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Cancers that metastasize or grow in the bone marrow are typically considered incurable and cause extensive damage to

the bone and bone marrow. The bone is a complex, dynamic, three-dimensional (3D) environment composed of a

plethora of cells that may contribute to, or constrain, the growth of tumor cells and development of bone disease. The

development of safe and effective drugs is currently hampered by pre-clinical two-dimensional (2D) models whose poor

predictive power does not accurately predict the success or failure of therapeutics. These inadequate models often

result in drugs proceeding through extensive pre-clinical studies only to fail clinically. Consistently, 3D co-culture

systems prove superior to 2D mono-cultures in modeling in vivo cell phenotypes, disease progression and response to

therapeutics. As a complex, multicellular, multidimensional bone microenvironment, 3D models allow for more accurate

predictions of tumor growth, cell–cell and cell–matrix interactions, and resulting therapeutic responses. In this review we

will discuss various 3D models available and describe step-by-step protocols for two of the most well-established 3D

culture models for studying tumor-induced bone disease.
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Introduction

Despite decades of research in pathologies caused by
bone metastatic tumors (breast, prostate, renal and lung),
multiple myeloma (MM) and primary bony invasive tumors
(osteosarcoma, oral cancer and melanoma), tumor-induced
bone disease continues to be a clinical problem that causes
pain and increased fracture risk in patients.1 The lack of models
that accurately mimic the complexity of the bone, whereas
allowing for detailed molecular analysis, has been a major
obstacle for progress. Thus, many groups have developed
3D models to enable longitudinal investigation of fundamental
cell–cell and cell–matrix interactions in the complex cancer
microenvironment over time.

Biomimetic 3D tissue-engineered systems have been
developed for numerous diseases, but the complexity of bone
has caused a lag in the development of appropriate 3D bone
models. When developing 3D models of bone and cancer, many

parameters are important including the strength, pore size,
mineral composition and fluid flow, which are significantly
different in the bone than any other tissue in the body. It is critical
to accurately mimic these conditions as it has been
demonstrated that matrix rigidity influences cancer invasion,
metastasis and tissue tropism.2–5 Furthermore, other studies
have demonstrated that the extreme rigidity of bone helps
promote stem cell differentiation6 and increases osteoblast
differentiation and mineralization,7 suggesting that a 3D bone
mimicking microenvironment is not only critical for studying
tumor behavior in bone, but also for studying the contribution of
other cells present in the bone and bone marrow (BM). In
Table 1, different types of tissue-engineered bone biomaterials
are summarized with a list of their compressive strength, as this
is a key parameter useful for comparing 3D tissue-engineered
bone. (For a review on methods for analyzing mechanical
properties of 3D tissue engineering materials, please see ref. 8).
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In this review, we will provide an overview of techniques
currently available to study tumor interactions with bone in
utilizing 3D models.

3D Models using Naturally Derived Materials
Decellularized Bone and Matrix. Decellularized bone modeling
involves decellularizing native bone tissue via chemical,
enzymatic, physical or combination treatments9,10 and has
recently been explored for developing in vitro cancer-and-bone
models.11 These models circumvent immunogenicity caused
by xenografts, mimic bone structure and microarchitecture,
and offer cells a tissue-appropriate template. A recent tissue-
engineered model of Ewing’s sarcoma describes the differential
gene expression of tumor cells in 3D which results in strong
upregulation of cancer-related genes, expression of hypoxic
and glycolytic tumor phenotypes, and angiogenic and
vasculogenic mimicry.12 Similarly, BM and adipose-derived
(AD) stromal cells have been used to generate BM-extracellular
matrix (ECM) and AD-ECM, which is subsequently
decellularized and seeded with specific cells of interest.13

Although both ECMs supported proliferation of cancer cell lines
(HeLa, MCF-7 and MDA-MB-231), and mesenchymal stromal
cells (MSCs), they showed differences in architecture (that is,
fiber orientation, surface roughness) and physical properties
(storage modulus and surface energy).13 It is debatable whether
culturing on ECM is truly a 3D culture, as the tumor cells still
grow in a relatively flat plane.

