carriers do not survive 
gestation. However, especially for highly polygenic diseases, 
such as osteoporosis, subtle defects in multiple genes and 
pathways appear to persist through development and poten-
tially contribute to disease. But as discussed above, genetic 
mapping approaches such as GWAS often lack the statistical 
power to identify more subtle phenotypic effects, possibly over-
looking clinically important modifiers. Further, some research 
supposes that identifying a  ‘ causal ’  mutation directly implies a 
solution (that is,  ‘ fixing ’  the mutation); however, given our limited 
capacity to manipulate cellular states, a more practical solution 
may involve indirectly  ‘ fixing ’  the system through related genes. 
Thus, understanding entire pathways and networks of interact-
ing molecules is required for improved diagnoses and treat-
ments for complex genetic disorders, including osteoporosis. 
Fortunately, growing research in the areas of systems biology 
and functional genetics are developing approaches, tools and 
resources to address these outstanding problems. 

 One new area of growing research incorporates the sys-
tems biology  ‘ pathway-level ’  view directly into data analysis 
for genetic mapping studies. For example, so-called Pathway-
Wide or Network-Based Association Studies aim to analyze 
molecular phenotypes and genetic alterations at the level of 
groups or pathways of related genes. 45,46  This reduces the size 
of the hypothesis space, increasing statistical power, and it also 
improves the interpretability of results. Further developments 
of these techniques include identifying pathways  de novo  from 
high-throughput molecular assays, 47  which could enable the 
entire molecular network of a disease state to be rapidly, and 
automatically, identified. These methods have been applied to 
the studies of cancer and mammalian cell biology, and are now 
ripe for future applications in skeletal biology. 



BoneKEy Reports | JUNE 2012 5

  Mouse genetics in osteoporosis 
 CL Ackert-Bicknell and MA Hibbs  

 In addition to building better methods to conduct new studies 
of disease, a growing number of approaches and resources are 
available that take advantage of the existing wealth of genetic 
and genomic information in the literature and in public data 
repositories to predict associations between genes, pathways 
and phenotypes. Many of these projects have applied tech-
niques from machine learning and data mining fields to search 
and analyze data collections to identify reliable data sources, 
and then to infer statistically likely relationships between genes 
and proteins given all available data. The result of this data 
integration is often presented as networks or graphs, which 
 ‘ summarize ’  the input data used to generate them. 

 Functional integration of biological data were originally devel-
oped primarily for single-celled organisms, 48,49  but more recent 
efforts have focused on skeletally relevant models, including 
mouse 50,51  and human. 52  These graphs can be further auto-
matically analyzed, or manually explored by researchers, to 
quickly identify relevant experimental information from the litera-
ture, place new results into a broader context, and to form new 
hypotheses regarding protein function. This initial generation 
of systems biology tools and resources shows great promise, 
but they are still developing in maturity, scope and biological 
accuracy. A key limitation is that methods often treat mamma-
lian genetic systems as homogenous, by overlooking the vital 
role of cellular context (that is, cell type, tissue niche, develop-
mental stage, and so on) on molecular functions. For example, 
several recent efforts to integrate high-throughput mouse data 
into functional networks, 51,53  a recent competition to predict 
mouse protein function from high-throughput data, 54  and many 
others, all make the simplifying, and false, assumption that all 
genes perform the same function, regardless of cell type, con-
ditions or other factors. As such, recent mammalian networks 
often show bias by identifying genes repeatedly investigated 
(often oncogenes or tumor suppressors, such as P53 or BRCA1) 
as the key, most connected features of mammalian networks. 
Consequently, for studies of specific pathway dynamics in the 
bone, these efforts should be regarded with some caution. This 
is not to say that these approaches are not useful, but that the 
assumptions in the data and models underlying them should 
be considered before their application. In fact, based on a gen-
eralized mouse integrated network, one recent study from our 
research group 53  predicted several novel BMD genes, two of 
which ( Timp2  and  Abcg8 ) we validated  in vivo  despite the fact 

that neither was a candidate from any previous genetic mapping 
study 50  ( Figure 2 ). 

 The systems biology community is beginning to recognize 
the potential benefits of incorporating additional contextual 
information into computational models, and ongoing efforts 
are focusing on the construction of functional networks for 
specific cellular contexts. For example, from our own work, the 
StemSight project ( http://stemsight.org ) is creating functional 
networks for self-renewal processes in various mammalian 
stem cell types, beginning with mouse embryonic stem cells, 
and the mouse MAP project ( http://mousemap.princeton.edu ) 
is developing tissue-specific functional networks for over 100 
tissues (including bone and other skeletally-relevant tissues) 
in the laboratory mouse. As relatively few efforts are currently 
focused specifically on bone biology, as these methods mature, 
available resources will expand.   

 Conclusions 

 Mouse models continue to be valuable for research into the 
genetic underpinnings of osteoporosis. Early successes have 
been had in the field of osteoporosis using GWAS approaches, 
however, the future of genetic research in bone biology will likely 
still involve genetic mapping in the mouse. The newly available 
mouse genetic resource populations are far superior to tradi-
tional mapping panels and the preliminary use of these panels 
has already been successfully demonstrated. Animal model 
mapping studies should be thought of as complementary to, 
not in competition with, GWAS. Our forays into systems genet-
ics have taught us the folly of the assumption that  ‘ complex ’  
genetic diseases can be easily dissected by genetic screening 
and statistical analysis. GWAS, despite all of its successes, 
should be thought of as more hypothesis generating than as a 
final solution. The reality of interdependent biological complexity 
requires that we measure and analyze data on multiple scales, 
with multiple levels of abstraction. Our challenge lies in inte-
grating these measurements and observations into a complete 
picture of biology, at a level of granularity so that we can under-
stand and correct deviations from normal function observed in 
a specific patient. Of course, this is no easy feat, but the com-
bination of genetic, genomic, proteomic, functional, biomedi-
cal, and computational approaches will begin to achieve this 
goal. Skeletal biology is well positioned for this data analysis 

  Figure 2             A network view of functional relationships centered around  Timp2  and  Abcg8 . Nodes indicate genes, and the thickness of lines indicates relationship confidence. 
Both  Timp2  and  Abcg8  are connected to several genes that demonstrate a bone mineralization phenotype or are otherwise implicated in osteoporosis.  
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revolution, as clinically relevant bone measurements are easy to 
obtain, and as multiple vertebrate model organisms are gaining 
traction with the computational community.   
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