Hyaluronic Acid Hydrogels. Another natural 3D bone model uses
hyaluronic acid-based hydrogels seeded with renal cell
carcinoma cells, which form spheroids in hydrogels, proliferate
more slowly, and more accurately mimic in vivo gene expression
and cell phenotype than when grown in 2D.14 A similar system

uses prostate cancer osteoblast co-cultures in a hydrogel
composed of thiolated hyaluronic acid and acrylated
functionalized peptides with GRGDS integrin-binding sites and
MMP-cleavable sites.15 These models have allowed for
visualization of osteoblasts (MC3T3-E1 cells) wrapping around
tumoroids in co-culture.15 However, hyaluronic acid hydrogel
compressive moduli are around 9.3 kPa, or up to 22.6 kPa when
crosslinked with genipin.16 These values do not accurately
mimic bone material properties and may cause tumor
cell behavior that is not reflective of the native bone micro-
environment. Many other material composite hydrogels of
hyaluronic acid with gelatin, agarose, alginate and polyethylene
glycol-g-chitosan have also been developed and described;
these all remain below the 25 kPa compressive modulus
range.17

Silk Protein. Silk fibroin is a highly versatile, biocompatible and
biodegradable natural biopolymer. Highly porous (B50–500mm
pore size), cell-supporting silk scaffolds provide a 3D micro-
environment for cell attachment, growth and co-culture for
tumor cells.18,19 Successful cancer-and-bone models have
been demonstrated with MM cells that typically are not able to
survive culture in 2D in vitro, but can be cultured for 2 weeks on
Bombyx mori silk fibroin scaffolds.18 Breast and prostate
cancer cells also survive culture for up to 30 days on Antheraea
mylitta silk scaffolds.12,18–21

Silk scaffolds can be either hexafluoroisopropanol
(HFIP)-derived (85–1000 kPa alone to 10.64 MPa when reinforced
with silk fibers)22 or aqueous-derived (50 kPa–3.33 MPa),
depending on the formulation process.23,24 Aqueous scaffolds
may better promote MSC adhesion owing to their rougher
surface texture, higher modulus and more microporous
topography.24,25 Aqueous-based scaffolds also appear to

Table 1 Tissue-engineered bone used in cancer-and-bone in vitro modeling

Material Compressive modulus (dependent on strain values) References

Cortical bone 17–20�103 MPa 43

Cancellous (trabecular) bone 50–100 MPa 43

Decellularized ECM from cultured cells NA 11,13

Decellularized bone (with tumor cell lines or cell spheroids) 125–145 MPa 9,10,44–46

Cell sheets in bioreactors on cellulose membranes NA 47

Cell sheets over medical-grade polycaprolcatone-tricalcium phosphate
scaffolds

Unknown 48

Hyaluronic acid-based hydrogels 9.3–20 kPa 16

Silk fibroin scaffolds Varies,B13 MPa22 before cell-based mineralization 18,20,22,

49–52

HA (with or without with collagen I peptides) Unreported, or
B5.5 kPa: HAþcollagen
B3.24 kPa: collagen

14,15,32,53,54

Chitosan hydrogel scaffolds (with or without HA or collagen) B5 kPa 55,56

Fibronectin/collagen I/matrigel B2 kPa 57,58

Aqueous-derived silk scaffolds 3.33 MPa 25

HFIP-derived silk 450–1000 kPa 59

Patient tumor explants/BM supernatant of MM patients Unknown 60,61

Gellan and xanthan polymers (reinforced with bioglass nanoparticles) 20.36±1.08 MPa 7

PLG non-mineralized
PLG mineralized with HA

B0.5 MPa
B1.1 MPa

32

63 s bioglass reinforced with 10% HA whiskers
63 s bioglass reinforced with 10% HA particles
63 s bioglass scaffolds alone

23.69 MPa
19.21 MPa
B14 MPa

34

b-tricalcium phosphate nanoparticles incorporated into poly(L-lactic acid) 0.2–1 MPa 35

Abbreviations: BM, bone marrow; ECM, extracellular matrix; HA, hydroxyapatite; HFIP, hexafluoroisopropanol; MM, multiple myeloma; NA, not applicable;
PLG, poly(lactide-co-glycolide.
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support greater bone formation in vitro and degrade faster
in vivo than HFIP-derived scaffolds.26 In the following protocols,
we discuss processes for making silk scaffolds, and methods
for utilizing silk scaffolds for 3D in vitro cancer-and-bone
models.

Composites and Other Materials. Although not specifically used
for bone/cancer models, many other natural materials could
also be used for this application. For example, a mechanically
stiff, zinc crosslinked nanocomposite scaffold with osteoin-
ductive properties was recently described using natural,
biodegradable gellan and xanthan polymers reinforced with
20–120 nm-sized bioglass nanoparticles.7 Their compressive
strength and modulus, 1.91±0.31 MPa and 20.36±1.08 MPa,
respectively, were comparable to the trabecular bone and very
high compared with nanocomposite scaffolds reported in
earlier studies.7 Porous S-sulfo keratin sponge scaffolds have
also been fabricated, but their compressive strengths are
unknown.27

3D Models using Synthetic Materials
The bone is a dichotomous tissue with a spongy marrow interior
and a strong, rigid exterior. The rigid bone matrix can be
mimicked by a range of synthetic materials including bioactive
glass, calcium phosphates and polymer/ceramic composites,
which offer robust control over structural and mechanical
properties.

PURs. Polyurethanes (PURs), which are synthesized from the
reaction of isocyanates (hard segment) with hydroxyls (soft
segment), have been extensively used as bone and vascular
grafts, and in medical devices. They are tough, durable and
non-cytotoxic with tunable mechanical properties and
degradation rates. PURs can be electrospun, solvent-cast or
molded into defined architectures.28 PUR scaffolds have been
used to study osteogenic differentiation,29 wound healing30 and
regeneration in the context of the bone.31

Although 3D printing or additive manufacturing (AM)
approaches, such as Fused Deposition Modeling (FDM), enable
precise control over topological properties, the limited number
of materials that can be processed by AM techniques precludes
precise control over mechanical properties. Below we provide
methods for fabricating 3D scaffolds with substrate moduli
ranging from that of collagen to trabecular bone (10–300 MPa),
and pore sizes in the range that support tumor proliferation and
modulate gene expression associated with metastatic disease
(4300mm) using a t-FDM process.29

Poly(lactide-co-glycolide). Other synthetic materials for
cancer-and-bone models include porous mineralized scaffolds
composed of poly(lactide-co-glycolide) and hydroxyapatite
(HA).32 These are fabricated by a modified gas-forming/
particulate-leaching method33 and have a compressive
modulus of 1.1 MPa. HA, the primary constituent of inorganic
matter in the bone, is noted for its role in providing bone with
exceptional tissue stiffness and serving as a reservoir of ions
(that is, Ca2þ and PO4

3� ). It also represents a bioactive material
that modulates the behavior of both normal and tumor cells
independent of changes in material properties.32

Bioglass. Bioglass known as 63 s glass (63% SiO2, 28% CaO
and 9% P2O5 in molar percentages) has been used as a starting
material for bone-cancer in vitro scaffold models.34 It has been
reinforced with HA nanowhiskers (500 nm length and 50 nm
aspect ratio) or nanoparticles (100 nm diameter)34 that
significantly increase compressive strength and fracture
toughness when compared with pure 63 s glass scaffolds.
Bioglass composite scaffolds successfully cultured MG-63
osteosarcoma cells and exhibited good apatite-forming ability
and cellular affinity.34

PLLA/b-TCP. Nanocomposite scaffolds have also been
made using b-tricalcium phosphate (b-TCP) nanoparticles
incorporated into poly(L-lactic acid) (PLLA) using a thermally
induced phase-separation method.35 These scaffolds with
interconnected micropores utilize the good osteoconductive
and osteoinductive properties of b-TCP and the biogradation
abilities of PLLA.35 MG-63 osteosarcoma cells also proliferated
well on these scaffolds.35

Fabrication methods and protocol details
Several aspects must be considered and individualized for each
study when choosing a 3D model. As described above, these
parameters include matrix rigidity, chemistry, pore size and
availability of tools. Here, we describe two protocols to fabricate
3D models using ‘natural’ and ‘synthetic’ materials. Silk
scaffolds are excellent models to use to investigate long term
(14–30 days) co-culture interactions between the bone
microenvironment cells and tumor cells (for example, MM,
prostate and breast cancer cells). They are highly porous,
biocompatible and biodegradable. 3D-printed PUR-templated
fusion deposition (see the section ‘t-FDM Scaffold Fabrication
and Seeding for Tissue-Engineered Bone’ below) are
outstanding models for studying structural properties of the
bone (microarchitecture, pore size, rigidity, shear stress and
fluid flow) and its impact on metastatic gene expression and
morphology of tumor cells (mono- and co-cultures) for both
short- and long-term cultures. Both silk and printed PUR
template fusion deposition scaffolds are mechanically tunable,
biocompatible, and have a controllable and well-defined
microarchitecture (pore sizes and scaffold shape).

Silk Scaffold Fabrication and Seeding for Tissue-Engineered Bone.
Aqueous- and HFIP-derived silk scaffolds. Silk fibroin scaffolds are
fabricated using silkworm (Bombyx mori) cocoons (Figures 1a–h).
In all, 5 g of silkworm cocoons are cut into small pieces, placed
into 2 l of boiling 0.02 M Na2CO3, and boiled for 30 min. The
supernatant containing silk sericin is discarded, and silk fibroin
is retained and rinsed in fresh de-ionized water for 20 min 3
times. The silk is wrung out and laid to dry. In a beaker, a 9.3 M

solution of LiBr is added to dried silk (20% weight silk/volume
LiBr), covered and allowed to dissolve at 60 1C for 4 h. Dialysis
cassettes (3500 MW cutoff) are filled with 12 ml of silk LiBr
solution, which is dialyzed against 1 l de-ionized water for
3 days. The silk solution is then centrifuged for 20 min
(9000 r.p.m., 5–10 1C) twice to remove debris and concentration
is determined (wt/wt% or wt/vol%) by weighing a 1 ml sample
‘of the solution before and after drying for 12 h at 60 1C.
Silk solutions of 6–8% work well for constructing scaffolds of
500–600mm pore sizes.
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Figure 1 Generation, seeding and analysis of silk scaffolds for tissue-engineered bone-cancer models. (a) Silk worms (Bombyx mori) are grown on mulberry leaves and produce
cocoons as they begin to undergo metamorphosis into silk moths. (b) Cleaned cocoons are boiled to separate silk sericin from silk fibroin and air dried to produce fibroin with a cottony
texture. (c) Dried silk fibroin is then dissolved in LiBr to produce a highly concentrated silk solution. (d) This solution is then dialyzed with dialysis cassettes to remove LiBr ions and
purify the silk solution. Silk solution can then be freeze-dried and re-dissolved by HFIP, or used directly to make silk scaffolds. (e) Silk solution is poured into molds and NaCl crystals
are added slowly over the silk solution to crosslink silk protein to create a porous scaffold. After 3 days, salt is washed from the scaffolds and scaffolds are cut to size. (f) Silk scaffolds
can be imaged with a scanning electron microscope (SEM) for high-resolution imaging. (g) Schematic of silk scaffolds making procedures. (h) Scaffolds are soaked in well plates
(top) with culture media to prepare for seeding, and then cells are seeded with a pipette (bottom). (i) Whole flushed BM cells from C3H mice were seeded onto silk scaffolds and
imaged with live/dead confocal imaging 3 days after seeding. (1) Silk autofluorescence is seen in the blue channel, dead cells (ethidium homodimer-1) and autofluorescence of silk is
seen in the red channel, and live cells (calcein) are seen in the green channel. (2) Magnification of the overlay from shows scaffold in purple/pink, live cells in green, and a few dead
cells, indicated in red. (3) Live-dead (calcein-green/ethidium homodimer-1/red) staining confocal imaging of mouse MSCs (green) first expanded in vitro on tissue culture plastic (2D),
and then seeded at passage 2 on silk scaffolds (red) and cultured for 9 days in mMSC expansion media. Cells can be seen growing off the scaffolds and into the pores throughout the
scaffolds.
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Aqueous-Derived Silk Fibroin Scaffold Preparation In all, 4 g
of NaCl particles sifted through a metal mesh to obtain desired
pore size (500–600 mm diameter) are slowly added to 2 ml silk
fibroin aqueous solution in plastic containers. Containers are
covered, sealed airtight and left at room temperature (RT) for
24 h prior to immersion in de-ionized water for 2 days to extract
NaCl.
HFIP-Derived Silk Fibroin Scaffold Preparation To lyophilize
silk, silk fibroin aqueous solution is pour into a 50 ml conical
tube, covered with a Kimwipe secured with a rubber band and
frozen at � 80 1C overnight or until fully dried. Lyophilized silk is
then dissolved with HFIP to produce a 17 wt% HFIP-derived silk
solution in a chemical hood. HFIP silk solution (2 ml) is poured
over 4 g of NaCl particles (500–600 mm diameter) in small plastic
containers, which are capped quickly and left overnight at RT.
Containers are opened to allow HFIP to evaporate from
scaffolds for 3 days then submerged in a 90% methanol solution
for 30 min to 3 days to induce b-sheet structure formation.

Finally, samples are removed and immersed in water for 3 days
to remove NaCl particles to produce silk scaffolds, which are
removed from containers and cut to shape.

Tissue-Engineered Bone from BM-derived MSCs. Once scaffolds
are formed, they are cut to desired dimensions using a biopsy
punch or razor blade to B4 mm diameter� 4 mm height for
in vitro applications. To sterilize the scaffolds (if dry), scaffolds
are wrapped in aluminum foil and placed into autoclavable
packets and, if wet, put into a small glass, water-filled jar and
autoclaved. Sterile scaffolds are soaked in media for 24 h and
then cells of interest are seeded directly onto scaffolds
(Figure 1h). For example, human MSCs (hMSCs) should be
seeded at B17 000 cells per mm3 in 20–40ml media. Whenever
possible, cells that stably express a fluorescent protein, such as
GFP or RFP (green or red fluorescent protein) should be used.
Cell type and concentrations can be modified. Scaffolds
seeded with cells are incubated (37 1C, 5% CO2) for B1 h to

Fabrication of 3D PURs

PUR
mixture
added to
template   

Solvent
leaching  

Figure 2 Fabrication schematic and analysis for t-FDM scaffolds. (a) Scaffold molds (inverse scaffold template) were designed in SolidWorks software with tunable pore size and
physical microarchitecture as shown by representative image (b) PLA templates were printed using a MakerBot Replicator 2 FDM printer. (c) Liquid PUR is poured into the PLA
templates (representative image of the scaffold mold) and this template-PUR mixture is cured overnight at 60 1C to set. (d) Scaffold molds are washed and the PLA is leached out
using an acetone-dichloromethane-acetone solution mixture. (e) Representative scanning electron microscopy (SEM) image of the rigid scaffold. (f) GFPþMDA-MB-231 cells were
seeded on fibronectin-coated PUR scaffolds. Scaffolds shown here mimic collagen (compliant) and trabecular bone (rigid) stiffness indices. Seeded scaffolds are incubated for 24 h,
serum-starved for 6 h and placed on glass-bottom MatTek dishes to image. The cell motility of the GFPþMDA-MB-231 cells was observed using live confocal imaging.
Representative gray-scaled confocal imaging demonstrates tumor cells (denoted in bright white, highlighted by white dotted line and white arrow following a single cell) migrating
over 3D scaffold surface.
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allow cells to adhere to scaffold and then fresh media is added
to cover the scaffolds. At day 5, or once scaffolds appear
covered by hMSCs, osteogenic medium is added to scaffolds
and cells are differentiated for as long as desired to create
TE-bone (tissue-engineered bone). If tumor cells are cultured
with TE-bone during or after the process of differentiation,
dexamethasone should not be used in media and an alternative
acceptable medium for both cell types should be determined.
Medium is changed every 3 days, or as often as needed.
Mineralization can be quantified with mCT or histology. For
hMSCs, 1 week of proliferation and 3–4 weeks of osteogenic
differentiation produces mineralized, osteoblast-containing
scaffolds, depending on the cell donor.

t-FDM Scaffold Fabrication and Seeding for Tissue-Engineered Bone.
Reagents. HDIt, Stannous octoate (Sigma-Aldrich, St Louis,
MO, USA), glycerol (Sigma-Aldrich), poly(e-caprolactone) triol
(300 Da) (Sigma-Aldrich), e-caprolactone (Sigma-Aldrich),
glycolide (Polysciences), Fibronectin (Life Technologies,
Carlsbad, CA, USA).

Materials and Methods. Glycerol is dried at 10 mm Hg overnight
at 80 1C and e-caprolactone is dried over anhydrous magne-
sium sulfate prior to use (B15 min). Poly(e-caprolactone-co-
glycolide) triol (Mn¼ 3000 g mol� 1) is synthesized using the
glycerol starter, e-caprolactone, D,L lactide, glycolide and
catalyst—stannous octoate mixed in a 100-ml reaction flask
with mechanical stirring under argon for 36 h at 140 1C. The
polyol then is dried under vacuum at 80 1C for 14 h. PUR
scaffolds are synthesized by mixing poly(e-caprolactone-co-
glycolide) triol (Mn¼ 300 (add 1.98 g) or 3000 g mol� 1 (add
3.15 g)), hexamethylene diisocyanate trimer (HDIt (Bayer
MaterialScience, Pittsburgh, PA, USA), (add 4 g (for Mn¼ 300) or
1.5 g (for Mn¼ 3000), respectively)) and stannous octoate
(catalyst, (add 1.2 mg)) in a cup for 30 s with a Hauschild
SpeedMixer DAC 150 FVZ-K vortex mixer (FlackTek, Landrum,
SC, USA). This solution is then poured into the PLA templates as
described below.

Fabrication of 3D scaffolds by templated-fused deposition

modeling. Polylactic acid (PLA) template molds can be
designed with varying internal microarchitecture, shape and
size. For this example, we designed scaffold mold templates
(14 mm diameter) with a defined 100% connected porous
architecture using SolidWorks software (Waltham, MA, USA)
and printed using a MakerBot Replicator 2 FDM printer
(Brooklyn, NY, USA) (Figure 2). The PUR liquid is poured into the
PLA templates to completely cover them (B500 mg) and cured
at 60 1C overnight. The PLA template is then immersed in
acetone (B2 h), leached with dichloromethane (use 2� volume
of the scaffolds or enough to immerse all the scaffolds), washed
with acetone and then dichloromethane to yield scaffolds with
interconnected pores having a channel diameter of 423±34 or
557±44 mm for nominal 300 or 500mm templates, respec-
tively29

(Figures 2a–d). Scaffolds are sterilized under ultraviolet light for
15 min in 70% ethanol, rinsed with phosphate-buffered saline
(three times) and then placed in a solution of 4 mg ml� 1

fibronectin overnight at 4 1C. The substrate modulus (Es)
of the scaffolds is controlled by the Mw of the polyester triol
(compliant, 3000 g mol� 1; rigid, 300 g mol� 1) to attain

values representative of collagen (5 MPa, compliant),
trabecular bone (266 MPa, rigid) or cortical bone
(871–11 500 MPa).36,37

Cell viability, proliferation and metabolic activity. Trypan Blue cell
viability, live/dead staining (calcein/propidium homodimer) or
MTS assays (CellTiter 96 Aqueous Non-Radioactive Cell
Proliferation Assay, Promega, Madison, WI, USA) can be
performed as per the manufacturers’ protocols.

Bioreactor experiments. Scaffolds are cultured in a flow perfusion
bioreactor (3D Biotek, North Brunswick Township, NJ, USA).
During bioreactor culture, scaffolds can be placed in individual
autoclavable polycarbonate chambers and seeded with 0.25 to
1� 106 GFPþMDA-MB-231 cells per scaffold. These scaffolds
then can be studied simultaneously using a steady flow regime
for 48 h at 9.35 ml s� 1 (an optimal flow rate for MDA-MB-231
cells). This flow rate equates to osteogenic inductive fluid shear
stress, t (B0.0176 Pa).38,39 Culture medium (either standard or
supplemented with study drugs) is perfused through the open
porous structure of scaffolds using a pulsatile pump feeding into
a media reservoir chamber. Within each chamber there is a
1.5 mm distance separating each scaffold. The whole system,
including the pump, is placed in a 5% CO2, 37 1C incubator.
After culture scaffolds are harvested for gene or protein
expression.

Analysis Protocols. Both silk scaffolds and PUR 3D-printed
scaffolds can be imaged or analyzed with confocal microscopy
(Figures 1i and 2f), flow cytometry to measure changes in
cell populations, immunohistochemistry, scanning electron
microscopy and bioluminescence imaging. These procedures
require little modification from typical protocols, and thus will
not be discussed here.

Cell isolation from scaffolds for downstream analysis. Cells are
trypsinized from scaffolds, and fluorescence is used to quantify
and separate cells into different populations when needed.
Scaffolds are flash frozen in liquid nitrogen and then crushed
using a mortar and pestle to extract cells for mRNA or microRNA
expression from total RNA using Qiagen miRNeasy Kits
(Qiagen, Hilden, Germany).

Immunohistochemistry. After desired co-culture period, silk
scaffolds can be fixed in 4% paraformaldehyde overnight,
paraffin embedded and stained for markers such as alizarin
red (mineralization), hematoxylin and eosin or immunohisto-
chemisty for proteins of interest, such as CD138 in myeloma.
For histological assessment of in vivo 3D-printed scaffolds,
animals are killed, and these scaffolds can be excised
and processed using paraffin embedding. When sectioning
scaffolds, keep paraffin block cold by placing on ice. Ensure the
microtome blade is sharp and kept clean as not to snag and tear
the section. After placing the section on slide make certain
the section is placed firmly on the slide. Leave the slides to
dry overnight at room temperature or for B8 h on a slide
warmer.

Cell sources
hMSCs, mouse MSCs or osteoblast lineage cell lines are
seeded onto scaffolds and tumor cells are added when desired.
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Alternatively, whole BM can be directly seeded onto scaffolds
(Figure 1) using previously published methods.18,40

Human BM cell source
Human stromal cells are isolated fresh from BM as previously
described.18 Briefly, 25 ml BM is spun at 1200 r.p.m. for 5 min at
4 1C and then gently removed from centrifuge. BM adipose is
congealed at the top of this liquid, which should be aspirated
using low suction without disturbing the marrow. BM is
transferred to a larger flask, mixed with 224 ml hMSC expansion
media, and evenly distributed to 14 deep T-185 flasks (20 ml per
flask). Flasks are rocked daily. Medium (20 ml) is added to flasks
every 3 days for 9 days, removing nothing. At day 10, adherent
colonies are analyzed under a microscope for confluency.
Alternatively, there are many commercial sources of mouse and
human BM and purified MSCs.

Conclusions

In this article, we described the methods necessary for
developing and validating a variety of tissue engineering models
for cancer-and-bone interactions. There is an urgent need to
develop and validate reliable in vitro models to reproduce
specific tissue-like structures and mimic functions and
responses of tissues in a physiological manner. These models
must be physiologically relevant 3D platforms to bridge the gap
between 2D and in vivo animal model-based cancer research.
Indeed, over the past two decades, accumulating evidence
about various organs and disease models has demonstrated
that the biochemically and spatially defined network of ECM,
cellular components, and interactions that dictate cell
differentiation, proliferation and function in vivo are lost in
simplified 2D conditions, but captured with 3D models.41 For
example, the substrate modulus of the tissue surrounding a
tumor significantly affects tumor cell behavior, gene expression,
phenotype and invasion potential.37,42 3D models can thus
accelerate the translation from pre-clinical to clinical trials
by more accurately predicting disease course, responsive
subpopulations or treatment responses, especially when using
humanized, engineered bone rather than mouse bone. The
protocols and methods summarized here are some of the best
available tools for modeling tumors within the BM. These
models have the potential to support personalized medicine
through patient specific model development. Finally, the
models described here enable screening of new therapeutics in
a dynamic in vitro system prior to pre-clinical testing to allow for
investigation of effects on tumor cells and microenvironmental
cells.
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